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Abstract 

Cysteine-rich polycomb-like proteins (CPPs), pivotal transcription factors crucial for evolution of plants from germi-
nation to maturity, and adaptation to environmental stresses, have not yet been characterized within the context 
of Moso bamboo. The CPP gene family of Moso bamboo was identified through bioinformatics, and the structural 
and functional attributes of the gene, including its physicochemical properties, evolutionary relationships, and gene-
protein structures, were revealed. Additionally, the current study also offers valuable information on the patterns 
of gene expression in bamboo shoots during the period of accelerated development. The results show that the Moso 
bamboo genome contains 17 CPP members. Molecular phylogenetic relationships indicated that CPPs could be 
divided into three subfamilies and that CPP members of the same subfamily shared similar gene structures, motifs 
and conserved structural domains. The covariance analysis showed that the covariance between CPP and Oryza sativa 
was higher than that between Arabidopsis. Protein homology modeling showed that CPP proteins contain the DNA-
binding domain of typical transcription factors. Transcriptomic data analysis revealed that CPP gene expression differs 
between tissues and organs. CPP could be regulated in response to exogenous gibberellin (GA) and naphthalene 
acetic acid (NAA). The qRT-PCR experiments demonstrated that CPP was crucial in the initial and fast expansion 
of bamboo shoots. Additionally, gene ontology (GO), KEGG enrichment and CPP regulatory network map analyses 
revealed multiple functional annotations of PeCPP-regulated downstream target genes. The results of this study will 
not only lay the foundation for further exploration of the detailed biological functions of CPP genes in the growth 
and development of Moso bamboo, but also establish the groundwork for future genetic enhancement of fast-grow-
ing forest trees.
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Background
Transcriptional factors (TFs) are proteins with DNA-
binding properties that regulate gene expression at the 
transcriptional level by interacting with specific motifs 

in designated promoters. Hence, transcription factors 
serve as crucial regulators in the processes of evolution 
of plants from germination to maturity, and response 
to abiotic stresses. In general, the DNA binding domain 
of each transcription factor is highly conserved. Within 
the PlantTFdb database, transcription factors are cat-
egorized into numerous gene families according to the 
sequence attributes of their DNA binding domain [1, 2]. 
For example, the dicotyledonous model plant Arabidop-
sis thaliana transcription factors can be divided into 62 
families. This plant contains at least 1,533 genes encoding 
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transcriptional regulators, accounting for approximately 
5.9% of all Arabidopsis genes [3]. The monocot model 
plant rice (Oryza sativa) transcription factors can be 
divided into 56 families. It contains at least 2408 genes 
encoding transcriptional regulators, accounting for 
approximately 4% to 4.8% of the total number of rice 
genes. Although the quantity of plant transcription fac-
tors is not dominant, they can regulate the expression 
levels of numerous downstream target genes. Ultimately, 
they have an effect on plant growth and development, 
as well as the plant’s response to abiotic stresses. As a 
result, identifying and analyzing transcription factors is 
an important part of understanding plant gene transcrip-
tional control mechanisms [4].

CXC structural domain-containing transcription fac-
tors, characterized by their cysteine-rich composition, 
are integral in regulating transcription levels and thereby 
play an essential part in plant tissue and organ growth, 
development, and response to abiotic stress. While mem-
bers of the CPP gene family are prevalent in both plant 
and animal species, they have not been found in lower 
eukaryotes such as yeast [5]. After the discovery of the 
first plant CPP transcription factor, TSO1, in Arabidop-
sis in 2008, the transcription factor has been identified 
in 16 higher plant species [6], including rice [7], soybean 
[8], tomato [9], wheat [10], cucumber [11] and maize 
[12] through genome-wide data bioinformatics analysis. 
Sequence analysis of existing CPP proteins revealed that 
CPP proteins contain two Cysteinerich CXC conserved 
motifs (pfam03638), namely CXC1 and CXC2. The two 
CXC motifs are usually separated by a length region con-
taining the short conserved sequence RNPXAFXPK [13, 
14]. The CXC structural domain has also been named 
CRC, TCR and CHC [13, 15].

The documented roles of the CPP gene primarily per-
tain to its participation in plant floral organ development 
and the plant’s response to adverse environmental con-
ditions. For example, the Arabidopsis TOS1 (AtCPP5) 
gene not only regulates mitotic and cytoplasmic cell divi-
sion during flower development, but also causes defects 
in flower organ development in the form of mutations 
[16, 17]. Specifically, soybean CPP exhibits heightened 
responsiveness to high temperature stress, thereby aug-
menting the stress resilience of soybean through upregu-
lated expression of numerous CPP genes in the roots [8]. 
Additionally, CPP1 modulates GMLBC3 gene expres-
sion in soybean by interacting with its promoter region 
[13]. Furthermore, previous studies have shown that the 
CPP gene family can regulate gene expression by bind-
ing DNA through its CXC domain [15]. In maize, most 
ZmCPP genes were significantly up-regulated under high 
and low-temperature stresses, and four ZmCPP genes 
were also up-regulated under drought stress [12].

Moso bamboo (Phyllostachys edulis), which belongs 
to the genus Gentiana in the subfamily Bamboo of the 
family Gramineae, is one of the most versatile herba-
ceous plants on the planet. Moso bamboo is one of the 
most rapidly growing species of bamboo, with stalk 
growth rates of up to 1–1.5 m/day. New bamboo can 
reach a height of more than 6–7 m in 2–3 months from 
the time the shoots break the ground [18]. Subsequently, 
the biomass can grow at a rate of 10–30% per year and 
become timber in 5–6 years. In contrast, most other 
woody plants have an annual biomass growth rate of only 
2–5% [19] and require at least 10 years to reach maturity. 
Although the genetic improvement of Moso bamboo is 
hampered by the fact that the genetic system is not yet 
complete and the flowering cycle takes about 60 years, 
the molecular mechanism of the "explosive" rapid growth 
of Moso bamboo has always been a topic of great inter-
est. Studies have shown that the rapid growth phase of 
shoots is closely related to cell growth processes, meta-
bolic processes, replication and reproduction processes, 
stress resistance, mutual regulation of plant hormones in 
response to abiotic stresses. With the rapid development 
of molecular biology techniques and the application of 
genomics in bamboo plants, especially the completion 
of bamboo whole-genome sequencing in 2013 [20] and 
the update of the Moso bamboo genome data in 2018 
and the generation of a large amount of transcriptome 
data, our understanding of the abundance, distribu-
tion and functional expansion of the bamboo gene fam-
ily has been improved [21]. To date, SBP-like [22, 23], 
ARF [24], MADS-box [25], UBP [26], MYB [27], AP2/
ERF [28], SAUR [29], AQP [30], IQD [31], HD-Zip [32], 
and D-J [33] gene families have been performed in Moso 
bamboo for genome-wide analysis [34]. However, there 
are no relevant literature reports on the identification, 
structure and function of the CPP gene family in Moso 
bamboo. Therefore, exploring CPP transcription factors 
involved in the proliferation, maturation, and environ-
mental response of Moso bamboo is valuable for identi-
fying genetic resources and the molecular breeding work 
of forest trees or graminaceous crops.

In this study, genome-wide identification of the CPP 
gene family in Moso bamboo was performed using a bio-
informatics approach. Through systematic analysis of 17 
Moso bamboo CPP genes and their encoded proteins, 
including phylogenetic relationships, expression analysis 
based on transcriptomic data and qRT-PCR. Combined 
with downstream target gene identification and expres-
sion analysis, it is proposed to reveal the role of the CPP 
gene family in the development of different tissues and 
organs of Moso bamboo and rapid shoot growth and 
development. The above results will provide a solid the-
oretical basis for further studies on the functions of the 
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CPP transcription factor gene family in Moso bamboo. 
Meanwhile, it will provide candidate gene resources for 
the genetic improvement of fast-growing forest trees.

Results
Analysis of CPP gene family members and physicochemical 
properties
The amino acid sequences of the 17 CPP family mem-
bers were subjected to bioinformatic analysis, and the 
genes were assigned new names, PeCPP01 to PeCPP17, 
depending on their chromosomal location (Table 1). The 
findings indicated that the CPP family’s most substan-
tial protein had a molecular weight of 85.24 kilodaltons 
(kD), whilst the smallest protein had a molecular weight 
of 20.20 kD. The lengths of their amino acid sequences 
varied from 177 to 791 residues. The isoelectric points 
range from 4.86 to 9.37. Out of the proteins, ten were 
categorized as basic due to their theoretical isoelectric 
points being over 7, while seven were classed as acidic 
with scores below 7. The aliphatic index, which quantifies 
protein thermostability, varied from 41.81 to 80.16, sug-
gesting notable differences in thermal stability within this 
protein family. The CPP genes in these members have an 
average hydrophobic index of less than zero and are all 
hydrophilic proteins. The localization of CPPs in the cell 
was predicted based on the signal peptide of the protein 
sequence [35], and the results showed that all CPPs were 
localized in the nucleus. Only three CPPs (PeCPP12, 
PeCPP13 and PeCPP14) were localized not only in the 

nucleus but also localized to the cell membrane, demon-
strating that CPP acts as a transcription factor mainly in 
the nucleus to regulate the expression of downstream tar-
get genes, and some CPPs may also play a regulatory role 
in the chloroplast.

Analysis of gene family evolution
Based on the evolutionary analysis of different species, 
CPP family genes can be divided into two categories [7, 
12]. The results showed that the amino acid sequences of 
Moso bamboo CPP could be divided into three subclades, 
namely CPP I, CPP II and CPP III (Fig. 1A). The largest 
number of CPP family members was found in CPP I, with 
7. CPP II and CPP III had 4 and 6 CPP family members 
respectively. The CPPs of Arabidopsis form a distinct 
group, while those of rice and Moso bamboo cluster 
together in one family, indicating that Moso bamboo is 
more closely related to rice and more distantly related to 
Arabidopsis in the CPP subfamily. To further investigate 
the duplication events that occurred in the PeCPP gene 
family, we conducted collinearity analysis. Co-lineages 
within the Moso bamboo species are shown (Fig. 1B): a 
total of six sets of linear relationships existed between 
members of the Moso bamboo intraspecific family, with 
a total of six PeCPP genes exhibiting fragment duplica-
tion. A total of seven direct paralogous homologues 
of the 10 Moso bamboo PeCPPs were identified in the 
monocotyledonous rice. In contrast, only one Moso 
bamboo CPP homolog was found in the dicotyledonous 

Table 1  Detailed information on17 PeCPPgenes and their encoded proteins

A.I. Aliphatic index, GRAVY Grand average of hydropathicity score, MW Molecular weight, pI Isoelectric point, I.I Instability index

Gene Name Gene ID A.I GRAVY Size
(aa)

MW
(kDa)

pI I.I Predicted Location

PeCPP01 PH02Gene12177.t1 62.82 −0.648 791 85.24 6.01 55.19 Nucleus

PeCPP02 PH02Gene43602.t1 55.86 −0.785 353 39.43 8.64 61.16 Nucleus

PeCPP03 PH02Gene44610.t2 57.17 −0.775 508 55.56 7.90 53.29 Nucleus

PeCPP04 PH02Gene08479.t1 59.23 −0.724 351 39.09 8.64 63.25 Nucleus

PeCPP05 PH02Gene46191.t1 41.81 −0.838 177 20.20 4.86 51.42 Nucleus

PeCPP06 PH02Gene08750.t2 63.09 −0.661 781 84.36 6.16 55.56 Nucleus

PeCPP07 PH02Gene01129.t1 60.77 −0.679 392 42.87 5.88 59.54 Nucleus

PeCPP08 PH02Gene01127.t1 66.26 −0.580 564 61.50 6.41 50.85 Nucleus

PeCPP09 PH02Gene09230.t1 59.62 −0.679 393 43.04 6.92 63.09 Nucleus

PeCPP10 PH02Gene09228.t1 66.85 −0.620 778 83.76 7.77 54.07 Nucleus

PeCPP11 PH02Gene49268.t1 80.16 −0.441 566 62.22 8.88 53.92 Nucleus

PeCPP12 PH02Gene42648.t1 63.86 −0.646 625 67.62 9.12 54.03 Chloroplast

PeCPP13 PH02Gene42650.t1 75.11 −0.382 593 64.29 9.12 49.87 Chloroplast

PeCPP14 PH02Gene00783.t1 75.31 −0.349 433 46.53 9.37 52.18 Chloroplast

PeCPP15 PH02Gene21071.t1 58.87 −0.801 506 55.39 8.38 62.86 Nucleus

PeCPP16 PH02Gene34347.t1 59.04 −0.781 508 55.56 8.54 64.16 Nucleus

PeCPP17 PH02Gene24371.t1 66.58 −0.624 491 54.01 6.25 54.90 Nucleus
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plant Arabidopsis, indicating a closer kinship between 
the same monocotyledonous Moso bamboo and rice 
(Fig. 1C).

Chromosome distribution characteristics and gene 
structure analysis
The chromosome scaffolds distribution of the CPP gene 
family of Moso bamboo (Fig. 2A) showed that 17 PeCPP 
genes were distributed on 13 chromosome scaffolds. 
Different chromosome scaffolds had different gene dis-
tribution densities. No gene underwent gene doubling 
(parallel duplication). Two PeCPP genes are present on 
each of scaffold11, scaffold12 and scaffold14, while all 
other scaffolds contain only one gene. The arrangement 

of exons and introns offers valuable information on the 
evolutionary connections across gene families [36]. 
The gene structure of the CPP family of Moso bam-
boo (Fig. 2B) shows that the number of introns of each 
Moso bamboo CPP gene varies from 5 to 10. PeCPP13 
and PeCPP17 lack untranslated regions (UTRs) at both 
the 5’ and 3’ ends, while PeCPP16 lacks a UTR at the 3’ 
end. The 17 sequences were classified into 3 classes and 
the results were generally consistent with the classifica-
tion of the evolutionary tree. The results showed differ-
ent levels of intron variation, with the gene PeCPP17 in 
CPP III having the longest intron area and the gene in 
CPP II having the smallest intron. The intron lengths of 
genes in CPP I exhibit a higher degree of concentration. 
Differences in the quantity of introns can lead to a wide 
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Fig. 1  a Phylogenetic analysis of the full-length CPP protein sequence from Phyllostachys edulis (Pe, bamboo), Arabidopsis thaliana (At, Arabidopsis), 
and Oryza sativa (Os, rice). Orange, red and yellow represent the sequences of bamboo, rice and Arabidopsis, respectively. b Chromosome 
distribution of CPP gene and its relationship. The gray lines indicate isomorphic blocks in the Phyllostachys edulis genome, and the red lines indicate 
repeated PeCPP gene pairs. c Simultaneous analysis of the Phyllostachys edulis genome of a monocotyledonous plant and a dicotyledonous plant. 
The gray line indicates the alignment block between the paired genomes, and the blue line indicates the integrated CPP gene pair
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range of gene structures, and the length of introns can 
also affect the specific functions in plants [7, 37].

Analysis of motifs and conserved structural domains
Further analysis of the conserved structural domains of 
the proteins encoded by CPP family members based on 
the NCBI online software CDD revealed that all CPP 
family members encoded proteins with CXC structural 
domains (Fig.  3A). Except for PeCPP13, PeCPP17 and 
PeCPP08, which have only one CXC domain, most of 
the family members have both CXC domains, namely 
CXC1 and CXC2. The CXC domain of the CPP gene 
family is highly conserved, but the distribution and 
number of the domains are somewhat divergent, which 

may lead to functional differences among the mem-
bers. Members of the Moso bamboo CPP gene family 
contain two to five highly conserved motifs in num-
ber (Fig.  3B). Some motifs occur only in specific CPP 
proteins, suggesting that these motifs have specific 
functions in these genes. For example, motif3 and 
motif4 occur in the CPP I subfamily, and the presence 
of certain motifs at specific positions indicates gene-
specificity. Also, some members of the CPP gene fam-
ily suffer from motif loss. For instance, most genes in 
the CPP II and CPP III subfamilies contain only three 
motifs, while PeCPP05, PeCPP08 and PeCPP17 con-
tain only two motifs, which may lead to functional 

Fig. 2  Chromosomal location and gene structure of Moso bamboo CPP genes. a Chromosomal location of 17 PeCPP transcripts on the 13 Moso 
bamboo scaffold. The scale represents Mb. The chromosome numbers are indicated at the top of each bar.Pink, orange and blue indicate CPP I, CPP 
II and CPP III respectively. b Exon/intron organization of Moso bamboo CPP genes
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differences between genes. It was found that PeCPP17 
contains only one CXC domain, but its conserved 
motif contains both CXC1 and CXC2. Therefore, it is 
speculated that PeCPP17 may have a gene mutation. In 
general, the Moso bamboo CPP gene family exhibits a 
moderate level of conservation in the CXC structural 
domain and motif. Nevertheless, there are variances 

in the composition, distribution, and quantity of the 
members, which could result in functional variations 
(Fig. 3C).

Homology modeling of CPP gene family proteins at three 
levels of structure
The highest homology, 5fd3 [38], was selected as the tem-
plate for tertiary structural homology modeling of CPP 

Fig. 3  Conserved domain and motif analysis. a Conserved domain prediction of 17 PeCPP proteins. The gray lines indicate the length of each 
protein sequence, and the conserved domains are indicated by colored boxes. b Schematic representation of the conserved motifs in Moso 
bamboo CPP proteins elucidated from publicly available data. Each colored box represents a motif in the protein, with the motif name indicated 
in the box along the bottom. c Sequence logos for each conserved motif are shown above



Page 7 of 19Tan et al. BMC Genomics         (2024) 25:1173 	

in Moso bamboo using the Swiss-model online server. 
The best conformational model was selected after SAVES 
measurement. The modeling results showed (Fig.  4) 
that the CXC sequence, a conserved Cys-rich structural 
domain, was located at the N terminus. There were 16 
amino acid residues in the CPP protein, namely Lys166, 
167, 173, 97, 92, 91, Ser168, 93, 89, Arg161, 153, 86, 
Leu98, Thr164, Tyr174 and Cys88, which could be bind 
to nucleic acids through non-bonding interactions such 
as hydrogen bonds and van der Waals forces. Among 
them, Cys88 is derived from the CXC structural domain. 
The tertiary structure of this CPP protein has a highly 
conserved DNA binding domain (DBD) and Tyr17 con-
fers binding specificity to the CPP protein by interacting 
with DNA, a novel finding in this study that has not been 
found in existing studies of CPP genes.

Promoter characterization of the CPP family in Moso 
bamboo
Numerous members of the CPP family are known to be 
regulated by diverse abiotic stresses, underscoring their 
involvement in the response mechanisms to such condi-
tions. In this study, we analyzed the nucleotide sequences 
located 1500 bp upstream of 17 Moso bamboo CPP genes 
to identify cis-acting regulatory elements. Promoter 
analysis indicated the presence of not only core pro-
moter elements but also a multitude of other cis-acting 
elements involved in plant growth and development, 
stress response, and hormone signaling (Fig. 5A). Nota-
bly, elements related to stress response were particularly 

prevalent, constituting 83% of the total identified ele-
ments, thereby underlining the critical function of the 
CPP gene family in Moso bamboo’s adaptation to envi-
ronmental stressors (Fig. 5B-C). Focusing on growth and 
development, each gene within the CPP family exhib-
ited CAT-box (30%) [39], which is predominantly linked 
with gene expression in meristematic tissues. Hormone-
responsive elements detected include those responsive to 
methyl jasmonate, such as the CGTCA-motif (15%) and 
TGACG-motif (15%) [40], alongside elements like the 
ABRE (22%) which respond to abscisic acid, and a sub-
stantial number of elements like MYC (40%) responsive 
to jasmonic acid [41]. Moreover, elements such as the 
TATA-box and CAAT-box, ubiquitous in eukaryotic pro-
moters, were frequently observed in the PeCPP promot-
ers, emphasizing their essential role in transcriptional 
regulation and the necessity for the CPP gene family in 
Moso bamboo to swiftly initiate response mechanisms 
upon encountering environmental stress. In the domain 
of stress response, MYB elements, predominantly 
involved in mediating responses to drought, high salinity, 
and low temperatures, represented a significant fraction. 
Furthermore, the study identified an array of other stress-
responsive cis-acting elements, including those associ-
ated with antioxidant responses (ARE), light-responsive 
elements (G-Box), and drought-responsive elements 
(MBS) (Fig.  5E-F). These results highlight the integral 
role of the CPP gene family in both the growth and envi-
ronmental adaptability of Moso bamboo, showcasing the 
complexity of its regulatory mechanisms.

Fig. 4  The three-dimensional structure of PeCPP07. Helices and β-strands are colored red and green, respectively. The 4Fe-4S cluster and the side 
chains of key residues Cys88 and Tyr174 are shown in ball and stick representation
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CPP family gene expression patterns
For investigating the expression profile characteristics 
of the Moso bamboo CPP gene family, the expression 
of each of the 17 PeCPP genes in the above samples was 
calculated for different growth heights of Moso bam-
boo shoots (0.2 m, 0.5 m, 1 m, 2 m, 3 m, 4 m, 5 m, 6 m), 
Moso bamboo seedlings under different hormone (GA, 
NAA) treatments, as well as transcriptome data from 
roots, leaves, flowers and whips. The expression heat 
map revealed that the expression of all Moso bamboo 
CPP gene family members was down-regulated after the 
application of GA treatment to live Moso bamboo seed-
lings. This indicates that all CPP genes may be negatively 
regulated by GA (Fig. 6A). After NAA treatment of live 
Moso bamboo seedlings as shown in (Fig. 6B): expression 
was up-regulated after PeCPP06, PeCPP10, PeCPP05, 
PeCPP03 and PeCPP16. In contrast, the expression of 
PeCPP01, PeCPP09 and PeCPP04 was down-regulated 
after treatment with NAA, indicating that CPP in Moso 
bamboo is regulated by the NAA hormone. In addition, 
CPP was differentially expressed in different organs of 
the plant, as shown in (Fig.  6C): Most CPP was highly 
expressed in bamboo leaves, except for PeCPP05, which 

was expressed at a low level in leaves. PeCPP05, PeCPP02, 
PeCPP09 and PeCPP11 were highly expressed in bamboo 
flowers but less so in roots. PeCPP04, PeCPP05, PeCPP08 
and PeCPP09 were less expressed in bamboo whips, 
while other genes were expressed at relatively high lev-
els. This difference in expression levels suggests that the 
Moso bamboo CPP genes may be involved in the growth 
and development of different tissues and organs of Moso 
bamboo. In addition, the expression of CPP in different 
bamboo shoots at different stages of germination was 
analyzed separately (Fig. 6D) and validated by quantita-
tive PCR (Fig. 7), which revealed that most PeCPP was at 
a high level in 0.2 m and 0.5 m shoots, at an intermediate 
level in 1 m shoots, and an increasing number of PeCPP 
showed low levels of expression after 1 m. Among them, 
PeCPP03, PeCPP11 and PeCPP09 showed the highest 
expression at 0.2 m, 2 m and 0.5 m, respectively, while 
PeCPP07 and PeCPP04 showed the lowest expression at 
2 m and 3 m, respectively. As can be seen by construct-
ing expression histograms, basically all PeCPP genes 
were highly expressed at the shoot germination stage. 
Overall, these PeCPPs were highly expressed at the 0.2 m 
(below ground) to 0.5 m (above ground) stages of shoot 

Fig. 5  Cis-elements in the PeCPP promoters of Moso bamboo. a The intensity of the red color and the numbers in the cells indicate the numbers 
of different cis-elements in each PeCPP. b The colored histograms indicate the number of different cis-elements in three categories. c Summary 
of all cis-elements. d-f The proportions of different cis-elements in each category: Development, Hormone, Abiotic and Biotic Stress Responsive
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germination, indicating that they may serve a significant 
role in the shoot emergence process.

Functional annotation of CPP target gene expression
Characteristic sequence models for CPP identification 
were downloaded through the JASPAR database. The 
1-kb upstream sequences of all Moso bamboo genes were 
also scanned using the FIMO3 tool with a default p-value 
threshold of 1e−6, and the number of CPP-regulated tar-
get genes identified was 330. In order to conduct a more 
in-depth analysis of the biological roles of the target 
genes of Moso bamboo CPP, we performed GO enrich-
ment analysis and KEGG functional annotation of 17 
PeCPP protein-regulated downstream target genes. The 
GO enrichment analysis graph (Fig. 8A) shows that at the 
biological process level, CPP target genes are present in 
metabolic processes (GO:0008152) and cellular processes 
(GO: 0009987) and other GO enrichment terms. At the 

cellular component level, most of the CPP target genes 
were mainly involved in constituting cellular components 
(GO:0044464) and organelle components (GO:0043226), 
while a few were also enriched in protein-containing 
complexes (GO:0032991). The downstream target genes 
regulated by the CPP gene family in Moso bamboo are 
mainly enriched in binding (GO:0005488) and catalytic 
activity (GO:0003824) functions at the molecular func-
tional level. Its binding role is a characteristic feature 
commonly found in transcription factors. GO enrich-
ment analysis showed that the downstream target genes 
regulated by PeCPP transcription factors are involved 
in macromolecular biosynthesis, cellular biosynthetic 
processes, RNA biosynthesis, and the largest number of 
genes are associated with the regulation of cellular mac-
romolecular biosynthetic processes (Table S1).

The KEGG Pathway classification statistics bar chart 
(Fig.  8B, Table  S2) shows that the KEGG primary 
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metabolic pathways of CPP target genes are enriched in 
five major categories. The total number of target genes of 
metabolic pathways within the five major pathways was 
the highest, with the largest percentage of target genes 
involved in the secondary metabolic pathway of carbohy-
drates. Genetic information processing metabolic path-
ways contain four categories: translation, transcription, 
replication and repair, folding, sorting and degradation, 
of which the translation process involves the most CPP 
target genes, indicating that this CPP gene family can 
regulate the translation process of ribosomes. In addi-
tion CPP target genes are involved in metabolic pathways 
such as transport and catabolism.

Time‑series expression analysis of target genes
To explore the regulatory effects of CPP genes on down-
stream target genes, we performed a time-series analysis 
of CPP target genes. The trend analysis graph showed 
(Fig. 9) that a total of 10 representative trends were sum-
marized. Among them, the significant enrichment trend 
(profile 0) was negatively correlated with the change 

in shoot stalk height, indicating that the target genes in 
this profile were gradually down-regulated during shoot 
growth. The significant enrichment trend (profile 9) cor-
relates positively with the change in shoot stalk height, 
demonstrating that the target genes in this profile are 
progressively up-regulated during shoot growth.

Construction of the CPP target gene regulatory networks
To comprehensively investigate the role of CPP transcrip-
tion factors in the rapid development of Moso bamboo 
shoots, we devised a regulatory network map centered on 
CPP genes, based on temporal expression data (Fig. 10). 
This analysis revealed that PeCPP01, PeCPP02, PeCPP06, 
PeCPP08, PeCPP10, and PeCPP14 exert substantial posi-
tive and negative influences on downstream target genes. 
Specifically, PeCPP01, PeCPP06, and PeCPP08 were 
observed to suppress the expression of the NmrA-like 
portein gene family (PH02Gene40393), which is inte-
gral to the regulation of plant metabolism and responses 
to environmental stresses [42]. Furthermore, PeCPP06 
and PeCPP08 acted as negative regulators of the Linker 
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histone gene (PH02Gene15233), where reduced expres-
sion of this gene is unlikely to significantly affect plant 
growth and development under non-stressful conditions 
[43] (Fig. 10A). Importantly, PeCPP06 markedly enhanced 
the expression of MYB [27, 44] transcription factor genes 
(PH02Gene38600 and PH02Gene47557), which are vital 
for the swift growth and improved environmental resil-
ience of Moso bamboo shoots. Additionally, PeCPP06 

also modulates the expression of cytochrome P450 genes 
(PH02Gene33336 and PH02Gene43237) [45], which 
are critical for the complex biochemical regulation and 
defense mechanisms within the plant’s metabolic net-
work. Moreover, PeCPP14 participates in the auxin sig-
nal transduction pathway by upregulating the AUX/IAA 
gene (PH02Gene47180), facilitating plant growth and 
development[24] (Fig.  10B). Collectively, these findings 
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demonstrate that CPP transcription factors are pivotal 
in enhancing the rapid growth and environmental adapt-
ability of Moso bamboo shoots through their regulatory 
impact on various downstream target genes.

Discussion
The CPP family is closely related to plant growth, devel-
opment and abiotic stress response. It has also been 
found that the CPP family is involved in the development 
of floral organs and contributes significantly to the con-
trol of reproductive tissue development and cell division. 
Overall, there is little research on the CPP gene fam-
ily in plants, and most studies have been limited to the 
identification and functional characterization of the CPP 
gene family. There remains a deficiency in the research 
on the CPP gene family in bamboo. Our study not only 
focuses on the basic identification, structural and func-
tional linkage of the CPP gene family in Moso bamboo, 
but also explores in more depth the expression profile of 
CPP genes in different tissues and organs and under hor-
mone-regulated conditions. We also characterize the role 
of CPP in the rapid development of Moso bamboo shoots 
by combining the expression characteristics of its regula-
tory target genes.

The CXC domain is a typical feature of the CPP pro-
tein family. Whether in animals or plants, the CXC 
domain of the CPP protein is highly conserved. But the 
similarity of other partial sequences is very low. The 
CXC domain sequence may be the binding domain of 
transcription factors and DNA, or it may be the binding 
domain of certain specific metal ions, thereby limiting 
the variation of its sequence. The CXC domain plays a 
very important role in the function of transcription fac-
tors. In this study, two CXC domains were observed in all 
CPP proteins except for CPP4. The conserved sequences 
are CXCX4CX3YCXCX6CX3CXCX2C and CXCX-
4CX3YCXCX6C, namely CXC1 and CXC2. The first 
CXC structural domain is much more conserved than 
the second CXC structural domain. Additionally, there 
are other residues that exhibit a high degree of conserva-
tion in these sequences [11]. For example, we found that 
Ser, Lys, Leu, Thr, Tyr, Arg and Cys are highly conserved 
in the first CXC structural domain (Fig.  4). In previous 
studies on the CPP gene, only sequence information for 
CXC1 was found. In this study, CXC1 is separated from 
CXC2 in the CPP I subfamily by a variable-length region 
containing the short conserved sequence RNPXAFXPK 
[13, 46]. After structural domain analysis (Fig. 3a), it was 
found that CXC1 and CXC2 were not sequential. CXC1 
can appear before CXC2 or after CXC2. Besides, the 
short conserved sequence R sequence between CXC1 
and CXC2 is not present in the genes of the CPP II and 
CPP III subfamilies, and it is speculated that the presence 

or absence of the R sequence may affect the function of 
the gene. Interestingly, we also identified a new highly 
conserved Motif5 with the conserved sequence LX2LX-
3LX2L, called the L sequence, but the function of this 
Motif has yet to be verified by further experiments.

As a transcription factor, CPP can regulate the expres-
sion of downstream target genes through protein-DNA 
interactions. A thorough assemblage of hydrogen bonds 
between the backbone and sidechain of the protein 
and the DNA phosphate backbone, as well as the inser-
tion of a tyrosine from each subdomain into the minor 
groove, stabilize the protein–DNA complex [38]. In our 
research, we discovered that there may be a highly con-
served DNA-binding domain (DBD) in the tertiary struc-
ture of PeCPP proteins, a region that relatively stabilises 
the protein structure by binding to nucleic acids. Addi-
tionally, Moso bamboo contains the protein LIN54 [47, 
48], which also has two tandem CXC structural domains. 
The CXC domain in LIN54 was found to bind specific 
DNA sequences. LIN54 binding specificity is conferred 
by interactions between tyrosine and DNA [38]. The 
phenomenon of CPP with two CXC structural domains 
and similar Tyr-DNA interactions was also found in our 
research. Therefore, we hypothesized that such interac-
tions may also exist between the tyrosine and DNA in the 
CPP protein of Moso bamboo, thus affecting the speci-
ficity of the CPP protein in binding nucleic acids. In this 
study, the Moso bamboo CPP tyrosine-DNA complex 
is formed mainly through the interaction of the Tyr174 
amino acid residue with the minor groove of the DNA 
double strand. The discovery of this structural feature has 
not been documented in previous CPP-related studies, 
and it will help to guide future research into the relation-
ship between CPP structure and function. However, the 
above structural features need to be further verified by 
X-RAY and other experiments.

Gene expression patterns can offer valuable insights 
into gene function, and CPP family genes have different 
expression patterns in plants [6]. For example, in Arabi-
dopsis, TSO1/AtCPP5 is highly expressed in flowers and 
reaches its highest level of expression during ovule and 
microspore development [5]. CsCPP genes are expressed 
in cucumber leaves, ovaries, flowers, stems, roots and 
deciduous stem tissues, among others. In the present 
study, PeCPP genes were found to be expressed to vary-
ing degrees in leaves, flowers, whips and roots of Moso 
bamboo. Some genes were only highly expressed only 
at specific developmental stages, while others showed 
little to no expression. For instance, PeCPP05 is only 
highly expressed in bamboo flowers and is largely unex-
pressed in roots (Fig.  6c). During root development, 
only PeCPP10, PeCPP17 and PeCPP08 showed high lev-
els of expression, while all other genes showed low or no 
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expression. We found relatively high levels of expression 
in bamboo leaves in general, suggesting that the CPP 
gene family plays a regulatory role in the developmental 
stages of Moso bamboo leaves.

The "fast growth" stage of Moso bamboo is concen-
trated in the short 2–3 month period after shoots. Based 
on transcriptomic data, many of the major transcriptional 
regulators required for the proliferation and maturation 
of bamboo sprouts, such as MYB and bZIP, have been 
identified [49, 50]. However, there is a gap in the under-
standing of the role of CPP transcription factors and 
their target genes on the rapid growth and development 
of Moso bamboo shoots. Expression profiling at eight-
time points of a complete shoot development revealed 
that PeCPPs could reach their highest levels at the early 
stage of 0.2m bamboo shoots, and it is hypothesized that 
PeCPP is mainly involved in the early growth and devel-
opment of shoots with an important role. Further GO 
enrichment and KEGG analysis of the identified CPP 
target genes revealed that these large numbers of down-
stream target genes can be involved in macromolecular 
biosynthesis, cellular biosynthetic processes, sugar bio-
synthesis and metabolism. In addition, STEM analysis 
of the expression trends of the target genes throughout 
the rapid development of the shoot revealed the types 
and numbers of CPP positively and negatively regulated 
target genes. The examination of the interaction between 
the CPP transcription factors and the downstream tar-
get genes indicates that PeCPP01, PeCPP02, PeCPP06, 
PeCPP08, PeCPP10, and PeCPP14 have a significant 
impact on these genes. The reduced expression of specific 
gene families in plants has been noticed to have a lim-
ited effect on their growth and development. This could 
be because these genes are not essential under normal 
growth conditions or because there are other genes that 
can perform similar functions. During the early phases 
of hairy bamboo shoot growth, cellular activities such as 
cell division and elongation are the main focus, requiring 
significant DNA replication, repair, and ribosome synthe-
sis [51]. The results indicate that the genes inhibited by 
CPP primarily include those related to the synthesis of 
ribosomes, the assembly of histones, and the reaction to 
environmental stress. This suggests an increased need for 
ribosomes and proteins during the initial stages of shoot 
development in order to support fast cellular division and 
growth. Once these requirements are fulfilled and the 
shoots increase in height, CPP’s function changes to sup-
pressing these genes. Simultaneously, as bamboo shoots 
rapidly grow, the CPP gene primarily activates genes 
related to physiological processes, metabolic reactions, 
tissue development, and environmental adaptation. This 
aligns with the specific requirements for the growth and 
development of the shoots. It is hypothesized that CPP 

can regulate the rapid growth and development process 
of Moso bamboo shoots through the influence of CPP 
target genes.This provides valuable clues to unravel the 
molecular mechanism of rapid growth of Moso bamboo.

Materials and methods
Plant material
Specimens for experimentation were obtained from 
Moso bamboo shoots at heights ranging from 0.2 m to 6 
m. Each height was represented by three biological repli-
cates. After being collected, the specimens were promptly 
immersed in liquid nitrogen and stored at −80°C to retain 
the integrity of the RNA. The FastPure Plant Total RNA 
Isolation Kit (Vazyme Biotechnology, Nanjing, China, 
RC401) was employed to gather RNA from each sam-
ple. The RNA was subsequently transcribed into cDNA, 
which was then preserved at a temperature of −20°C.

Identification and physicochemical characterisation of CPP 
family members
Complete genomic data for Moso bamboo were acquired 
from database (http://​gigadb.​org/​datas​et/​100498). Utiliz-
ing HMMER3, found at website (http://​hmmer.​janel​ia.​
org/), a numerical Hidden Markov Model (Profile HMM) 
was developed to align with the protein database of Phyl-
lostachys edulis, ensuring the E-value did not exceed 
1 × 10–20 for significant matches [52]. The CPP structural 
domain (PF03638) retrieved from the Pfam database was 
examined and combined with the Profile HMM findings 
[53]. The initial screening yielded candidate gene fam-
ily members of Moso bamboo. Further synthesis of the 
CPP structural domain of candidate family members and 
authentication using NCBI BLAST (https://​blast.​ncbi.​
nlm.​nih.​gov/​Blast.​cgi) [54], resulting in the candidate 
CPP transcription factor family.

The CDS, protein fasta sequences, and the gene archi-
tecture and position data of CPP family members were 
obtained from the Moso bamboo entire genome database 
using TBtools (v1.068) program [55]. CELLO (http://​
cello.​life.​nctu.​edu.​tw/) was employed to make predictions 
for subcellular localization [56]. Protein physicochemical 
parameters such as molecular weight (MW) and isoelec-
tric point (pI) were predicted using the ExPASy Prot-
Param tool (https://​web.​expasy.​org/​protp​aram/) [57].

Prediction of gene structure, motifs and conserved 
structural domains
The Moso bamboo genome annotation files (general fea-
ture format, GFF) were analyzed and the Moso bamboo 
CPP family genes were visualized based on their gene 
location information. Conducted an analysis of the con-
served amino acid sequences in CPP proteins utilizing 
the MEME online suite (http://​meme-​suite.​org/) [58]. 

http://gigadb.org/dataset/100498
http://hmmer.janelia.org/
http://hmmer.janelia.org/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://cello.life.nctu.edu.tw/
http://cello.life.nctu.edu.tw/
https://web.expasy.org/protparam/
http://meme-suite.org/
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The NCBI conserved domain database (https://​www.​
ncbi.​nlm.​nih.​gov/​cdd/) was assumed to anticipate the 
conserved domains in CPPs. Protein structure visuali-
zation was performed using DOG 2.0 (http://​dog.​biocu​
ckoo.​org) [59].

Construction of phylogenetic trees and colinearity analysis
Genome-wide details regarding Arabidopsis and rice 
originated from the TAIR10 database (http://​www.​arabi​
dopsis.​org/​index.​jsp) and the Rice Genome Annotation 
Project database (http://​rice.​plant​biolo​gy.​msu.​edu). A 
total of eight Arabidopsis CPP proteins and 12 rice CPP 
proteins were identified through the use of HMMER3 
searches on the corresponding region protein libraries. 
The software ClustalX was utilized to do a multiprotein 
sequence alignment for Moso bamboo, rice, and Arabi-
dopsis. The alignment data served to generate a maxi-
mum likelihood (ML) phylogenetic tree in MEGA 7.0, 
employing 1000 bootstrap replications to confirm the 
statistical results’ credibility [60].

Through the BLAST module of TBtools (v1.068) soft-
ware, the sequence alignment of all proteins in the Moso 
bamboo genome, the pairwise alignment of Moso bam-
boo and rice, and the genomic protein sequences of 
Moso bamboo and Arabidopsis thaliana were carried out. 
Localization of the CPP family on chromosomes and the 
relationship between different species were analyzed and 
visualized using MC ScanX, Circos and Multiple Synteny 
Plot [61].

Analysis of cis‑acting elements
The PlantCARE tool was utilized to identify cis-acting 
regulatory elements within the 1,500 base pair promoter 
regions situated upstream of the location where tran-
scription begins for each gene (http://​bioin​forma​tics.​psb.​
ugent.​be/​webto​ols/​plant​care/​html/). Scientific visualisa-
tion of the genomic location of promoters with the help 
of TBtools software [62].

Homology modeling of protein tertiary structures
The homology template of the protein sequence of CPP 
was retrieved using the PDB database (http://​www.​rcsb.​
org/). Swiss Model (https://​www.​swiss​model.​expasy. 
org/) was used for homology modeling to obtain the ter-
tiary structure model of CPP gene family proteins. The 
model was also evaluated using SAVES (https://​saves.​
mbi.​ucla.​edu/​Jobs/​683046/​pc/​saves.​sum).

Gene expression analysis
Thirty-one transcript data were downloaded from the 
EBI and NCBI databases for two hormone treatments 
including GA and NAA (5 μM), different plant organs 
of Moso bamboo (roots, rhizomes, panicles, and leaves), 

and shoot germination stages (0.2 m, 0.5 m, 1 m, 2 m, 3 
m, 4 m, 5 m, 6 m). The expression of PeCPP genes and 
related transcription factors was determined for dif-
ferent hormone treatments and developmental stages. 
The TPM data for each gene were logarithmically trans-
formed using a base 2 logarithm, and TBtools software 
was used to create heatmaps of gene expression [63].

Identification of CPP target genes
To attempt to figure out a collection of genes that may 
be controlled by CPPs, we extracted promoter sequences 
across all genes in Moso bamboo, specifically 1000 base 
pairs in length, using TBtools (v1.0697) [55]. Based on a 
model of cis-acting elements known to be recognized by 
CPPs, in combination with the JASPA_CORE database 
(http://​jaspar.​gener​eg.​net) [64] and the Motif FIMO pro-
gram in MEME (http://​meme-​suite.​org/) [58].

GO and KEGG enrichment analysis
Gene Ontology (http://​github.​com/​tangh​aibao/​GOato​
ols) [65] and KOBAS (http://​kobas.​cbi.​pku.​edu.​cn/​downl​
oad.​php) were used for downstream target genes, GO and 
KEGG PATHWAY analysis. That Bonferroni multiplex 
test correction was employed to mitigate the occurrence 
of false positives [66]. GO functions were deemed sub-
stantially enriched if their Bonferroni-corrected P-value 
was < 0.00001. KEGG PATHWAY enrichment analysis 
of CPP target genes was carried out using the R script, 
calculated in the same way as GO functional enrichment 
analysis. When the adjusted P-value (P-adjust) was less 
than 0.05, the KEGG PATHWAY function was consid-
ered significantly enrichedz.

STEM analysis
Transcriptomic data from various developmental phases 
of tender shoots were employed. The expression profiles 
of the CPP target genes were investigated using the non-
parametric clustering feature of the STEM software [67]. 
The algorithm proposed by Ernst and Bar-Joseph (2006) 
was used to calculate the statistical significance of the 
number of CPPs per profile compared to the expected 
number.

Construction of CPP gene regulatory network
From the steam analysis, we identified two distinct 
groups of downstream target genes: those that were up-
regulated and those that were down-regulated, along 
with the associated CPP transcription factors. These 
groups were then correlated, and both target genes and 
CPP transcription factors were selected based on strin-
gent criteria of an absolute correlation coefficient > 0.9 
and P value ≤ 0.001. Utilizing these selection parameters, 

https://www.ncbi.nlm.nih.gov/cdd/
https://www.ncbi.nlm.nih.gov/cdd/
http://dog.biocuckoo.org
http://dog.biocuckoo.org
http://www.arabidopsis.org/index.jsp
http://www.arabidopsis.org/index.jsp
http://rice.plantbiology.msu.edu
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://www.rcsb.org/
http://www.rcsb.org/
https://www.swissmodel.expasy
https://saves.mbi.ucla.edu/Jobs/683046/pc/saves.sum
https://saves.mbi.ucla.edu/Jobs/683046/pc/saves.sum
http://jaspar.genereg.net
http://meme-suite.org/
http://github.com/tanghaibao/GOatools
http://github.com/tanghaibao/GOatools
http://kobas.cbi.pku.edu.cn/download.php
http://kobas.cbi.pku.edu.cn/download.php


Page 17 of 19Tan et al. BMC Genomics         (2024) 25:1173 	

gene regulatory networks were constructed with the aid 
of Cytoscape software [68].

Quantitative PCR experiments
Based on the selected gene sequences, specific qRT-
PCR primers were designed using Beacon Designer 7.0 
(Table  S3) [69]. The qRT-PCR analysis was conducted 
using the CFX-96 Real-Time System (Bio-Rad, USA), 
with four technical duplicates established for each sam-
ple [33]. The PeActin was used as the endogenous control 
for normalising gene expression across different samples 
[70, 71].Through the utilisation of the 2(−ΔΔCt) approach, 
the quantification of the relative gene expression levels 
in several samples was accomplished. Data analysis and 
visualisation were performed using GraphPad Prism 7 
software [72].

Conclusions
In summary, we systematically identified and analyzed 17 
CPP genes of Moso bamboo on a genome-wide scale. An 
investigation was conducted on the protein properties, 
chromosomal location, evolutionary connections, gene 
structure, conserved motifs, and expression patterns of 
the subject. Compared with the existing studies on CPP 
genes, this study further investigated the structural char-
acteristics and functional properties of CPP from two 
perspectives: the tertiary structure of CPP proteins and 
the target genes. Furthermore, transcriptomic and qRT-
PCR experiments showed that the PeCPP gene family is 
involved in the development and hormone response of 
many tissues and organs, and can be involved in the rapid 
growth and development of shoots through the regula-
tion of downstream target genes.
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