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ABSTRACT

Small RNA-Seq has emerged as a powerful tool
in transcriptomics, gene expression profiling and
biomarker discovery. Sequencing cell-free nucleic
acids, particularly microRNA (miRNA), from liquid
biopsies additionally provides exciting possibilities
for molecular diagnostics, and might help estab-
lish disease-specific biomarker signatures. The com-
plexity of the small RNA-Seq workflow, however,
bears challenges and biases that researchers need
to be aware of in order to generate high-quality data.
Rigorous standardization and extensive validation
are required to guarantee reliability, reproducibility
and comparability of research findings. Hypotheses
based on flawed experimental conditions can be in-
consistent and even misleading. Comparable to the
well-established MIQE guidelines for qPCR experi-
ments, this work aims at establishing guidelines for
experimental design and pre-analytical sample pro-
cessing, standardization of library preparation and
sequencing reactions, as well as facilitating data
analysis. We highlight bottlenecks in small RNA-Seq
experiments, point out the importance of stringent
quality control and validation, and provide a primer
for differential expression analysis and biomarker
discovery. Following our recommendations will en-

courage better sequencing practice, increase exper-
imental transparency and lead to more reproducible
small RNA-Seq results. This will ultimately enhance
the validity of biomarker signatures, and allow reli-
able and robust clinical predictions.

INTRODUCTION TO BIOMARKERS AND LIQUID
BIOPSIES

The importance of biomarkers in molecular diagnostics is
undisputed. A valid biomarker should be able to reveal a
specific biological trait or a measurable change, which is di-
rectly associated with a change in the physiological condi-
tion of an organism. At the molecular and cellular levels,
analysis of gene expression changes is the first step of explo-
ration for any regulatory activity. Activating early response
genes is a very dynamic process, allowing the organism to
rapidly adapt to external or internal stimuli (1,2). Thus,
gene expression profiling is the technique of choice to dis-
cover and identify transcriptional biomarkers that describe
these changes affecting cells, tissues or the entire organism
(3,4). Accessing this molecular information via biomark-
ers in tiny biopsies is a common procedure for many ma-
lignancies, but sampling tissues can be costly, painful and
potentially impose additional risks on the patient (5). The
readout of transcriptional biomarker signatures from mini-
mally invasive sampling methods is therefore highly valued
(6). Sampling patient biofluids, such as blood, urine, sweat,
saliva or milk in liquid biopsies is currently being thought of
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as a crucial next step in biomarker research and molecular
or clinical diagnostics (7).

The existence of extracellular DNA has been acknowl-
edged for decades, and finds applications ranging from on-
cology to prenatal diagnostics (8,9). In 2005, the first study
indicating the importance of microRNAs (miRNAs) in tu-
mor diagnosis and monitoring was published (10). Ever
since, the dysregulation of miRNAs in diseased tissues has
gained significant prominence and expanded to an interest
in extracellular miRNA as reflections of the malignant or
dysfunctional alterations. The easy accessibility by blood
sampling and remarkable stability of circulating miRNAs
make them promising candidates in biomarker discovery.
Numerous diseases and disorders, such as tumors, cardio-
vascular diseases, multiple sclerosis and liver injury have
now been associated with altered extracellular miRNA pro-
files (11). Still, levels of circulating miRNA are presum-
ably non-specific, and few overlapping reports of studies
on the same disease have been published, possibly due to
technical or methodological inconsistencies (12). Further-
more, miRNA levels seem to be associated with a wide range
of conditions and outcomes in cancer research (13). It has
therefore been hypothesized that changes in the profile of
circulating miRNAs indicate a general state of disease or in-
flammation and rather derive from a non-specific response
to the disease than the malady itself (14).

To date, gene expression profiling is the approach of
choice for detecting diagnostic and prognostic biomarkers,
or predicting drug safety. Reverse transcriptase quantitative
real-time polymerase chain reaction (RT-qPCR) is consid-
ered the gold standard for exact and valid gene expression
measurements, either for mRNA or small RNA specimens
(15). More recently, digital PCR has emerged as a power-
ful and sensitive technique for absolute quantification of
DNA molecules without the need for external calibration
curves. Since RNA is converted into cDNA with varying
efficiency, however, its applicability for RNA quantification
is limited mostly by the reverse transcription (RT) reac-
tion, which might lead to a skewed representation of initial
RNA (16). Nowadays, the discovery and identification of
potential new transcriptional biomarkers by RNA sequenc-
ing (RNA-Seq) is the holistic state of the art technique. The
evaluation and validation of miRNA biomarkers by small
RNA-Seq is now routinely being adopted for the identifica-
tion of physiological or dysregulated miRNAs. Neverthe-
less, the subsequent validation of identified biomarker sig-
natures by RT-qPCR is mandatory (17–19). But there is a
lack of consensus regarding optimal methodologies or tech-
nologies for miRNA detection in liquid biopsies, their sub-
sequent quantification and standardization strategies when
different sequencing technologies or platforms, and library
preparation chemistries are used.

Goal of this review

In this review we present a standardization procedure to
discover and validate new biomarkers from liquid biopsies
with focus on the entire small RNA-Seq workflow - from
experimental design, sample stabilization, RNA extraction
and quality control to library preparation, next generation
RNA sequencing and all steps of small RNA-Seq data anal-

Figure 1. An overview of the small RNA library preparation workflow.

ysis, including validation and interpretation (Figure 1 and
2). Our goal is to point out the importance of experimen-
tal standardization and validation (20). The review will ex-
plain why and where problems in the small RNA-Seq work-
flow arise, discuss the real bottlenecks, and how one can re-
solve or at least circumvent them. We want to improve the
quality of small RNA-Seq results by optimizing and stan-
dardizing the entire quantification procedure to receive bet-
ter and more reproducible results. As a broader goal, the
outcome of this expression profiling should result in valid
biomarker signatures in order to make better predictions in
molecular diagnostics. The review should follow the ‘gen-
eral MIQE and dMIQE idea’ as published earlier, describ-
ing optimization strategies in the qPCR and dPCR work-
flow (21,22). Following our recommendations will encour-
age better experimental sequencing practice, lead to more
reproducible results, and hence allow unequivocal interpre-
tation of small RNA-Seq results. In summary, the outcome
of miRNA analysis in liquid biopsies should be more reli-
able and valid for future predictions.

PRE-NGS AND PRE-PCR - THE SAMPLING BIAS

Experimental design and replication

The first step in planning a small RNA expression exper-
iment is to set up a meaningful experimental design, in-
cluding a reasonable number of replicates on the biolog-
ical as well as technical level. Both biological and techni-
cal replicates have their place in biomarker discovery using
RNA sequencing experiments. Biological replicates are cru-
cial to correct for endogenous variability between experi-
mental groups in order to ultimately draw generalized bi-
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Figure 2. An overview of the small RNA-Seq data analysis workflow.

ological conclusions, whereas technical replicates can help
assess the man-made bias introduced by the entire experi-
mental setup and sequencing process itself.

Replicates in reality mean either biological replicates, rep-
resenting the number of real individuals per experimental
group, or technical replicates, repeated measurements of a
biological sample with the goal of reducing technical noise.
Technical replicates can be further subdivided and intro-
duced either on the level of extraction, RT reactions per
sample, sequencing depth, or the number of technical repli-
cates in the sequencing step. Regarding biological sample
size, one has to consider inter-individual genetic variation
within the studied population. Within the human popula-
tion, genetic variation is elevated in contrast to highly stan-
dardized and inbred animal models. This high variation in
human populations as such is based on various factors. Hu-
man study groups can be standardized by age, weight or
sex, but never by genetic background or lifestyle habits,
which might have a remarkable impact on gene expression
(nutrition e.g. coffee, alcohol, nicotine consumption, daily
rhythms, sleep, stress and more). Regarding domesticated
animals such as cattle or pigs, genetic variation is interme-
diate due to controlled reproduction with a limited num-
ber of male semen donors. Laboratory animals, including
mice, rats or insects show very low genetic variation within
one highly standardized and inbred animal strain. Genetic
variation in cell-culture is dependent on the kind of cells
used. Primary cell cultures from distinct, genetically differ-
ent donors show species-specific biological variance, while
the largely used permanent cell lines derived from one clone
or one individual are genetically identical, and show no bi-
ological variance at all.

Different researchers already dealt with the question
whether a higher number of biological replicates or a higher
sequencing depth leads to better outcomes in RNA-Seq ex-
periments. Increasing sequencing depth results in a higher
number of reads, and thereby increases statistical power for
the detection of differential gene expression (23). Hart et
al. and Liu et al. concluded that a sequencing depth of 10
million (10M) reads is sufficient for mRNA expression anal-
ysis, and that increasing sequencing depth over 10M reads
does not improve statistical power significantly. Both pub-
lications, however, stated that increasing the number of real
biological samples significantly enhances statistical power
of the experiment (24,25). Therefore, a higher number of bi-
ological samples is preferable over deeper sequencing. Pre-
vious reports further suggested including at least three bio-
logical replicates per group, depending on the inherent bi-
ological variation (26). For experiments involving samples
with higher variability, such as human biofluids or spec-
imens from diseased patients, even more replicates might
be needed to correctly assess differential gene expression
without detecting false-negative reads from biological noise.
When biological variability is low, increasing replicates ren-
ders statistical power to the experiment. It has been shown
that increasing the number of biological replicates in RNA-
Seq experiments from two to five facilitates the detection of
differential gene expression, but extensive biological repli-
cation to improve statistical power is still not utilized in
most experiments (27). A recent publication on RNA-Seq
additionally reported that experiments entailing only three
biological replicates severely lack power to detect the major-
ity of differentially expressed genes, and are only suited to
identify transcripts with major fold changes (28). Increased
replication markedly improved the correct assessment of
differential expression. The authors suggested including at
least 12 replicates in order to detect more than 90% of all
truly differentially expressed genes.

Technical replicates are useful to characterize the techni-
cal variation of an experiment. In general, variability be-
tween technical replicates derives from the random sam-
pling nature of sequencing and matches a Poisson distri-
bution (29). Even though it can therefore be accounted for
in downstream statistical analysis, some genes are known
to deviate from Poisson sampling and thus falsely increase
intra-group variability (30).

Another point that has to be considered is whether tech-
nical replicates are generally mandatory in gene expression
analysis. Liu et al. stated that RNA-Seq shows a high repro-
ducibility, concluding that technical replicates are not nec-
essary (25). Due to fairly high library preparation and se-
quencing costs, technical replicates in RNA-Seq are mostly
not realized. Comparing this with replicates in RT-qPCR
analysis, Tichopad et al. investigated the effect of replicates
on different levels of the RT-qPCR quantification workflow
(31). The authors stated that replicates in qPCR are not es-
sential, because inhibiting molecules should have been re-
moved before qPCR takes place. The bias introduced by
RT was multiple times higher compared to qPCR, where-
fore RT replicates are reasonable and necessary (32).

To summarize, inter-individual or biological variation
seems to have the highest impact, therefore replicates in bi-
ological samples are advisable. The authors recommend in-
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troducing replicates early in the quantification workflow by
including as many biological replicates as possible (31).

Tissue and RNA sampling and storage

When working with cell-culture, RNA sampling and
later storage is unproblematic due to working directly in
the molecular biology laboratory in a clean and non-
contaminated environment. In contrast, if one collects di-
agnostic samples in the field, the sampling process cannot
be performed under clean and safe laboratory conditions.
Therefore, optimal tissue preservation, and thus total RNA
preservation and stabilization, are essential points in the
experimental workflow. Widely used methods include snap
freezing tissues in liquid nitrogen, formalin fixation or stor-
ing tissues in RNAlater (Life Technologies), a solution that
preserves tissue RNA from degradation, ‘freezes’ the RNA
profile and allows storage of conserved tissue for several
hours or days at room temperature.

In clinical research, tissue conservation is routinely per-
formed by formalin fixation and paraffin embedding. Those
formalin-fixed paraffin-embedded (FFPE) samples are ad-
vantageous for a number of downstream applications. But
RNA analysis in FFPE samples is problematic because
RNA is cross-linked and partly degraded. RNA extracted
from FFPE is thereby of lesser quality for further expression
studies (33,34). Due to the growing field of RNA expres-
sion analysis in clinical samples, the generation of biobanks
for non-fixed frozen tissue is coming into focus (35). There-
fore, snap freezing in liquid nitrogen or storage in RNA-
preserving agents are the preferred methods for conserva-
tion of intact RNA. Publications dealing with the influ-
ence of both methods on RNA integrity concluded that
high quality RNA can be extracted from tissues conserved
in both ways (35,36). The method of tissue fixation has to
be planned in detail for each individual experiment accord-
ing to the given preconditions, which for instance means
whether working with liquid nitrogen is generally possible.

RNA quality and RNA integrity

Good RNA quality and high RNA integrity are of great
importance in any quantitative gene expression measure-
ment. Degradation of RNA by RNAses, freezing and thaw-
ing, UV-light or heat leads to RNA fragmentation. Any
RNA degradation influences the results obtained by quan-
titative downstream applications (37). Several methods to
measure RNA integrity and quality exist. Most methods are
based on high resolution agarose gel electrophoresis, mon-
itoring the intensity of the major ribosomal 18S and 28S
bands. High RNA quality is indicated by a 28S:18S ratio
around 2.0 (37). In the past, results of RNA degradation
relied on vague human interpretation of the agarose gel im-
age. Nowadays, there are fully automated methods allow-
ing digital interpretation and automatic estimation of the
RNA integrity results. With those systems, minor amounts
of RNA are labeled with an intercalating dye, and RNA
is separated according to its molecular weight using cap-
illary electrophoresis in a microfluidic device. By measuring
laser-induced fluorescence detection, the retention time of
RNA molecules is displayed in an electropherogram. Ap-

plying digital data analysis software, the 18S and 28S ri-
bosomal intensity peaks in an electropherogram are auto-
matically analyzed by a specific algorithm, and a numerical
RNA quality score is calculated, whereby a score of 10 in-
dicates intact RNA and a score of 1 completely degraded
RNA. It should be mentioned, however, that the concept of
RNA Integrity Number (RIN) values is optimized for total
RNA profiles from higher eukaryotes, which inherently lim-
its its applicability for studies on other species. Since RIN
calculation is majorly based on ribosomal RNA subunit
peaks, researchers working with samples differing from the
prototypical mammalian RNA need to pay close attention
to potentially shifted ribosomal bands. Integrity analysis of
plant RNA is further complicated by the presence of ad-
ditional chloroplast-derived ribosomal RNA that could be
recognized as a degradation product and thus falsely lead
to lower RIN values. Still, the assessment of RNA quality
by measuring RIN has been successfully applied to a vari-
ety of non-mammalian organisms such as plants and bacte-
ria (38–40). Although the importance of RNA integrity on
downstream applications is well established, even excellent
RIN values do not guarantee experimental success since
they are unable to report the potential presence of contam-
inants that might inhibit further RNA processing.

An alternative way of determining transcript integrity is
the so-called 3′/5′assay which is based on the quantification
of mRNAs at the 3′-end and at the 5′-end. The ratio of the
two fractions indicates the mRNA degradation status of the
sample (41). The assay, however, is more labor-intensive and
has another weakness due to unbalanced RT efficiency at
the 3′-end and at the 5′-end.

There are various publications confirming the impor-
tance of high RNA quality for mRNA expression profiling
studies using microarray and RT-qPCR assays (42–44). For
RNA-Seq experiments, high quality RNA is of great impor-
tance as well. Degraded RNA leads to decreased quality of
RNA-Seq data (45). Particularly the 3′ bias observed in de-
graded RNA has been shown to have an impact on the qual-
ity of RNA-Seq experiments (46). Feng et al. developed an
algorithm that calculates an RNA quality parameter––the
mRIN number–– for each sample by quantifying the 3′ bias
of read coverage for each measured gene (46).

Small RNAs include the highly prominent miRNAs,
which are proven to show higher stability compared to
longer RNAs, in particular mRNAs. Due to their short
length they are less susceptible to RNA degradation by
RNAses (47). The impact of RNA quality on small RNA-
Seq has not been evaluated up to now, but it is well known
that a high level of RNA degradation in a sample leads
to a seemingly increased percentage of small RNAs due to
degradation products. It is therefore likely that with decreas-
ing RNA quality, short fragments are included in the se-
quencing library more frequently, and could thereby lead to
a higher number of ambiguous hits after data mapping. The
impact of RNA quality on miRNA quantification by SYBR
green-based RT-qPCR was shown previously: decreasing
RNA quality/integrity is correlated with an increasing Cq
value (47).
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Circulating RNA and microvesicles

Circulating RNAs are the preferred target in liquid biop-
sies, and are therefore highly accessed in molecular diag-
nostics. The RNA, mainly small RNA, found in cell-free
blood plasma/serum is either packaged in microvesicles
(e.g. exosomes, apoptotic bodies), associated to lipopro-
teins such as HDL (high-density lipoprotein) particles, or
bound by stabilizing proteins (48). Circulating miRNAs are
partly bound to proteins such as Argonaute 2 and lipopro-
teins, which contributes to their enhanced stability (49,50).
A seminal paper published in 2007 reported functional
miRNA encapsulated in extracellular vesicles (mainly ex-
osomes) secreted by human and murine mast cell lines (51).
Soon thereafter, additional reports described the applica-
bility of extracellular vesicular miRNA as biomarkers in
blood (52,53). The term circulating miRNA thus has to
be used with caution, since it does not state whether the
RNA is bound or encapsulated. Circulating or microvesicle-
derived RNAs have already shown to be promising diag-
nostic biomarker for various diseases such as cardiovascu-
lar diseases or different kinds of cancer (54).

The composition of circulating vesicles reflects the phys-
iological and pathological status of a patient, and is there-
fore of considerable diagnostic interest (55). Extracellular
vesicles act as a protective shield and delivery vehicle for
RNA, and are a treasure trove of easily accessible biological
information. Both vesicular RNA and protein were shown
to be potential targets for biomarker research (56). Even
though considerable advances have been made in the field
of extracellular vesicles, there is still no universal consen-
sus on vesicle nomenclature (57). Despite inconsistent ter-
minology, many researchers consider exosomes, the small-
est class of extracellular vesicles, as a newly discovered and
important mediator in intercellular communication. Since
most circulating miRNAs derive from blood or endothe-
lial cells and the contribution of diseased cells is arguably
low, exosomes might provide a sampling fraction enriched
in tissue-specific biomolecules (14).

There are numerous protocols and commercially avail-
able kits for the isolation of extracellular vesicles and ex-
traction of circulating RNAs, in majority from human
blood. Principles for isolating vesicles from biofluids in-
clude, among others, ultracentrifugation, precipitation, size
exclusion chromatography, ultrafiltration, immunopurifica-
tion and microfluidic approaches (58–61). While differen-
tial ultracentrifugation in conjunction with density gradient
centrifugation is still considered the gold standard in vesicle
isolation and generally yields preparations of high purity, it
is labor-intensive, time-consuming and requires substantial
sample material, rendering it unsuitable for many clinical
and diagnostic applications. Choosing an appropriate iso-
lation method for the particular study has been a topic of
extensive debate, and multiple investigations have provided
insights into the suitability of respective methods (62–65).
Even though most methods were found to be able to isolate
extracellular vesicles from various biofluids, yield and pu-
rity often differ substantially. Similarly, isolation methods
also impact downstream applications: profiles of mRNA
(66), miRNA (67) and vesicular protein (68) were shown to
vary depending on the respective isolation. Generating pure

isolates is complicated by both the complexity of biofluids
and the tremendous heterogeneity of extracellular vesicles
that even within a particular size range present various sub-
populations with different molecular constitution (69,70).
Although time-consuming, density gradient centrifugation
is highly efficient in removing contaminating proteins and
protein complexes, leading to reasonably pure vesicle prepa-
rations (62). Polymer-based precipitation methods, on the
other hand, require less hands-on time, but suffer from co-
isolating non-vesicular contaminants and residual precipi-
tation reagents that can interfere with downstream process-
ing and reduce the vesicle’s biological activity (71). Recently,
size exclusion chromatography has emerged as a less tedious
alternative able to generate vesicles of purity comparable to
density gradient-based methods, albeit with low throughput
and yield (61,71). Excellent in-depth comparisons of meth-
ods for isolating extracellular vesicles from various biofluids
can be found elsewhere (63,64,72). Regardless of the par-
ticular isolation approach, extraction of RNAs from liq-
uid biopsies is well established. Measuring their concentra-
tion is nevertheless challenging due to low concentrations in
biofluids. New advances in both sequencing and vesicle re-
search, including careful optimization and standardization
of techniques and protocols, will certainly foster progress
toward highly specific biomarker signatures.

Blood sampling

In molecular diagnostics, blood is the primary and most im-
portant matrix for RNA expression analysis. In humans,
minimally invasive sampling is of great advantage, hence
blood is the matrix of choice for so-called liquid biopsies.
Different and highly standardized methods and kit systems
are available for the extraction of high quality RNA from
blood, including total circulating RNA and microvesicular
RNA. Which sampling system is applicable depends on the
particular sample type (whole blood or only a cellular frac-
tion, e.g. white blood cells, red blood cells or platelets), or
whether cell-free circulating RNAs of interest are obtained
from plasma or serum. For conservation of whole blood
for RNA expression analysis, integrated systems for RNA
degradation protection and freezing of the current RNA
profile are available; namely the PAXgene System (PreAna-
lytix) and the Tempus System (Life Technologies). Both al-
low storage of whole blood samples at room temperature for
several days or frozen for months without losing RNA qual-
ity. For both systems, dedicated kits are commercially avail-
able for extraction of RNA longer than 200 nt, or extraction
of total RNA including small RNAs (<20 nt). Häntzsch et
al. and Nikula et al. compared the two conservation systems
and concluded that both result in high quality RNA sam-
ples (73,74). LeukoLock (Life Technologies) allows the ex-
traction of leukocyte RNAs. Within this system, leukocytes
are collected in a filter, and RNA is fixed using RNAlater
which allows storage and extraction of high quality RNA
from white blood cells (75–77).

Quantification of minimal amounts of RNA

The quantification of minimal amounts of total RNA from
biopsies or microvesicle isolates is challenging. The de-
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tection limit of conventional photometric RNA quantifi-
cation methods is around 2 ng/�l (78). Due to dimin-
ished specificity in the lower concentration range, absorp-
tion and therefore quantification is mostly unspecific, be-
cause DNA contaminations cannot be distinguished from
RNA. Fluorescence-based quantification methods use a flu-
orescent dye that specifically intercalates or associates with
RNA, enabling precise quantification down to as little as 1
pg/�l (78). This method is based on conversion of the fluo-
rescence signal of an unknown sample to a standard curve
created from samples with known concentration. The Bio-
analyzer 2100 small RNA assay (Agilent Technologies) also
allows quantification of small RNAs, especially miRNAs.
As mentioned above, this method is only valid in samples of
high RNA quality and reasonable RNA quantity. It might
result in false positive signals due to contamination of mea-
sured small RNA by RNA degradation products with ongo-
ing RNA degradation (47). Due to very low concentrations
in RNA samples extracted from plasma or microvesicles,
fluorescence-based methods are preferable for small RNA-
Seq studies.

How to improve RNA extraction

The extraction of extracellular small RNAs from serum,
plasma or other biofluids such as urine or saliva is chal-
lenging due to low RNA concentrations. Using carriers to
increase RNA output is helpful, whereby glycogen, yeast
tRNA, or MS2 phage RNA are widely used. Due to po-
tential interference of biological carrier RNAs with down-
stream applications, glycogen is the carrier of choice. The
use of glycogen increases total RNA yield using most
commercially available small RNA extraction kits (79,80).
When establishing an extraction method, spiking starting
material with known quantities of artificial or exogenous ri-
bonucleotides, so-called spike-in controls, and quantifying
their recovery is an easy way to assess the efficacy and repro-
ducibility of the respective approach. Spike-in controls for
miRNA extraction are, for example, artificial short RNAs
in the length range of miRNAs or miRNA extracts from
other species, such as Caenorhabditis elegans. Indeed, Bur-
gos et al. (81) optimized RNA extraction from human cere-
brospinal fluid by measuring the recovery of three previ-
ously spiked-in C. elegans miRNAs and found significant
variation between commercially available kits, and even
within technical replicates (81). It is recommended to add
spike-in controls directly to the extraction buffer instead of
adding it to the plasma or serum sample due to the pres-
ence of RNAses in biological samples, which might lead to
degradation of the spike-in miRNA (79,80). Spike-in con-
trols can be easily quantified by RT-qPCR in order to deter-
mine extraction recovery rate, and appropriately normalize
resulting expression data (79). Furthermore, such spike-in
controls are also useful to test the efficiency of the RT reac-
tion step or to control for qPCR inhibitors.

LIBRARY PREPARATION - THE RT AND LIBRARY
PREPARATION BIAS

The biases based in library preparation

Ultra-high-throughput sequencing allows global sequence
profiling of the small RNA transcriptome. To this end,
transcriptional targets need to be converted into sequenc-
ing libraries, entailing molecular modifications to make tar-
gets suitable for the small RNA-Seq chemistry. This pre-
sequencing library preparation, however, introduces tech-
nical bias into the fine-tuned transcriptional screening and
de novo discovery of transcripts (82).

In this chapter, we examine critical steps in preparing se-
quencing libraries from total RNA, and highlight the chal-
lenge of creating them in high quality. For the implementa-
tion of Next-Generation Sequencing (NGS) of small RNAs,
the main task is to convert native small RNAs into sequen-
cable molecules while minimizing technical bias. Prepar-
ing small RNA for expression profiling requires multiple
enzymatic manipulation steps. These typically include se-
quential adaptor ligations to both ends of small RNAs, RT,
and PCR-based amplification. The 3′-adaptor ligation in-
troduces primer binding sites for first strand cDNA syn-
thesis. The PCR step specifically enriches functional small
RNAs with adaptors on both ends, and permits multiplex-
ing through introducing unique barcodes to each sample.
Ultimately, a size selection step ensures that only fragments
pertaining to small RNAs are included in the final library.
In the interest of comparing datasets generated in multiple
RNA-Seq experiment with minimal distortion, the problem
of pre-sequencing bias needs to be addressed according to
the idea of the widely accepted MIQE guidelines (21). Previ-
ously, published experimental data showed that using iden-
tical starting RNA led to entirely different results concern-
ing small RNA expression ratios due to the implementation
of different library preparation strategies (83). Surprisingly,
the choice of sequencing platform contributed little to the
reported differences (Spearman’s ρ = 0.79–0.95). Library
replicates to test for reproducibility yielded comparable re-
sults (ρ = 0.84–0.99), indicating that data distortion was
likely caused by differences inherent to cDNA construction
protocols.

Bias resulting from low RNA input

Besides the quality of extracted total RNA (as discussed
above), RNA quantity available for the particular experi-
ment is crucial for successfully generating high-quality se-
quencing libraries. Various sample types such as plasma,
serum or urine contain limited concentrations of small
RNA due to lack of cellular material, which complicates li-
brary preparation. However, several efficient and sensitive
methods for preparing libraries from sparse input material
address this problem (84,85). Generally, it is recommended
to use RNAs of similar quality and quantity for each sam-
ple within an experiment (54,86). Additionally, the capture
efficiency of small RNAs from cell-free samples might be
limited: Kim et al. reported that biological samples with
low RNA concentration lack GC poor or highly structured
miRNAs when extracting with the phenol/guanidine isoth-
iocyanate reagent Trizol (Thermo Fisher Scientific) (87).
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They hypothesized that small RNAs base pair with longer
RNA species acting as carrier molecules, and thus compen-
sate their limited capacity to precipitate in RNA extraction.
Small RNAs with low GC content and stable secondary
structures might interact with carriers less efficiently, reduc-
ing their representation in RNA preparations. For samples
with low total RNA content, such as a small number of cells
or biofluid specimens, the availability of longer RNAs that
serve as carriers might be limiting the efficient recovery of
this specific fraction of small RNAs. In order to minimize
this bias, they recommended to avoid Trizol extractions, or
to only compare samples with similar concentrations of to-
tal RNA. It was additionally suggested to stabilize RNA–
RNA interactions by adding MgCl2 in an attempt to equal-
ize the extraction efficiency of all small RNA species.

The challenge of adapter and barcode ligation

Since the ligation step introduces the largest bias in RNA-
Seq results, several studies investigated the effect of ligating
5′- and 3′-adapter or barcodes (88–93). Hafner et al. con-
cluded that ligation efficiency depends on the sequence and
secondary and tertiary self-structure of miRNAs and/or
miRNA/adapter products (94). To reduce ligation bias,
many researchers suggest using randomized adaptor pools
containing various adapter sequences adjacent to the liga-
tion junction (89,91,93,95). A recently published follow-up
paper, however, observed that it is not necessary to design
the randomized region near the ligation junction (96). In-
stead, this might complicate identification of the end of a
miRNA sequence with an unknown sequence directly at-
tached to it. Furthermore, the authors found out that miR-
NAs prefer to ligate to adapters with which they can form
a particular structure, whereas the primary sequence is not
the main contributor to ligation bias. Even better results can
be achieved when the 5′- and 3′-adapter have complemen-
tary regions. The only commercial kit employing a similar
strategy is the new NEXTflex Small RNA-Sequencing Kit
(Bioo Scientific). It uses randomized sequences at the liga-
tion site in massive concentrations to present small RNAs
their optimal adapter. According to recent work by Baran-
Gale et al., the NEXTflex protocol has shown a great reduc-
tion in bias and the best differential expression correlation
to RT-qPCR (97).

Barcodes are very short distinct sequences which can be
introduced in the sequence of interest to enable distinc-
tion of multiple samples at the same time and in the same
lane of a flow cell. To enable multiplexing, a variety of bar-
code sets are commercially available (e.g. Illumina TruSeq
Small RNA Library Preparation Kit: 48 unique indexes,
New England Biolabs NEBNext R© Multiplex Small RNA
Library Prep Set for Illumina: 24 unique indexes, Bioo Sci-
entific NEXTflexTM Illumina Small RNA-Sequencing Kit
v3: 48 unique indexes). Depending on the library prepara-
tion kits used, barcodes can be introduced at three points
in the library preparation: (i) during adapter ligation (94),
(ii) during RT (89) or (iii) during PCR (98). Beside the
fact that barcoding is a very useful tool, it causes techni-
cal bias by influencing the ligation efficacy, RT efficiency
and PCR amplification (92,98). The above findings about
the strong impact of base compositions in the core adapter

sequence prove that it is crucially important to include bar-
codes only during RT or later in PCR (89,92,96). When
carefully designing the library preparation strategy, it is
therefore highly recommended to avoid barcode sequences
near primer annealing sites, and to include barcodes only
downstream of ligation reactions. It is, however, well de-
scribed that multiple-template PCR amplification can result
in sequence-dependent amplification bias due to template
differences (18,89,99). In order to measure the PCR ampli-
fication bias resulting from barcodes, Van Nieuwerburgh
et al. designed a new strategy named post-amplification
ligation-mediated (PALM) barcoding, where the ligation
of barcodes occurs after PCR without further purifica-
tion of the library. No bias was observed when comparing
PALM with Illumina’s TrueSeq miRNA protocol, which in-
troduces barcodes during the PCR step (98).

RNA modifications lead to ligation and RT bias

A simultaneous library construction for all small RNA
species is challenging because of their different modified
ends. Small RNAs possess different 5′- and 3′-modifications
depending on their classes (e.g. miRNA or piRNA) and
species origins (e.g. mammals, insects, or plants). While
miRNAs in mammals carry a 2′-OH-modification at the
3′-end, many mammalian piRNAs or plant-derived miR-
NAs feature a 2′-O-methyl group on the ribose at the 3′-end
(100,101). This may influence the efficiency of enzymes in-
volved in ligation and cDNA synthesis. To minimize bias, it
is important to notice that polyadenylation-based libraries
are less suited for 2′-O-methylated RNAs. RNA tailing with
poly(A) or poly(C) is significantly less efficient for mod-
ified 3′-ends, which might conceivably lead to the under-
representation or even absence of some RNA species in
cDNA libraries (82).

In ligation-based libraries, the ligation efficiency of
RNAs with 2′-O-methyl groups can be significantly im-
proved by a longer incubation time, reduced temperature,
and the use of T4 RNA Ligase2 instead of T4 RNA Lig-
ase1 (102,103).

Choosing appropriate enzymes for the RT step can also
tone down the bias because of their known sensitivity
to 2′-O-methyl groups. It is recommended to use avian
myeloblastosis virus RTase or murine leukemia virus RTase
to prevent favoring the transcription of some RNAs over
others (103).

PCR amplification bias in library preparation

The efficiency of PCR amplification depends on the base
composition of different types of templates, type of poly-
merase, PCR buffer composition, and potential presence
of any inhibitory substances (104). It is well known that a
varying GC-content is associated with unequal PCR am-
plification efficiencies and leads to template-specific pref-
erences (105–108). To avoid that RNAs with high GC-
content remain under-represented, one can perform an op-
timized PCR program with an extended initial denatura-
tion time of 3 min and subsequent melt cycles of 80 s (109).
Furthermore, choosing an appropriate polymerase will not
only minimize GC-bias, but also narrow the length dis-
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Table 1. Crucial steps and recommendations for small RNA sampling and library preparation

Step To consider Recommendation

Experimental design and replication Type and number of samples Employ sufficient replication for question at hand
Outcome of interest Favor biological replicates over technical ones
Variance within samples

Sequencing depth Outcome of interest Replication For a rough snapshot of gene expression or
analysis of high-level transcripts, lower coverage is
sufficient
Sequencing depth needs to be increased for
analysis of rare transcripts

Sampling and storage Sampling environment Sample type
Embedding/fixation Freezing/storage

Keep sampling conditions as clean as possible

Choose an appropriate sampling system for the
particular sample type
Use agents to preserve and stabilize RNA
Freeze samples as quickly as possible and store at
appropriate temperature

RNA extraction Quantity of input material Type of extraction
kit Use of a carrier

Carefully optimize the method of extraction for the
particular type and quantity of starting material
Carrier material might be considered to increase
small RNA yield

Total RNA Expected yield and quantification system
Quality of extracted RNA

Opt for fluorescence-based quantification of
extracted RNA
Check RNA quality and integrity by capillary
electrophoresis

Addition of adapter Type of RNA (e.g. miRNA, piRNA) modified
ends

Be aware of ligation biases

For small RNAs with modified 3′-ends avoid
poly(A) or poly(C)-based approaches or modify
protocol accordingly

Reverse transcription Type of enzyme Introduction of barcodes Choose appropriate enzyme for given experimental
conditions
Introduce barcodes during PCR

PCR amplification Necessity Type of enzyme Number of cycles Choose pre-amplification strategy based on the
quantity of starting material
Opt for high fidelity polymerases with low error
rates
Perform as few PCR cycles as possible

Size selection Appropriate size range Precision of selection
system

Select for cDNA fragments that reflect the size of
the RNA of interest
High-resolution gel electrophoresis to effectively
separate small RNA species

Library purity and quantification Contamination with adapter dimers Assess library purity by capillary electrophoresis
Accurate quantification for precise flow cell
loading

Quantify library by fluorimetric assays or
qPCR/dPCR

Quality control Quality and purity of samples at each step of
the workflow

Control for sample quality throughout workflow:
purity and integrity of initial sample, extracted
RNA, cDNA library before and after size selection

tribution of generated PCR products. Several PCR poly-
merases such as Kapa HiFi (Kapa Biosystems) or Ac-
cuPrime Taq DNA Polymerase High Fidelity (Life Tech-
nologies) are recommended because of their ability to am-
plify difficult templates with higher efficiency and lower er-
ror rates (109,110). It was furthermore demonstrated that it
is of high importance to select a suitable polymerase/buffer
system, which can significantly reduce the PCR-mediated
bias. In an attempt to optimally amplify DNA sequencing
libraries, Dabney and Meyer tested 10 commercially avail-
able DNA polymerase/buffer systems and recommended
the Herculase II Fusion enzyme as the best performer (107).
Generally, it is recommended to use as few PCR cycles as
possible for library amplification, and to compare only tech-
nical or biological replicates with the identical number of
PCR cycles, since PCR noise accumulates with higher cycle
number (110).

Library preparation of samples with limited starting ma-
terial is challenging: researchers have to make a compro-
mise between introducing PCR bias and not detecting lowly
expressed transcripts that might not have been sufficiently
amplified. Okino et al. recently presented a highly multi-
plexed pre-amplification approach that massively increases
the abundance of target genes while keeping amplification
bias at bay (111). Since gene expression patterns were main-
tained throughout up to 14 PCR cycles, analysis of pre-
amplified samples yielded similar results to samples not un-
dergoing pre-amplification. Gene expression profiling stud-
ies on low input samples might greatly benefit from such a
distortion-free enrichment strategy. Recently, more sophis-
ticated library preparation strategies to avoid PCR bias al-
together were developed for both bulk and single cell anal-
yses (112,113). By introducing unique molecular identifiers
(UMI), researchers are able to detect absolute numbers of
DNA or RNA molecules, since each nucleic acid in the
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Table 2. Crucial steps and recommendations for small RNA-Seq data analysis

Step To consider Recommended tools or algorithms

Data pre-processing Trimming adapters Btrim, FASTX-Toolkit
Removing short reads

Quality control Library size and read distribution across
samples

Btrim, FASTX-Toolkit, FaQCs

Per base/sequence Phred score
Read length distribution
Assess degradation
Check for over-represented sequences

Read alignment (Filtering) Reference database or genome Bowtie, BWA, HTSEQ, SAMtools, SOAP2
Annotation
Mismatch rate
Handling of multi-reads

Normalization Library sizes and sequencing depth DESeq2, EdgeR, svaseq
Batch effects
Read distribution
Replication level

DGE analysis Data distribution DESeq2, EdgeR, SAMSeq, voom limma
Replication level
False discovery rate

Target prediction of miRNAs / siRNAs Insilico prediction or experimental validation miRanda, miRTarBase, TarBase
Canonical and non-canonical target regulation

Biomarker identification Sensitivity Specificity Classification rate DESeq2, Simca-Q, Numerous R packages: base,
pcaMethods, Mixomics

starting material is tagged with a unique sequence during
RT. After sequencing and mapping, UMI are counted to
infer absolute copy numbers without including PCR du-
plicates in the analysis. Even though UMI-based library
preparation has only been applied to mRNA sequencing so
far, similar approaches might also be developed for small
RNA-Seq in the future.

Gel size selection

The fragmentation of DNA by acoustic shearing, soni-
cation or enzymatic digestion to attain the desired target
length of 100–500 bp fragments is not necessary for se-
quencing small RNAs, which are usually considered to be
shorter than 200 nt (110). For miRNA sequencing, frag-
ment sizes of adaptor–transcript complexes and adaptor
dimers hardly differ in size. An accurate and reproducible
size selection procedure is therefore a crucial element in
small RNA library generation. To assess size selection bias,
Locati et al. used a synthetic spike-in set of 11 oligoribonu-
cleotides ranging from 10 to 70 nt that was added to each
biological sample at the beginning of library preparation
(114). Monitoring library preparation for size range biases
minimized technical variability between samples and exper-
iments even when allocating as little as 1–2 % of all se-
quenced reads to the spike-ins. Potential biases introduced
by purification of individual size-selected products can be
reduced by pooling barcoded samples before gel or bead pu-
rification.

Since small RNA library preparation products are usu-
ally only 20–30 bp longer than adapter dimers, it is strongly
recommended to opt for an electrophoresis-based size selec-
tion (110). High-resolution matrices such as MetaPhorTM

Agarose (Lonza Group Ltd.) or UltraPureTM Agarose-1000
(Thermo Fisher Scientific) are often employed due to their
enhanced separation of small fragments. To avoid sizing
variation between samples, gel purification should ideally

be carried out in a single lane of a high resolution agarose
gel. When working with a limited starting quantity of RNA,
such as from liquid biopsies or a small number of cells, how-
ever, cDNA libraries might have to be spread across mul-
tiple lanes. Based on our expertise, we recommend freshly
preparing all solutions for each gel electrophoresis to ob-
tain maximal reproducibility and optimal selective proper-
ties. Electrophoresis conditions (e.g. percentage of the re-
spective agarose, buffer, voltage, run time, and ambient tem-
perature) should be carefully optimized for each experimen-
tal setup. Improper casting and handling of gels might lead
to skewed lanes or distorted cDNA bands, thus hampering
precise size selection. Additionally, extracting the desired
product while avoiding contaminations with adapter dimers
can be challenging due to their similar sizes. Bands might be
cut from the gel using scalpel blades or dedicated gel cut-
ting tips. DNA gels are traditionally stained with ethidium
bromide and subsequently visualized by UV transillumi-
nators. It should be noted, however, that short-wavelength
UV light damages DNA and leads to reduced functional-
ity in downstream applications (115). Although the suscep-
tibility to UV damage depends on the DNA’s length, even
short fragments of <200 bp are affected (116). For size se-
lection of sequencing libraries, it is therefore preferable to
use transilluminators that generate light with longer wave-
lengths and lower energy, or to opt for visualization tech-
niques based on visible blue or green light which do not
cause photodamage to DNA samples (117,118). In order
not to lose precious sample material, size-selected libraries
should always be handled in dedicated tubes with reduced
nucleic acid binding capacity.

Precision of size selection and purity of resulting libraries
are closely tied together, and thus have to be examined care-
fully. Contaminations can lead to competitive sequencing
of adaptor dimers or fragments of degraded RNA, which
reduces the proportion of miRNA reads. Rigorous quality
control checkpoints and size selection steps are therefore
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crucial. In order to assess length distribution and potential
contaminations, it is recommended to use high sensitivity
capillary gel electrophoresis assays. The size profile of final
library preparation products is dictated by the initial small
RNA’s size distribution extended with respective sequenc-
ing adapters.

Library quantification and flow cell loading

Methods of quantitating final cDNA libraries are still
highly debated in the field, and have a significant impact on
the sequencing experiment since precise loading of flow cells
is crucial for optimal cluster densities. Overloading results
in overlapping clusters, reduced quality of reads, and ulti-
mately diminishes the data output of the experiment (119).
Low numbers of clusters, or underclustering, on the other
hand, yields high-quality data, but a less-than-ideal out-
put. Impurities in sequencing libraries not only skew library
quantitation, but also affect cluster generation: shorter frag-
ments such as adapter dimers cluster more efficiently and
thus restrict clustering of target RNAs. Capillary gel elec-
trophoresis is a useful tool to assess library integrity, in-
sert size and contaminations, but detects both amplifiable
and non-amplifiable molecules (120). Spectrophotometri-
cal methods of nucleic acid quantification are not sensi-
tive enough to precisely quantitate cDNA libraries, and suf-
fer from also measuring single-stranded DNA and free nu-
cleotides. Fluorometric assays such as PicoGreen (Thermo
Fisher Scientific) or Qubit (Thermo Fisher Scientific) are
more applicable due to increased sensitivity, and specif-
ically quantify double-stranded DNA. Another common
approach is quantifying cDNA libraries via qPCR with
primers designed to adaptor sequences. Since only func-
tional molecules are captured in the analysis, qPCR and its
derivatives seem to precisely predict actual cluster densities
(121). Increasingly sensitive methods of library quantifica-
tion allow for both less input material and fewer PCR cy-
cles, which in turn facilitates sequencing of limited samples
and reduces distortion of the initial sequence distribution.
Although more costly than other methods, calibration-free
absolute quantification of cDNA libraries by digital PCR
was found to be a highly accurate tool for quantification of
amplifiable molecules in sequencing libraries (122,123).

Loading precision can also be increased by using artificial
or exogenous spike-ins. Adding known quantities of a syn-
thetic sequence to samples and quantifying their read count
allows for additional control of sequencing parameters. Ad-
ditionally, technical biases and sequencing errors can be as-
sessed by correlating the amount of spiked-in RNA to read
counts mapping to those standards. Fahlgren et al. spiked
sequencing libraries with three synthetic 21-nt sequences,
and found a linear correlation between spike-in concentra-
tion and mapped spike-in reads that reached saturation at
10 pmol spike-in per 100 �g of total RNA (124). Another
publication using poly-A-tailed mRNA-mimetic standards
reported a linear correlation spanning six orders of magni-
tude while suggesting that the detection of standards is ro-
bust to the endogenous complexity of RNA samples (125).
As for the analysis of target transcripts, the recovery of stan-
dard reads was limited by sequence abundance and sequenc-
ing depth, both of which increased spike-in detection.

Critical steps in small RNA-Seq experimental design,
sampling and library preparation as well as recommenda-
tions by the authors are summarized in Table 1.

SEQUENCING - THE SEQUENCING BIAS

Introduction to sequencing bias

While researchers used to increase sequencing depth rather
than introduce additional biological replicates, the ever-
subsiding costs of sequencing assays nowadays allow for
more replication (126). This, in turn, increases specificity
and sensitivity of NGS experiments, and helps correct for
biases that cannot be mitigated by bioinformatics meth-
ods, such as batch or library preparation effects. Merely
increasing sequencing depth in order to improve the speci-
ficity of experiments might seem a straightforward strategy,
but in reality does not help alleviate sequencing-specific er-
rors (126). Even though a major cause of bias lies in the
library preparation of small RNA samples, the sequencing
reaction itself can also lead to substantial errors in NGS
data. A great number of factors pertaining to the sequenc-
ing reaction have to be considered when conceptualizing
RNA-Seq experiments. Regardless of the particular exper-
imental question, fundamental aspects such as randomiza-
tion, replication and blocking need to be properly addressed
(127). The most basic decisions relate to choosing a par-
ticular sequencing platform and type of flow cell, and de-
signing an experiment that tailors the sequencing chemistry
specifically to the question at hand. Additionally, insuffi-
cient replication, unsatisfactory sequencing depth and PCR
errors are known to increase bias in sequencing data. It is
also important to notice that batch effects may result from
different kits, reagents, chips, platforms, instruments, han-
dling by different technicians, and day-to-day variations.
Batch effects may even occur between different lanes on an
Illumina flow cell, or between sequencing runs (110,128).
In light of Illumina’s dominance in the NGS market, most
types of bias discussed in this review are focused on this par-
ticular sequencing chemistry.

Batch, lane- and flow cell effects

A major concern in all experiments is detaching biologi-
cal from technical variation since confounding both makes
it impossible to interpret changes in data. For RNA-Seq
experiments, it was shown that library preparation intro-
duces the largest bias. This so-called batch effect is an of-
ten underestimated problem in high-throughput techniques.
As shown above, variations in cDNA preparation from a
singular biological source can arise from laboratory con-
ditions, varying quality and reagent lots, skills of the par-
ticular operator, changes in personnel, or more subtle fac-
tors such as laboratory temperature or ozon levels (128).
Quality and quantity of input material, primer concentra-
tion, size selection and number of PCR cycles are only a few
of many critical parameters of an RNA-Seq protocol that
can lead to profound batch effects. A recent article even re-
ported that the composition of small RNA sequencing li-
braries is more heavily influenced by RNA extraction than
by library preparation itself (129). Confounding batch ef-
fects with the question of interest, e.g. preparing sequenc-
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ing libraries of all treated and control samples on differ-
ent days or by different operators, can skew the data and
directly lead to false biological conclusions. While shown
to be of less impact than batch effects, there are also lane
and flow cell effects that need to be taken into considera-
tion when designing RNA-Seq experiments (29). These ef-
fects pertain to technical variations arising after the cDNA
library is loaded onto the sequencer. Marioni et al. reported
a high replicability in Illumina sequencing data with only a
small percentage of genes featuring a systematic difference
between different lanes of a flow cell (30). Ross et al., on the
other hand, found substantial variation between separate
flow cells, but not between lanes within a flow cell (130). It
should be noted, though, that intra- and inter-assay varia-
tion was shown to be less prominent than variation between
sequencing platforms.

Multiplexing

The ability to multiplex––adding specific barcodes to sepa-
rate samples and sequencing them on the same lane of a flow
cell––nowadays allows researchers to mitigate lane effects
and create more effective experimental designs. Auer et al.
proposed creating ‘balanced blocks’ by subjecting all sam-
ples to the same experimental conditions, including library
preparation and sequencing (i.e. equal proportions of all
samples are loaded onto all lanes of the flow cell) (131). For
more sophisticated and larger experiments, it is advisable
to spread library preparation batches, sequencing lanes and
flow cells across all biological groups and replicates to min-
imize technical variability. Multiplexing and pooling sam-
ples as early as possible is advantageous since they can then
be processed through the library preparation workflow to-
gether, which further alleviates batch effects. Multiplexing
also helps to reduce sampling bias when loading the cDNA
library onto the flow cell. Loading entails a large dilution
step since only a fraction of the cDNA pool is used for clus-
ter generation. An uneven distribution of molecules results
in skewed library representation on the flow cell, and thus
profoundly alters data output (132). Multiplexing and pool-
ing all samples tones down sequencing errors by reducing
sampling bias to only one dilution step.

Paired-end versus single-end sequencing

Paired-end sequencing is a powerful innovation in tran-
scriptomics, yielding more information on transcripts at the
same sequencing depth (29). While useful for detection of
alternative splice variants and chimeric transcripts, paired-
end sequencing usually offers no advantage in small RNA-
Seq. Since inserts are short, most experiments do not ex-
ceed 50 cycles of sequencing even for small RNA discovery
applications. Illumina in fact suggests lowering cycle num-
bers to 18–36 for miRNA expression profiling studies. Even
for profiling of protein-coding genes, 50-bp single-end reads
were previously recommended in the literature (26).

Sequencing depth

Since the amount of binding sites on a flow cell is a fi-
nite resource, the number of samples in a sequencing run

and the sequencing depth are intimately connected. While
depth usually refers to the number of reads contributing to
an assembly, the respective coverage depends on the abun-
dance of the transcript of interest. For high-level transcripts,
even a lower depth might be sufficient to analyze differential
gene expression, whereas low-level transcripts require much
higher sequencing depths to yield sufficient coverage. Since
small RNA copy numbers span a wide range of expres-
sion, higher depth is usually required to accurately capture
less abundant transcripts. When designing RNA-Seq exper-
iments, sequencing depth has to be tailored to the outcome
of interest: a rough snapshot of gene expression requires
far lower coverage than the analysis of rare transcripts. For
miRNA discovery, Illumina nowadays recommends at least
10M mapped reads. Metpally et al. found that while increas-
ing sequencing depth facilitates the detection of new miR-
NAs, even a moderate depth of only 1.5M mapped reads
reliably represents the miRNA distribution in the sample
(133). For a given sample type, increasing sequencing depth
seems to positively correlate with increasing the proportion
of mapped reads. Previous RNA-Seq studies stated that in-
creasing sequencing depth reduces errors in differential gene
expression experiments with the caveat of diminishing re-
turns at a certain level of coverage (134). For mRNA-Seq
experiments, a stable detection of transcripts seems to be
reached at coverage of about 30× with greater coverage only
yielding marginal error reduction rates (23). These guide-
lines could also be applied to small RNA-Seq studies. Since
the percentage of initial reads mapping to known miRNAs
varies across sample types and library preparation batches,
it might be advisable to run a small pilot study in order to
determine how many mapped reads are appropriate for the
particular biological problem, and how much coverage is
needed to generate those reads (133). This ultimately also
determines how many samples can be multiplexed on each
flow cell of the main experiment. The decision as to whether
increase sequencing depth or include more samples depends
on the outcome of interest, and is oftentimes limited by the
given research budget.

Systematic PCR error

While careful experimental design, library preparation, and
loading of the flow cell support bias reduction, the sequenc-
ing reaction itself bears additional risk for skewing NGS
data. PCR errors induce bias not only during library prepa-
ration, but also affect cluster generation and sequencing by
synthesis chemistry. Even in the days of high-fidelity DNA
polymerases, false incorporation of nucleotides cannot be
prevented completely, resulting in DNA strands deviating
from the original template. Sequence errors during clus-
ter generation are particularly detrimental since erroneous
molecules are exponentially amplified and impair base call-
ing during the subsequent sequencing reaction, ultimately
resulting in poor read quality. Growing mixed clusters from
more than one template molecule results in a heterogeneous
colony of PCR products, and thus an inconclusive fluores-
cence signal during imaging (135). While amplification effi-
ciency is a significant cause of bias in library preparation,
differences in template-specific amplification during clus-
ter generation do not majorly skew read count results since
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only the fluorescence intensity of the respective cluster is af-
fected.

Polymerase errors also occur during the sequencing re-
action itself. Phasing, the lagging behind of a strand that
failed to incorporate a base, hampers base-calling since a
more heterogeneous fluorescence signal of the cluster is
recorded in each imaging cycle. The enzyme can also erro-
neously insert multiple bases, which is referred to as pre-
phasing (136). Both of these problems are independent of
the template DNA sequence, and lead to an increased fre-
quency of base-calling errors toward the end of a read since
more and more noise from preceding and ensuing cycles is
introduced. Imaging is further impeded by cross-talk, the
partial overlap of emission spectra of the four dyes used
in Illumina sequencing technology. This additional noise
factor seems to be cycle-dependent and also increases er-
ror rates in later cycles (137). Further factors contributing
to sequence-independent base-calling errors are dead fluo-
rophores and uneven signal intensities across each tile of
the flow cell (138,139). Base-calling algorithms need to be
aware of and account for these biases. After signal detec-
tion and error correction, the base with the highest inten-
sity is chosen. Remaining uncertainties about called bases
are then expressed in quality metrics such as the widely
adopted Phred score (140). Originally published in 1998,
Phred employs log-transformed error probabilities to gener-
ate ASCII-encoded quality scores for each nucleobase. Ac-
cording to the algorithm q = −10 × log10 (p) where p is
the probability of an incorrect base-call, high quality scores
equal low error probabilities and the ubiquitous benchmark
of Q30 reads corresponds to an error probability of 0.001.
The better a base-caller works, the higher the accuracy of se-
quencing, which ultimately reduces coverage requirements.

Sequence-specific PCR errors in Illumina sequencing

In addition to the abovementioned systematic errors, there
are also several sequence-dependent biases in sequencing
by synthesis. It is well-known that miscalls on the Illumina
platform occur more frequently in GC-rich regions and in-
crease in later cycles (141). Sequence-related biases result-
ing in failed single-nucleotide elongation might be induced
by altered substrate preference of the DNA polymerase
or specific inhibition of the enzyme. Indeed, Nakamura
et al. identified sequence-specific dephasing triggered by
GGC sequences to be a consistent bias in Illumina datasets
(142). Another cause of sequence-specific errors in Illumina
sequencing, albeit potentially of less relevance for small
RNA-Seq, are secondary structures of the flow cell-bound
single-stranded DNA (ssDNA). According to Nakamura et
al., ssDNA folding induced by inverted repeats contributes
to polymerase inhibition, while Stein et al. illustrated how
secondary structures can facilitate or hinder priming during
Illumina bridge amplification (142,143). Sequence-induced
errors are not only detrimental for applications such as SNP
detection or transcriptome assembly, but can also interfere
with small RNA-Seq due to the close homology of miR-
NAs.

Platform-specific error profiles

Previous publications about NGS error rates reported that
a majority of miscalled bases is not associated with insuf-
ficient coverage, but rather stems from systematic biases in
the respective sequencing chemistry (144). It is well known
that single base substitutions are the dominant error in Il-
lumina data, while pyrosequencing and ion semiconductor
sequencing are more prone to insertions and deletions (in-
dels) (145). In a recent comparison of common platforms,
Illumina MiSeq sequencing was shown to produce the high-
est quality data with a substitution rate of 0.1/100 bases
and an indel rate of <0.001/100 bases (146). The frequency
of indels was markedly higher when using the Life Tech-
nologies Ion Torrent Personal Genome Machine (PGM)
and Roche 454 GS Junior systems, featuring 1.5/100 bases
and 0.38/100 bases, respectively. Another publication on
Illumina sequencing reported error rates as low as 0.3%
and an increased frequency of A>C conversion (141). Since
the early days of high-throughput sequencing, significant
improvements in sequencing chemistry and software have
markedly lowered error rates in Illumina data and led to
more robust performance. Still, certain error patters char-
acteristic for the technology and independent of the input
sequence still pertain to newer generations of sequencers
(147). Error rates were shown to be reproducible and pre-
dictable across multiple samples in a recent publication on
cellular barcoding (148). While indels are fairly rare in Illu-
mina data, they can account for up to two thirds of all errors
in 454 pyrosequencing (149). Both Ion Torrent and 454 are
known to struggle with homopolymer stretches that often-
times induce frameshifts. In 454 sequencing, homopolymer
errors are more frequent in A and T rich regions and in-
crease with longer sequences of identical bases, while Illu-
mina errors are more randomly distributed (150).

DATA ANALYSIS - THE DATA ANALYSIS BIAS

Small RNA data analysis

Having successfully avoided any pitfalls and biases dur-
ing experimental setup, library preparation and sequenc-
ing, scientists are challenged by processing the frequently
huge amounts of sequence data, and extracting meaning-
ful and reliable information from millions and millions of
reads. Although digital datasets provide the opportunity to
test and validate a seemingly endless array of analyses with-
out spending more than time and computational resources,
beginners in the field are often overwhelmed and deterred
by the multitude of offered software tools and pipelines.
Since a complete discussion of all possible analyses would
go beyond the scope of this review, the following part will
be centered on the currently prevalent aim of most small
RNA-Seq experiments: the detection and comparison of
small RNA (mainly miRNA) expression profiles in differ-
ently treated samples. In addition, we will focus on ‘free to
use’ software tools or R packages (151) that, while some-
times lacking in user friendliness, are readily available to
anyone. Even though most of the software provides com-
prehensive manuals and tutorials, scientists not already fa-
miliar with command line tools may want to try a more in-
tuitively usable software suite, in particular Galaxy (152–
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154) or eRNA (155), which implement many of the tools
discussed here in a user-friendly graphical interface or in-
vest in commercially distributed programs such as CLC
Genomics Workbench (Qiagen), Ingenuity Pathway Analy-
sis (Qiagen) or Genomatix Genome Analyzer (Genomatix).
Unfortunately, due to the complexity of varying genomes,
small RNA species, data bases and constant updates and
improvements of existing software tools, a uniformly valid
and standardized analysis approach for all datasets has yet
to be established. The fact that most extensive evaluations
of methods are carried out on sequencing runs of longer
RNAs, and do not take into account the special nature of
small RNA datasets further complicates this. The follow-
ing chapter will highlight all major sources of bias or un-
wanted variation that need to be addressed and reported
to nonetheless guarantee reproducibility and comparability
between experimental setups or computational pipelines.

The starting point for all explorations is a fastq file
comprising all read sequences with their associated qual-
ity scores, indicating the probability of a wrong base call
for any given nucleotide. Small RNA data analysis can be
generally divided into four individual parts of equal im-
portance: data preprocessing, including quality control and
adapter trimming, the alignment of reads to the respective
reference genome or small RNA database, normalization of
mapped reads, and differential expression analysis between
samples. A summarizing overview of critical steps and rec-
ommended tools for small RNA-Seq data analysis is pro-
vided in Table 2.

Data preprocessing

As discussed previously, sequencing errors accumulate with
read length, and quality of sequencing data drastically
affects downstream analysis (141). Furthermore, sizes of
many small RNA transcripts such as miRNAs (∼22 nt)
and piRNAs (∼31 nt) (156) fall short of usual sequenc-
ing lengths (∼36–50 nt), and resulting reads inevitably in-
corporate 3′-end adapter sequences from library prepara-
tion. To facilitate correct alignments, small RNA read data
must therefore be trimmed of adapter artifacts. Comple-
mentarily, a significant reduction in false positive align-
ments to multiple genomic locations can be achieved by
filtering for sequences with inadequate lengths (157,158).
Removal of these reads with less than 16–18 nt, represent-
ing almost exclusively degraded RNA or adapter dimers
from library preparation, can also crucially save compu-
tational time and associated costs. With the adapter se-
quences supplied by library preparation kit manufactur-
ers, this can be achieved by a number of programs includ-
ing Btrim (159), the fastx clipper tool from the FASTX-
Toolkit (http://hannonlab.cshl.edu/fastx toolkit/), cutadapt
(160) or FaQCs (161). Although current library prepara-
tion and sequencing protocols, in conjunction with small
read lengths after adapter trimming, do a good job of min-
imizing sequencing errors, low quality datasets can still oc-
cur and will struggle finding accurate alignments. While
there are algorithms such as Quake (162) or ALLPATHS-
LG (163) that try to correct unreliable base callings by su-
perimposing the most frequent, similar patterns on them,
the intrinsically non-uniform sequence abundances found

in small RNA-Seq (164) prohibit their application. Low
quality reads can nonetheless be mitigated in part by re-
moving bases with low Phred scores from reads up to a
minimum length (∼18 nt) or, less preferably, by filtering
them out completely (165). Popular quality trimming algo-
rithms implement either some variation of a running sum
of the quality scores from 3′- to 5′-end looking for a min-
imal (Cutadapt), or a moving window that determines the
longest continuous stretch of nucleotides above the thresh-
old and trims the rest (Btrim, fastq quality trimmer from
FASTX Toolkit, FaQCs, SolexaQA (166)). Prior to align-
ment, filtered and adapter- as well as quality-trimmed reads
should then be evaluated in terms of quality scores and typ-
ical length distribution of reads. Remaining reads should
be free of low quality sequences indicating sequencing er-
rors (quality score <20), and read lengths should show a
distinct peak for the targeted small RNA species (e.g. 21–
23 nt for miRNA, 30–32 nt for piRNA). An absence of
these typical read lengths can originate from a multitude of
causes, including incorrect small RNA isolation, inaccurate
size selection during library preparation, as well as degra-
dation during, for instance, storage of samples. A fairly
uniform increase in read numbers from longer to shorter
reads is further proof of low RNA integrity. Additionally,
read data can be examined for over-represented sequences
potentially deriving from amplification bias during library
preparation or contamination with longer RNAs, especially
rRNA. k-mer distribution can be assessed by, inter alia,
FAQCs or FastQC (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/). Readers interested in benchmark-
ing performances (computation time, memory consump-
tion, possibility of multi-threading etc.) or further quality
control checks can find short overviews of existing software
tools in (165), (167) or (161).

Small RNA read alignment

To extract meaning from the carefully preprocessed data,
reads must be mapped to their respective reference and
matched with an appropriate annotation. Almost all ex-
isting tools start this process by creating an index for ei-
ther the reads or the reference, which can then be used to
find the corresponding sequence or genomic position. Us-
ing these indices allows alignment tools to quickly reduce
the number of potential locations on the reference by a
first heuristic match of reads, followed by a thorough local
alignment for each possible match to evaluate the correct
alignment. Without this inexact first pass, alignment of mil-
lions of nucleotides would take prohibitively long and over-
tax all but the most sophisticated computational clusters.
Common indexing algorithms include hash tables based on
principles used by the well-known BLAST aligner (168),
or suffix/prefix tries based on Burrows-Wheeler Transform
(169). While hash table based aligners have fewer problems
identifying even complicated mismatches between read and
reference, the computational requirements to do so escalate
quickly. Burrows-Wheeler Transform aligners, on the other
hand, are extremely fast and efficient in mapping closely
matching read-reference pairs, but slow down significantly
when challenged with complex misalignments. In general,
there is no single ‘best’ software tool, and the individual per-

http://hannonlab.cshl.edu/fastx_toolkit/
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formance varies, among other things, with the error rate or
genome type of the particular dataset, as well as the allowed
mismatch rate (158), although reference indexing tends to
outperform read indexing. Frequently used aligning soft-
ware for small RNA-Seq include Bowtie (170), BWA (171),
or SOAP2 (172), but an evaluation of mapping sensitivity
and specificity based on an actual dataset is strongly recom-
mended. Readers interested in benchmarking performances
(indexing time, mapping throughput, mapping sensitivity
etc.), as well as software-specific algorithm variations such
as spaced seeding, q-gram filters, and FM-indices can find
short overviews of existing software tools in (173), (174) or
(158). Researchers with exceptionally large datasets or fac-
ing limiting time constraints could benefit from exploring
the possibilities offered by multiple processors in high-end
graphic cards (e.g. BarraCUDA (175) or SOAP3-dp (176)),
or high-performance computing clusters (e.g. MICA (177)).

Classic read alignment strategies include mapping to a
reference genome or a specific small RNA database such as
mirBase (178,179) or Rfam (180). While reference genomes
enable researchers to get the most comprehensive view of
their data, allocating reads to all small RNA classes, as well
as potential degraded mRNAs and rRNAs, their annota-
tions often lack the extensiveness found in specific small
RNA databases, especially in the case of less researched
organisms. Additionally, alignment to a genome can lead
to problems with reads that map to multiple genomic lo-
cations (multireads). Reads without unique genomic loca-
tions are mostly caused by sequencing errors or repetitive
sequences, but can also originate from genes with multiple
genuine copies in the genome (e.g. hsa-let-7a), and incorrect
handling of them can lead to a severe bias (181–183). On
the other hand, mapping to a reference genome allows for
further characterization of unannotated sequences on the
basis of their location or accumulation (e.g. novel miRNA
prediction). Alignment to a specific small RNA database,
however, has its own pros and cons, mostly stemming from
a vastly downscaled mapping reference. Most noticeably,
alignment is significantly faster and has a considerably re-
duced memory footprint. Even though multireads are ex-
tremely improbable to occur, the likelihood of false posi-
tive mappings of reads from non-targeted small RNAs is
increased manifold due to the absence of their sequences in
the reference. A more conservative mapping with less mis-
matches is as crucial in avoiding false positive mappings as is
filtering for non-targeted small RNA classes (184). Further
complicating this is the existence of functionally relevant
isoforms such as isoMirs that often differ substantially from
their canonical sequence, but have to be taken into account
when determining mismatch thresholds and, ultimately, dif-
ferential expression (185–187). By comparing reads directly
to specific sequences, researchers can also take advantage
of homologous datasets from well-explored organisms due
to the strong conservation of seed sequences between most
small RNA classes in different species (e.g miRNAs or piR-
NAs (188)). After deciding on a mapping strategy, the final
step in alignment is matching the database sequence or ge-
nomic position to its corresponding small RNA and count-
ing all reads related to the same feature. With annotations
available for all major sequenced genomes, these countlists
can be easily generated using HTSEQ (189) or R packages

such as IRanges, GenomicFeatures (190) or, in the case of
an alignment against a specific sequence database, with e.g.
SAMtools (191).

Normalization strategies

Although small RNA-Seq features distinctively less noise
and technical bias compared to former holistic screen-
ing methods such as microarrays (192), it still generates
systematic variation that needs to be addressed prior to
differential expression analysis. Unwanted differences be-
tween libraries commonly occur in size (sequencing depth)
(193) as well as within libraries in GC-content (194) or as
batch effects (128). Variation introduced by different gene
lengths (195), as is frequently encountered in sequencings of
longer RNAs, has a negligible effect. Since usual sequenc-
ing lengths cover the whole transcript and fragmentation is
not necessary during library prep, the still popular Reads-
per-Kilobase-per-Million-mapped-reads (193) is therefore
not suited for small RNA-Seq. Overall, the general impor-
tance of normalization and its impact on differential expres-
sion was clearly shown by Bullard et al. in 2010 (196). Spe-
cial attention has to be paid to experimental setups such as
degradation studies, where read distributions differ funda-
mentally from the underlying assumptions of most meth-
ods. Most of the currently established and preferred nor-
malization strategies evolve around a global scaling factor
per sample to adjust read counts with. Widespread normal-
ization methods include: (i) library size or total mapped
reads, where individual read counts are first divided by their
respective library size and then multiplied by the arithmetic
mean of all library sizes or counts of total mapped reads, re-
spectively. Since individual read counts are not only directly
related to sequencing depth, but also dependent on their rel-
ative expression compared to all other small RNA expres-
sion levels in a sample, this normalization should be avoided
(196). (ii) Upper quartile of reads, where transcripts with
zero counts across all samples are filtered from the dataset,
and a scaling factor is derived for each sample from the 75th
quartile of the remaining reads (196). (iii) Quantile, where
the distribution of each gene is assumed to be identical,
and read counts are adjusted according to a reference ob-
tained from the median of each quantile across all samples
(197). (iv) Trimmed Mean of M-values, where a weighted
trimmed mean of log expression ratios is calculated for each
sample compared to a reference sample. Working under the
assumption that expression of most genes will not be sig-
nificantly altered in the experiment, these means should be
close to 1, and a scaling factor is derived from this differ-
ence, and finally adjusted by the mean of the normalized
libraries (198). (v) Median of expression ratios from geo-
metric means, where a pseudoreference is first created by
computing the geometric mean of all genes across samples,
and then the ratio for each count to its respective mean is
determined. The scaling factor is finally obtained from the
median of all ratios for each sample. Similar to (iv), median
normalization also assumes most genes to not be differen-
tially expressed (199,200). (vi) Artificial spike-in standards,
where reads are quantified using a standard curve derived
from a set of pre-determined small RNAs independent of
the samples (125). (vii) Surrogate variable analysis, which is
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specifically targeted on batch effects, and helps identifying
genomic data affected by artifacts. It adjusts read counts by
estimating these artifacts with the help of singular vectors
of the specific subset of the data (201).

Although the variety in experimental and genomic set ups
so far makes it impossible to universally recommend a sin-
gle normalization strategy, recent evaluations of these meth-
ods have found Median normalizing of expression ratios
from geometric means to work favorably with various kinds
of datasets (202,203). Additionally, Zyprich-Walczak et al.
proposed a step-by-step workflow to determine the most
appropriate normalization method for a specific dataset in
terms of bias, variance, sensitivity, specificity and prediction
errors to avoid data distortion by using the wrong normal-
ization (203).

Differential expression analysis

In comparison to normalization strategies that were mostly
extending existing methods for microarrays, the distinctly
different data type of NGS made the development of new
algorithms for differential expression analysis imperative.
While microarray data consists of continuous intensities
coupled with a high background, NGS read counts give dis-
crete measurements for each gene, and should not, unlike
microarray intensities, be modeled on a normal distribu-
tion. Although early RNA-Seq reported a good fit to a Pois-
son distribution for single sample sequencings and techni-
cal replicates (30,196), studies with biological replicates are
extremely likely to show variances greater than the mean
for many genes (204). This so-called overdispersion makes
analyses working under the Poisson assumption prone to
high false-positive rates due to an underestimation of sam-
pling error. One way to overcome this is an extension of
the Poisson model with a quasi-likelihood approach, where
each gene is tested individually for overdispersion (Two-
Stage-Poisson-Model (205)). Another way to account for
biological variability is the negative binomial distribution,
which adds the dispersion to the mean as a second param-
eter (206). Correct estimation of gene-wise dispersion fac-
tors is crucial, but unfortunately also hampered by the still
prevalent low number of sample in most RNA-Seq studies.
To obtain more accurate dispersion factors, analysis tools
share information across all genes in the dataset by, among
other things, a weighted likelihood approach toward the
common dispersion (edgeR (207)) or by modeling the ob-
served mean-variance relationship for all genes via regres-
sion (DESeq (199,200)). Differential expression can then
be tested by either exact tests (edgeR, DESeq) or empirical
Bayesian frameworks (EBSeq (208), baySeq (209)). Apart
from these distribution assumptions, differential expression
can also be assessed by non-parametric approaches based
for instance on Wilcoxon rank statistics and resampling
strategies (SAMSeq (210)), or by comparing the absolute
and relative expression differences between and within ex-
perimental conditions (NOISeq (211)). A major drawback
of these methods is their relatively low power and specificity
in experiments with low sample numbers. In addition, ro-
bust methods established for microarrays (limma (212,213))
can be made applicable through transformation of discrete
read count data (voom (214)). Irrelevant of the employed

algorithm, all tools will produce a list of significantly regu-
lated genes that should be treated with caution. Due to the
large number of tests, the false discovery rate should be con-
trolled for all results to avoid accumulation of type-1-errors
(215). Additionally, the ratio of expression signal to experi-
mental noise should be monitored for lowly expressed genes
by assessing the biological relevance of the fold change, as
well as absolute read count values.

More so than any other tools, software for differential
expression is subject to frequent updates, which can alter
their behavior dramatically and new algorithms are pub-
lished continually. Even though comparisons of software
performances on small RNA-Seq data are scarce, a num-
ber of independent and extensive evaluations for mRNAs
based on either synthetic data with clearly defined prop-
erties (216), or on biological datasets with validated gene
expressions (217,218) have been made recently. While it
was shown that statistical power of almost all methods is
heavily dependent on the number of samples per condition
and less on sequencing depth, the variability of expression
changes in biological datasets affects each analysis tool dif-
ferently. Outliers, ‘ON/OFF’ expression changes, where a
gene is detected in only one condition, and lopsided ex-
pression patterns, where upregulations drastically outweigh
downregulations or vice versa, influence specificity (false
positive rate) and sensitivity (false negative rate) of each
method unequally. Nonetheless, some methods appear to
capture the true expression status of small RNAs better
than others. Most independent evaluations seem to agree
that calling differential expression with SAMSeq works well
for datasets with sufficient sample sizes of 10 or more. For
smaller datasets, edgeR and especially the more conserva-
tive DESeq (or DESeq2) are found to be the methods of
choice. On top of that, the voom + limma method was re-
ported to generally perform well for different datasets (216).
Additionally, a recent publication on RNA-Seq showed that
most of the frequently used tools correctly assess differen-
tial gene expression when sufficient biological replication is
employed (28). For a low number of replicates, edgeR out-
performed its competitors, while DESeq exceled in exper-
iments with more than 12 replicates, suggesting that data
analysis tools need to fit the respective experimental setup.
Efforts with mixed results have also been made to weigh dif-
ferential expression results of various methods and combine
them to an optimized consensus bypassing the individual
flaws of each algorithm (219). Considering all this, choos-
ing the optimal tool for differential expression analysis is
still strongly dependent on the individual dataset, highlight-
ing once again the fact that researchers need to thoroughly
acquaint themselves with the details and specifics of their
individual setup and data distribution before starting any
analyses.

BIOMARKER IDENTIFICATION AND VALIDATION

After biomarker candidates have been identified in the dif-
ferential expression analysis, these markers have to be sta-
tistically validated. Since univariate analyses, like most dif-
ferential expression tests, treat each biomarker (i.e. small
RNA) as independent, they are unable to capture the com-
plete reality of highly multivariate (variables >> observa-
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tions) and correlated datasets such as NGS read counts. By
taking the synergies, antagonisms and redundancy inherent
in each NGS dataset into consideration, multivariate anal-
yses can reach much higher discriminative power and sep-
arate noise from signal (19,220). In reality, there will most
likely be no single valid transcriptional biomarker for the
physiological situation of interest. In most cases, only a set
of multiple biomarkers can ensure the high sensitivity, speci-
ficity and reliability needed for diagnostic and prognostic
analyses. Appropriately dealing with these data to retrieve
the desired outcome of a stable and valid biomarker signa-
ture is, however, not trivial.

The most promising approach is to first screen read
counts for general trends or potential outliers in an unsu-
pervised manner (no classification information is given to
the algorithm), and subsequently assess the discriminative
power of potential biomarker candidates (221). These anal-
yses generate clusters of similarities, specifically similar gene
expression patterns in the case of RNA-Seq, by using meth-
ods for dimension reduction combined with pattern recog-
nition technologies and visualize them in two- or three-
dimensional graphs (222). Similar to differential expression
profiling, read count lists need to be preprocessed. Input
data for any cluster or classification analysis can either be
normalized read counts, as described previously, or ratios
thereof, and in addition should be transformed to address
their skewed distribution. A simple shifted log transforma-
tion (log2 (n + 0.5)) to make the data conform to normal-
ity is most commonly used, but more sophisticated alter-
natives such as regularized log transformation (rlog, (200))
and variance stabilizing transformation (vst, (223)) might
be better suited for small RNA-Seq data (both algorithms
are implemented in DESeq2, (200)). Cluster algorithms are
implemented, for instance, in the base distribution of R, as
well as more comprehensive packages such as pcaMethods
(224) and the excellent mixOmics (225), or the commercially
available Simca-Q software (Umetrics).

Widely accepted unsupervised multivariate analyses in-
clude clustering analyses such as hierarchical clustering
(HCA), partitioning methods such as k-means and self-
organizing maps (SOM), as well as projections on latent
variables such as the powerful principal component analy-
sis (PCA). In agglomerative HCA, samples (or genes) start
as single entity clusters and are then joined step-by-step
based on a similarity measure and a linkage function, defin-
ing inter-cluster distances. For log-transformed data, it was
shown that Euclidian distances and Pearson correlation
perform well as distance measures, while complete linkage
(or Ward’s method) strictly surpass single or average linkage
functions (226). The result and graphical output of HCA is
a tree dendrogram emphasizing the distances between the
individual samples (or genes) with rising node lengths and
clusters can be obtained by, among others things, cutting at
fixed heights (227,228). Combining HCA of samples and
genes with a two-dimensional color-coded description of
the whole experimental matrix creates a heatmap, which al-
lows for easy detection of similarities and dissimilarities in a
read count list. Although HCA is the still the most common
clustering algorithm, it is in most cases outperformed by
partitioning methods such as k-means and SOM (226,229).
Both work by subdividing the dataset into a predetermined

number of unhierarchical subsets based on randomly cho-
sen centroids. In k-means, samples (or genes) are iteratively
assigned to the closest centroid with each iteration replac-
ing the former centroid by the average of each entity in its
cluster until all samples (or genes) are set. In SOM, the cen-
troids are linked by a grid structure, and with each itera-
tion the closest centroid, as well as its neighbors, is moved
toward a randomly chosen sample (or gene). By gradually
shrinking the radius of each adjacent centroid, this will re-
sult in a grid of clusters comprising all samples (or genes)
with related expression patterns. Since both k-means and
SOM start with randomly placed centroids and the optimal
number of cluster is usually not apparent, these algorithms
should be rerun with random seeds and different numbers
of clusters to obtain a stable classification.

Even more information on potential biomarkers can
be obtained by PCA, which converts a multidimensional
dataset into a lower number of variables called principal
components (PCs) (228,230). The read count data is thus
decomposed in a score matrix describing small RNA genes,
a loadings matrix describing the samples, and a residual
matrix expressing deviations between the original variables
and the projections. PCs are calculated ranked with the first
PC accounting for the greatest variance in the dataset and
subsequent PCs comprising the respective maximum resid-
ual variance. Since PCs are computed orthogonally to each
other, they each describe independent sources of informa-
tion, and with decreasing variance explained by later PCs,
they can be used to separate systematic effects, explained
by the molecular biomarker set, from random expression
noise (227). Variance derived from experimental study de-
sign is expected to be systematic, while confounding vari-
ance is expected to be small and random and can therefore
be found in later PCs. The advantage of PCA in compari-
son to clustering and partitioning methods is obvious, since
it allows a much clearer recognition and more precise differ-
entiation of the experimental groups. In PCA, the common-
alities (or differences) in gene expression pattern are clearly
visualized by the symbol interspaces in at least two dimen-
sions (228,231). By plotting scores and loadings plots side
by side and looking at their corresponding positioning, it
is also possible to identify which small RNA genes are re-
sponsible for the separations of samples. Potential biomark-
ers can be assessed by their contribution plots, and outliers
can be detected by either Hotelling’s T2 or by their residual
standard deviation (distance to model, DModX) (232).

All of the unsupervised methods mentioned above gen-
erate groupings of samples (or genes) with similar expres-
sion patterns. While this allows for easy detection of outliers
and inconsistencies in experimental setup, it does not nec-
essarily mean that resulting clusters will reflect the desired
classification of samples or genes. An underlying treatment
effect can sometimes be veiled by other dominating effects,
be they intentional (different cell types, time points etc.) or
not (batch effects). By incorporating information on exper-
imental setup, researchers are able to filter out genes induc-
ing the greatest separation between treatment groups or,
in other words, potential biomarkers. Although a number
of supervised classifications algorithms exist, it was shown
that the widely used partial least squares projection to latent
structures (PLS) and its modifications such as PLS discrim-
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inant analysis (PLS-DA, (233)), sparse PLS-DA (sPLS-DA,
(234)) or orthogonal PLS (OPLS, (235)) are well suited for
dimension reduction and discrimination (233,236).

PLS is related to linear discriminant analyses (LDA), and
is a regression extension of PCA that shares many char-
acteristics with it. By adding a second matrix containing
the responses or dependent variables to the read count ma-
trix, PLS attempts to find latent variables (LV) that pre-
dict the responses from gene expression profiles and de-
scribe the common structure of both matrices. LVs are cal-
culated hierarchically similar to PCs, but LVs maximize co-
variance instead of variance. In PLS-DA, the response ma-
trix is replaced by an optimized dummy matrix containing
only 0 and 1 for every respective class, and the resulting pro-
jection model therefore focuses on maximum discrimina-
tion between classes in the responses rather than ‘optimal
class modeling’ (221). Biomarkers can then be evaluated
by a number of variable selection methods including vari-
able importance in projection (equivalent to a contribution
plot in PCA) or target projection with selectivity ratio test
(237), and by drawing a consensus between differentially ex-
pressed genes and multivariate analyses.

The biological functionality of detected small RNA
biomarkers, mainly based on miRNAs, can be further veri-
fied in functional experimental tests using miRNA overex-
pression, knockdown or even knockout experiments. Var-
ious tools and software packages are available for the in
silico functional analysis of miRNAs. For in silico target
prediction, we recommend the TargetScan package (http:
//www.targetscan.org/) (238,239) or miRanda (http://www.
microrna.org/) (240,241). For analyzing the inverse relation
of expressed miRNAs and mRNAs in conjunction with tar-
get predictions, we recommend using a Lasso regression
model (242,243). If an integrative analysis of miRNAs and
their target genes is of interest, the miRNA–mRNA re-
lations can be tested on the basis of regression analysis,
and further processed by testing for enrichment in gene on-
tology terms or KEGG pathways (http://www.genome.jp/
kegg/pathway.html), amongst others (244,245). In addition,
several all-in-one software packages such as CLC Genomics
Workbench (Qiagen), Ingenuity Pathway Analysis (Qiagen)
or Genomatix Genome Analyzer (Genomatix) are avail-
able to allow a relatively easy, graphic user interface (GUI)-
based in silico functional analysis of miRNAs. Applying
Genomatix Pathway System (GEPS) or Ingenuity Pathway
Analysis facilitates the creation and extension of miRNA
networks based on information extracted from public and
proprietary databases and co-citations in the literature.

Conclusion - where are the real bottlenecks?

Today, liquid biopsies and the small RNA biomarker sig-
natures they may inclose are considered the promising new
generation of transcriptional biomarkers. The RNA is eas-
ily accessible, often by non-invasive procedures, physiolog-
ically stable and protected by microvesicles or associated
proteins. Due to its chemical nature, it can be rapidly am-
plified and quantified using RT and PCR-related methods.
Small RNA-based biomarker signatures can therefore be
detected at low concentrations and early disease stages, and
the discovery workflow can be further optimized and stan-

dardized. This sustains the idea of the MIQE and dMIQE
guidelines previously published by an international consor-
tium (headed by SA Bustin and JF Huggett) in the field of
qPCR and dPCR (21,22).

Thoroughly and accurately following our recommenda-
tions by optimizing and standardizing the small RNA-
Seq workflow will result in reproducible data and, subse-
quently, reliable hypotheses. The digital and holistic na-
ture of the small RNA-Seq approach provides vast tran-
scriptional data that is highly informative in terms of both
quality and quantity (246). The subsequent complex, com-
parative and multivariate data analysis can result in valid
biomarker signatures. The technological developments in
the entire workflow (from sampling to multivariate data
analysis) are very dynamic, and will continue to improve in
the future. While proven standards and optimized method-
ologies to identify promising biomarkers in liquid biopsies
are still lacking, the optimization and validation process will
continue to develop.

Where are the real bottlenecks in small RNA-Seq analysis of
liquid biopsies? The most significant factor leading to suc-
cess is probably the number of variables and conditions be-
ing tested, and the number of real biological replicates used
for sequencing. What appears to be specific in the particu-
lar biological samples analyzed by small RNA-Seq may not
necessarily be reflected in a larger group, or even in the en-
tire population. Therefore, the more individuals tested, and
the more conditions or variables being evaluated, the better
the outcome of the prediction and the validity of the discov-
ered biomarker signature will be (247,248).

No step in the workflow is free of bias, but some are
more prone to produce noise in the resulting data. Due to
financial reasons, researchers still employ too few biolog-
ical replicates. Only biological replicates can explain any
biological difference, while technical replicates are limited
to only report the technical noise researchers introduce. In
our opinion, the largest noise impact is introduced by RNA
extraction and the complex library preparation, which can
be performed in various ways, but always highly depends
on enzyme efficiency. Depending on the respective library
preparation chemistry, numerous individual barcodes are
used. These not only cause technical bias, but also affect
RT efficiency and PCR amplification.

In general, it is recommended to perform as few PCR cy-
cles as possible for pre-amplification, and to only compare
replicates with the identical number of cycles. The sequenc-
ing or clonal amplification as such is not a major source
of variation, since error rates of polymerases are accept-
ably low, sequencing chemistry exhibits high purity and the
hardware operates very precisely and reproducibly. A fur-
ther big challenge is the off-instrument data analysis, which
requires the majority of manpower and time in the quan-
tification workflow. We should put major focus on align-
ment, normalization and differential expression analysis,
since these are the most critical steps. Biases introduced at
earlier stages can in part be corrected and compensated by
an appropriate normalization strategy.

As a final and essential step after small RNA-Seq, we rec-
ommend additional validation of the identified transcrip-
tional biomarker signatures. This confirmation should be
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carried out using established and highly standardized meth-
ods such as RT in combination with real-time PCR or digi-
tal PCR. The consistency and correctness of the discovered
transcriptional biomarker signature in the liquid biopsy can
only be assumed after data verification and demonstration
of a statistically validated correlation between small RNA-
Seq and RT-qPCR or dPCR.
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