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Abstract: Hydrocephalus is a common complication of aneurysmal subarachnoid hemorrhage (aSAH)
and reportedly contributes to poor neurological outcomes. In this review, we summarize the molecu-
lar and cellular mechanisms involved in the pathogenesis of hydrocephalus following aSAH and
summarize its treatment strategies. Various mechanisms have been implicated for the development of
chronic hydrocephalus following aSAH, including alterations in cerebral spinal fluid (CSF) dynamics,
obstruction of the arachnoid granulations by blood products, and adhesions within the ventricular
system. Regarding molecular mechanisms that cause chronic hydrocephalus following aSAH, we
carried out an extensive review of animal studies and clinical trials about the transforming growth
factor-β/SMAD signaling pathway, upregulation of tenascin-C, inflammation-dependent hypersecre-
tion of CSF, systemic inflammatory response syndrome, and immune dysregulation. To identify
the ideal treatment strategy, we discuss the predictive factors of shunt-dependent hydrocephalus
between surgical clipping and endovascular coiling groups. The efficacy and safety of other surgical
interventions including the endoscopic removal of an intraventricular hemorrhage, placement of
an external ventricular drain, the use of intraventricular or cisternal fibrinolysis, and an endoscopic
third ventriculostomy on shunt dependency following aSAH were also assessed. However, the
optimal treatment is still controversial, and it necessitates further investigations. A better under-
standing of the pathogenesis of acute and chronic hydrocephalus following aSAH would facilitate
the development of treatments and improve the outcome.

Keywords: cerebral aneurysm; subarachnoid hemorrhage; hydrocephalus; shunt; pathogenesis; in-
flammation

1. Introduction

Aneurysmal subarachnoid hemorrhage (aSAH) remains a devastating disease that is
characterized by a high mortality rate and significant morbidity amongst survivors [1,2].
Hydrocephalus is a frequently encountered complication following aSAH and is classi-
fied as acute (0–3 days post-SAH), subacute (4–13 days post-SAH), or chronic (14 days
post-SAH) [3,4]. Acute hydrocephalus necessitates the placement of an external ventricular
drain (EVD) to reduce deleterious secondary effects after the aneurysm bleed, with up to
48% of EVD recipients requiring ventriculoperitoneal (VP) shunt insertion [5–7]. Chronic
hydrocephalus has been reported in 9–64% of aSAH patients; placement of a shunt system
improves clinical outcome in aSAH [8–11]. Early cerebrospinal fluid (CSF) drainage with
an EVD reduces the content of blood-clotting products and protein in the CSF, which
reduces the incidence of obstruction in the CSF flow pathway [12,13]. However, the pro-
longed use of an EVD may complicate the treatment of aSAH and increase the risks of
meningitis and/or ventriculitis, which not only impacts the outcome but also influences
the possibility of the patient becoming shunt-dependent [14,15]. Notably, complications
relating to shunt placement are common, including intracerebral hemorrhage, shunt dys-
function, overdrainage, and infection [16,17].
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Various mechanisms have been implicated as causative factors for the development of
chronic hydrocephalus following aSAH, including alterations in CSF dynamics, obstruction
of the arachnoid granulations by blood products, and adhesions within the ventricular
system [18–20]. Prior studies evaluating factors associated with VP shunt placement have
found that older age, female sex, a history of hypertension, high Fisher grade on the initial
computed tomography (CT) scan, a low initial Glasgow Coma Scale (GCS) score, a higher
Hunt and Hess grade at admission, amount of subarachnoid blood, presence of intraven-
tricular hemorrhage (IVH), in-hospital complications (including pneumonia, meningitis,
vasospasm, and ischemic stroke), a larger third ventricular diameter at admission, history
of sympathomimetic drug use, hyponatremia, aneurysm location within the posterior circu-
lation; prolonged EVD, aneurysm treatment modality, and aneurysm size were predictors
of shunt-dependent hydrocephalus [5,21,22].

Chronic hydrocephalus following aSAH reportedly contributes to poor neurological
outcomes and severe cognitive deficits [22–25], which was also found in our cases (Figure 1).
The development of predictive models that could stratify patients with aSAH based on
their risk of developing shunt-dependent chronic hydrocephalus is important. Data from
these models could provide guidance for neurosurgeons as to the earlier replacement
of an EVD with a shunt system for higher-risk patients, with the associated benefits of
a lower incidence of EVD infection, shortened hospital stays, lower treatment costs, and
improved functional outcomes. In contrast, patients at lower risk of shunt dependency
could undergo a more aggressive EVD weaning protocol. Very few such scoring systems
have been described in the literature [8,26,27].
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flammatory cell response occurs in the leptomeninges following aSAH, with polymorpho-
nuclear cells dominating during the first 24 h and mononuclear cells thereafter [29,30]. 
These inflammatory cells secrete cytokines that trigger a fibroproliferative reaction by act-
ing as mitogens and chemoattractants for fibroblasts. Reportedly, inflammatory cytokines 
and growth factors such as tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, platelet-
derived growth factor (PDGF), and transforming growth factor (TGF)-β are upregulated 
in the acute stage of aSAH [31–33]. Thrombin is also released by the blood-clotting cascade 

Figure 1. The series of computed tomography (CT) images of a case with aSAH. (A) A 68 years-old female patient presented
with SAH at admission. There is no IVH and no acute hydrocephalus; (B) a ruptured left posterior communicating artery
aneurysm was identified and coiled; (C) on 12 days after aSAH, CT showed hydrocephalus. She developed progressive
ataxia and cognitive dysfunction.

Following aSAH, evidence suggests that extensive fibrosis in the subarachnoid space
may be an important cause of chronic hydrocephalus development [18,28]. A rapid inflam-
matory cell response occurs in the leptomeninges following aSAH, with polymorphonu-
clear cells dominating during the first 24 h and mononuclear cells thereafter [29,30]. These
inflammatory cells secrete cytokines that trigger a fibroproliferative reaction by acting as
mitogens and chemoattractants for fibroblasts. Reportedly, inflammatory cytokines and
growth factors such as tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, platelet-
derived growth factor (PDGF), and transforming growth factor (TGF)-β are upregulated in
the acute stage of aSAH [31–33]. Thrombin is also released by the blood-clotting cascade in
the CSF of patients with aSAH [34,35]. Thrombin, TGF-β, and PDGF reportedly promote
human leptomeningeal cell proliferation in culture, and hydrocephalus develops in mice
injected with intracerebral TGF-β [36].
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2. TGF and Its Antagonists

Post-hemorrhagic blood-clotting products with fibrosis of the leptomeninges and
arachnoid granulations may reduce the circulation of CSF, suppress CSF absorption, and
reduce drainage, leading to the development of hydrocephalus [37,38]. The three mam-
malian isoforms of TGF-β (TGF-β1, TGF-β2, and TGF-β3) are small secreted homodimeric
signaling proteins [39]. They coordinate and control various cellular processes, including
cell proliferation and differentiation, apoptosis, migration, wound healing, angiogenesis,
immune cell function, maintenance of the extracellular matrix, and other functions in
many different cell types [39–41]. In the central nervous system (CNS), all three isoforms
are produced by both glial and neuronal cells [42,43]. The TGF-β family can mediate sig-
naling by binding to two serine threonine kinase receptors on the cell surface, TGF-β type-1
and type-2 receptors, inducing the phosphorylation and activation of Smad 2/3 and Smad 4
transcription factors [44,45], initiating multiple intracellular signaling, and exerting profi-
brotic effects [46,47]. The TGF-β1 isoform is the most abundant cytokine in the CNS and is
recognized as having a crucial role in brain injury and regulation of CNS development [48].
TGF-β1 can also activate multiple downstream intracellular signaling pathways to exert
diverse cellular effects, including the Rho/Rho-associated coiled-coil-forming protein ki-
nase (Rock) pathway, protein kinase C (PKC)-δ pathways, and Ras/mitogen-activated
protein kinase/Erk1/2 pathways [49–51]. The fibrotic response of various organs is a highly
complex and multifaceted process. The TGF-β1/Smad/connective tissue growth factor
(CTGF) pathway is involved in the pathogenesis of various fibrotic diseases [47,52]. TGF-β1
levels have been reported to be higher in the CSF following aSAH, especially in patients
with hydrocephalus, which implies its role in the pathogenesis of subarachnoid fibrosis
and chronic hydrocephalus following aSAH [53–55]. As a major downstream mediator of
TGF-β1/Smad signaling in many cell types, CTGF is regarded as an important amplifier of
the pro-fibrogenic action of TGF-β1 in a variety of tissues [56,57]. CTGF expression is also
significantly increased following aSAH [58,59]. In experimental aSAH models, TGF-β1 con-
centrations in CSF and protein TGF-β1 levels are significantly increased in periventricular
brain tissues [60,61]. Immunofluorescent studies have revealed that glial cells are mainly
responsible for the expression of TGF-β1 in parenchyma following aSAH, especially in the
subependymal areas [59,62]. This research has described a two-peak response of TGF-β1 in
the CSF [59,62]. The first TGF-β1 peak is basically exogenous and derived from the excess
storage of TGF-β1 in platelets, which can be released by platelet degranulation following
aSAH [59,62]. The second TGF-β1 peak is attributed to endogenous sources, whereby
TGF-β1 acts as a chemoattractant for inflammatory cells and platelets and interacts with
other cytokines that further promote the local production of TGF-β1 in the CSF and choroid
plexus [59].

Some TGF-β1 antagonists and TGF-β1 signaling pathway inhibitors alleviate chronic
hydrocephalus and improve behavioral outcomes in rat aSAH models [58,59]. Decorin,
a member of the small leucine-rich extracellular matrix proteoglycans, has exhibited signif-
icant inhibitory effects on the TGF-β1/Smad/CTGF axis, protecting against extracellular
matrix accumulation with antifibrotic effects [59,63]. Decorin acts as a natural antagonist to
TGF-β by forming complexes with TGF-β to neutralize and suppress its function. Decorin
also impedes activation of TGF-β receptors and inhibits downstream signaling pathways
by competitive inhibition [64,65]. Several studies have demonstrated the therapeutic role
of decorin in suppressing the fibrogenic response in a wide variety of tissues and organs,
including the brain and spinal cord after injury [59,63,66,67]. In animal studies, decorin
attenuates the formation of glial scarring in the CNS, reduces epidural fibrosis in rats
following laminectomy, and effectively suppresses the development of post-hemorrhagic
chronic hydrocephalus [59,67,68]. As a small molecular peptide and competitive antagonist
for TGF-β1, this LSKL peptide can easily cross the blood-brain barrier and protect against
subarachnoid fibrosis and chronic hydrocephalus following aSAH, as shown by a rat model
of aSAH [69].
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3. Tenascin-C

The expression of tenascin-C (TNC), a matricellular protein, is extremely low in adult
tissues under normal physiological conditions. TNC regulates cellular phenotype and
promotes the migration and proliferation of myofibroblasts, as well as neuroinflammatory
cascades [70–72]. TNC is upregulated by various pro and anti-inflammatory cytokines
and interleukins, including TNF-α, IL-1, PDGF, and TGF-β [73–75]. Upregulation of
TNC in the serum and CSF is associated with worse neurological grades at admission,
a greater amount of hemorrhage on CT scan, and symptomatic vasospasm following
aSAH [76,77]. TNC may activate the proliferation of leptomeningeal cells and promote
tissue fibrosis by increasing the synthesis of type I and III collagen [70,77]. In preclinical
studies, the involvement of TNC in neuronal apoptosis and blood-brain barrier disruption
following aSAH reportedly occurs via the activation of mitogen-activated protein kinases
and nuclear factor-kappa B [78–80]. TNC may be involved in blood-brain barrier disruption,
neuronal apoptosis, and cerebral vasospasm following aSAH [76,77]. Thus, TNC may cause
leptomeningeal collagen synthesis and fibrosis, as well as brain injuries with decreased
brain parenchymal volume contributing to subsequent ventricular enlargement, resulting
in the development of chronic hydrocephalus, which is consistent with findings from
a CSF study in humans [81,82]. The induction of leptomeningeal collagen synthesis within
the first 48 to 72 h following aSAH is consistent with the highest increase of CSF TNC
concentrations occurring in the first 3 days following aSAH [82,83].

4. SIRS Following aSAH

SAH causes a systemic inflammatory response syndrome (SIRS) that involves com-
plex interactions amongst immune cells, inflammation, coagulation, sympathoadrenal
activation, endothelial cell activation, and dysfunction [84]. This complex process leads
to a procoagulant reaction, tissue hypoperfusion, microthrombosis, and compromised
microcirculation, which ultimately leads to multiorgan failure [84–86]. Release of cate-
cholamines into the systemic circulation following aSAH may cause arrhythmias and
neurogenic pulmonary edema. Clinically, SIRS has been defined by the presence of two or
more of the following: a temperature <36 or >38 ◦C, a heart rate >90 bpm, a respiratory
rate of >20 breaths/min, and a white blood cell count of <4000 or >12,000/mm3 [84,87].
This response produces high levels of circulating cytokines, such as IL-1, IL-6, and TNF-α,
which are key mediators of systemic inflammation [88]. The clinical manifestation includes
fever, leukocytosis, tachycardia, and tachypnea. It has been reported that SIRS is present
at admission in over half of the patients and 63–85% of patients within 4 days following
aSAH [89,90]. SIRS is associated with worse Hunt and Hess grades and larger amounts of
aSAH [87]. SIRS is also an independent predictor of angiographic vasospasm, systemic
complications, unfavorable outcomes, and death [90]. Interestingly, SIRS scores were found
to be significantly higher with clipping than with coil embolization in a cohort of patients
with good-grade aSAH [91].

Inflammatory biomarkers are associated with the occurrence of vasospasm, delayed
cerebral ischemia, and unfavorable outcomes [84]. In clinical studies, anti-inflammatory
agents such as acetylsalicylic acid, NSAIDs, thromboxane synthase inhibitors, steroids,
nitric oxide donors, and immunosuppressants have not been shown to be beneficial [84]. It
is worth noting that there have been no well-designed or well-controlled clinical trials in
this field. Thus, there is no approved intervention as of yet for treating neuroinflammation
following aSAH. Interestingly, it has been shown that using a multimodal monitoring
approach can potentially aid the development of therapeutics targeting different aspects of
the inflammatory cascade following aSAH [85]. Last but not least, it would be interesting
to look at the effect of anti-inflammatory agents on shunt dependency.

5. Immune Dysregulation Following aSAH

The immune response following aSAH has been described in recent publications. Fol-
lowing aSAH, systemic IL-6 levels increase rapidly, whereas IL-10 levels are reduced [92].
Neutrophils are increased both in the brain and in the blood, reflecting local and periph-



Int. J. Mol. Sci. 2021, 22, 5050 5 of 13

eral inflammation following aSAH [93]. Higher levels of intracerebral proinflammatory
monocytes are found within 24 h than after 1 week [92]. Studies in mouse models of aSAH
have revealed increased astrocyte and microglial activity, as well as severe motor deficits,
which were associated with an increase in the percentage of caspase-3-positive apoptotic
neurons [92]. An analysis of gene expression profiles in human peripheral blood samples
indicates that the lymphocyte response is depressed and monocyte activity is enhanced
following aSAH [94]. aSAH induces an early intracerebral infiltration and peripheral
activation of innate immune cells [92,95]. Furthermore, microglia and astrocytic activation
are present one week following aSAH [92]. Essentially, aSAH leads to SIRS and immune
cells represent potential early and upstream therapeutic targets.

In addition to stroke-related SIRS, immune dysregulation plays an important role in
brain injury and recovery. For example, the spleen contracts following ischemic stroke,
activating a peripheral immune response that may exacerbate ongoing brain injury [96].
Analyses of the neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios reveal an early
state following aSAH [94,97]. While there is growing data suggesting that peripheral
immune dysregulation following hemorrhagic strokes may be important in brain injury
pathogenesis and outcomes, details of the crosstalk between the brain and the immune
system remain unclear [98].

6. Inflammation-Dependent Hypersecretion of CSF Following aSAH

The rate of shunt dependency after treated aSAH ranges from 17.2% to 31.2% [25,27].
The four mechanisms underlying the pathophysiology of aSAH-induced brain injury are
acute obstructive hydrocephalus, a mass effect exerted by IVH, SAH-related cytotoxic blood
degradation products in the adjacent brain tissue, and chronic hydrocephalus [99] (Figure 2).
Acute hydrocephalus requires EVD management, while using EVD may also cause chronic
hydrocephalus. When chronic hydrocephalus progresses, EVD cannot be removed and
may need a permanent shunt. The clearance of blood clots from the ventricles has therefore
become a major therapeutic goal. The modified Graeb scale, the qualitative measurement
of IVH and acute hydrocephalus, is reportedly the simplest model that correlates well
with shunt dependency following aSAH; a modified Graeb score higher than 12 identifies
patients at risk with high specificity (85%) [100]. EVD has been recommended for IVH cases
with acute hydrocephalus but is characterized by frequent clot obstruction and infection
risks associated with prolonged drainage [101]. In addition, EVD replacement may affect the
risk of shunt dependency; larger volumes of CSF drainage per day and prolonged EVD are
both associated with shunt dependency [102–105]. Further studies are required to develop
an evidence-based EVD management strategy that minimizes the risk of shunt dependency.
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The use of intraventricular fibrinolysis (IVF), such as recombinant tissue plasminogen
activator (rtPA) or urokinase, was introduced to overcome the above problems with EVD
and has been shown to be beneficial in selected cases. In the recent CLEAR III study, the
comparison of postoperative outcomes between alteplase and saline irrigation in the throm-
botic removal of IVH found that although alteplase was associated with lower mortality
rates, there was no substantial improvement in functional outcomes, because most of the
survivors were severely disabled [106]. Despite the AHA/ASA Guidelines claiming that
the efficacy of endoscopic surgery for IVH is uncertain, its efficacy has been reported in
several studies. A meta-analysis of randomized controlled trials (RCTs) and observational
trials published between 1970 and 2013 showed that applying the endoscopic approach
with EVD led to less shunt dependency and a shorter length of ICU stay compared with the
IVF approach [107]. In another couple of studies, Longatti et al. and Chen et al. performed
endoscopic IVH evacuations and found that the endoscopic approach effectively reduced
shunt dependency and had more favorable outcomes [108,109]. In the study by Oertel
et al. involving 34 patients who underwent endoscopic third ventriculostomy (ETV) for
obstructive hydrocephalus due to IVH, ETV was a safe treatment option with less risk of
infection and less shunt dependency compared with EVD [110]. A recently conducted
randomized study and individual patient data meta-analysis indicate that the combination
of IVF plus lumbar drainage for IVH significantly reduced shunt dependency compared
with IVF alone [111].

However, most of these studies focused on primary ICH and IVH patients, so the
generalization of aSAH patients with IVH may not be appropriate. A randomized trial on
IVF in IVH secondary to aSAH is mandatory. A phase III, open-label RCT, FIVHeMA, was
recently initiated to compare IVF plus EVD with the standard of care (i.e., EVD alone) in
aSAH [112]. The plan is to include 440 patients for demonstrating a 10% increase in the rate
of good functional outcomes in the EVD plus IVF group compared with the EVD-alone
group. To obtain such a sample, a multicenter trial is required. To date, 17 research sites
in France have agreed to participate. A previous study has shown that in endovascular-
treated aSAH patients, IVF neither reduced permanent shunt dependency nor influenced
functional outcomes [113]. Despite the established effects of IVF on IVH resolution, it
appears less effective in aSAH compared with ICH. In particular, the radiological perme-
ation of CSF pathways does not always exclude the need for shunting for aSAH patients
with IVH. It has been shown that lumbar drainage after radiological permeation of the
ventricular system (especially the third and fourth ventricles) is associated with a decrease
in shunt dependency, and this promising strategy is now the subject of a randomized
trial [111,114]. It has also been shown that intracisternal fibrinolysis reduces the incidence
of hematoma in the basal cisterns at 48 h following aSAH, with significant, accompanying
reductions in the proportions of patients with poor neurological outcomes and those who
are shunt-dependent [115].

Despite the fact that intraventricular blood clots are dissolved, blood derivatives
enter the parenchyma and may adversely affect functional structures of the brain; smaller
blood clots may obstruct the perivascular (Virchow–Robin) space and subsequently the
glymphatic system, with detrimental consequences for CSF/interstitial fluid (ISF) flow.
These clots, as well as blood cells and blood derivatives in the perivascular space, desta-
bilize the blood-brain barrier from the brain parenchyma side and functionally weaken
the neurovascular unit. This may lead to further accommodation of serum proteins in
the ISF, particularly in the perivascular space, further contributing to the adverse effects
on the neuronal microenvironment. Finally, the arterial (Pacchionian) granulations have
to cope with ISF containing this “blood, cell, and protein cocktail”, resulting in the ob-
struction and insufficient function of the arterial granulations, followed by a malresorptive
hydrocephalus. In light of greater knowledge about the physiologic and pathophysiologic
clearance of CSF and ISF, critical discussions and reevaluation of our current therapeutic
strategies for treating IVH are needed if we are to successfully treat patients suffering from
this severe type of stroke [116].
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7. Endoscopic IVH Removal

Endoscopic IVH removal can be useful in certain cases. Although the published series
on endoscopic IVH removal detail results similar to those with IVF, no randomized trial
has proven the superiority of this approach over EVD + IVF or EVD alone. Although the
combination of coiling and endoscopic IVH removal in aSAH patients has proven safe and
effective, given the technical demand of endoscopic IVH removal, evidence demonstrating
its superiority over EVD + IVF is needed before it can be widely adopted [117–120]. This
can be performed in the hybrid room with a multidisciplinary team with coiling performed
before or after endoscopic IVH removal [119,120]. The hybrid operating room enables the
two treatment approaches to be performed without the need to transfer the patient, and
thereby minimizes the transition time between the modalities. In addition, intraoperative
cone-beam CT can be used to confirm adequate decompression and document the volume
of residual IVH (and may determine the need for additional IVF) [120]. Another con-
cern is the occurrence of EVD-related hemorrhagic complications in endovascular-treated
patients. Most of the recent literature supports the safety of EVD placement in the peri-
endovascular treatment period [121]. In a recent meta-analysis of 13 studies evaluating
516 patients with antiplatelet therapy, and 647 patients without antiplatelet therapy, pa-
tients receiving ventriculostomy and antiplatelet therapy during endovascular treatment
of acutely ruptured intracranial aneurysms increases the risk of EVD-related hemorrhages
(20.9% vs. 9%), although most of them are small and asymptomatic [122]. When EVD is
performed before endovascular procedures requiring antiplatelet therapy, the hemorrhagic
risk is minimized [122]. A recent paper has supported the contention that pre-embolization
EVD does not increase hemorrhagic complications and is associated with better functional
outcomes at discharge [123]. In that study, compared with dual therapy, single antiplatelet
therapy was associated with a lower rate of major bleeding (7% vs. 1.7%) [122].

8. Coil vs. Clip and Their Relationship with Shunt Dependency

Although the influence of treatment modality (surgical clipping versus endovascular
coiling) on shunt dependency remains controversial, it has been postulated that open
surgery allows irrigation and removal of subarachnoid clots and thereby reduces the prob-
ability of chronic hydrocephalus [9,124]. Some studies have suggested that endovascular
treatment is independently associated with the development of chronic hydrocephalus in
aSAH patients [124,125]. However, other research has demonstrated a significantly lower
incidence of chronic hydrocephalus after endovascular treatment compared with after surgi-
cal clipping [126]. Surgical clipping via the traditional pterional transsylvian approach with
arachnoid membrane dissection may directly alter CSF flow dynamics and resorption [126].
In a retrospective review of 839 patients with aSAH [127], endovascular coiling was associ-
ated with a lower risk of shunt dependency for Fisher grade 2 patients (2% vs. 13% with
clipping, p = 0.043), while surgical clipping lowered the likelihood of shunt dependency in
patients with Fisher grade 4 aSAH (23% vs. 44%, p = 0.004). In another retrospective study
including 1448 aSAH patients, microsurgical clipping conferred a two-fold higher risk
of chronic hydrocephalus over coiling alone [128]. Other studies reported no significant
difference for the predictive risks of shunt-dependent hydrocephalus between surgical
clipping and coiling groups [24,129–132]. Also, a multicenter aSAH database in Japan
consisting of 566 patients treated for aSAH has revealed that shunt dependency following
aSAH occurred significantly more frequently in patients who underwent clipping than in
those treated with endovascular coiling (30% vs. 16%) [126]. Last but not least, another
large database of 10,899 aSAH patients which consisted of 6593 patients receiving clipping
and 4306 receiving coiling reported that their incidence of VP shunt insertion was similar
(9.3% vs. 10.5%) between the surgeries [133]. Nevertheless, these complicated data are
difficult to interpret. The risk of shunt-dependent hydrocephalus is significantly different
between surgery groups because the previous publications cannot provide the key factors
to determine the need for shunt treatment and the determinant of EVD weaning, resulting
in the variability for what may be perceived as a shunt-insertion threshold.
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Some surgical techniques have been shown to decrease the risk of shunt dependency.
Tandem fenestration of the lamina terminalis and membrane of Liliequist has been shown
to decrease shunt dependency following surgical clipping or bypass following aSAH
(17.9% vs. 3.2%) [11]. In addition, intracisternal fibrinolysis has been shown to decrease
shunt dependency and improve functional outcomes following aSAH [115]. Once again, as
these techniques are usually not quantified in studies, further analysis and study may be
necessary to verify the therapeutic effects. The implication may be that an aneurysm should
be treated as dictated by the neurovascular team, either endovascularly or microscopically.
Treatment for IVH, SAH, and hydrocephalus (e.g., a shunt, IVF, and intracisternal fibri-
nolysis) may be considered separately. However, when microsurgical clipping is chosen,
removal of IVH, the use of tandem fenestration of the lamina terminalis and membrane of
Liliequist, and the use of intracisternal fibrinolysis are considered in the hope of decreasing
subsequent shunt dependency.

9. Conclusions

To sum up, the development of shunt-dependent hydrocephalus following aSAH is
multifactorial. The involvement of multiple cellular signaling pathways and inflammatory
responses all contribute to its pathogenesis. This review integrates the updated knowledge
about the clinical, molecular, prognostic, and therapeutic aspects of chronic hydrocephalus
following aSAH. Recent literature has shown that prolonged use of EVD in the acute stage
may lead to subsequent hydrocephalus. There is a need to standardize the EVD weaning
process to decrease shunt dependency. Although lumbar drainage and IVF may decrease
shunt dependency, those still need further validation. There have been no ideal treatment
approaches for this devastating disease which points to a need for therapeutic strategies
to target these underlying mechanisms. Understanding the risk factors and molecular
pathophysiology related to the development of hydrocephalus following aSAH may help
neurosurgeons to determine the intervention targeting these factors.
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