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Abstract: WiFi-based fingerprinting is promising for practical indoor localization with smartphones
because this technique provides absolute estimates of the current position, while the WiFi
infrastructure is ubiquitous in the majority of indoor environments. However, the application of WiFi
fingerprinting for positioning requires pre-surveyed signal maps and is getting more restricted in
the recent generation of smartphones due to changes in security policies. Therefore, we sought new
sources of information that can be fused into the existing indoor positioning framework, helping
users to pinpoint their position, even with a relatively low-quality, sparse WiFi signal map. In this
paper, we demonstrate that such information can be derived from the recognition of camera images.
We present a way of transforming qualitative information of image similarity into quantitative
constraints that are then fused into the graph-based optimization framework for positioning together
with typical pedestrian dead reckoning (PDR) and WiFi fingerprinting constraints. Performance of
the improved indoor positioning system is evaluated on different user trajectories logged inside an
office building at our University campus. The results demonstrate that introducing additional sensing
modality into the positioning system makes it possible to increase accuracy and simultaneously
reduce the dependence on the quality of the pre-surveyed WiFi map and the WiFi measurements at
run-time.

Keywords: indoor positioning; graph-based optimization; WiFi fingerprinting; visual place recognition

1. Introduction

GPS (Global Positioning System) revolutionized the way we navigate outdoors as it is used by
pedestrians, cars, planes, and military vehicles to reach certain goals. However, we look for other
technologies that would make it possible to obtain accurate position estimates inside buildings because
GPS is mostly not available indoors. The availability of accurate position estimates indoors could
influence the way people reach their destinations and plan their paths in large buildings. Possible
applications include ubiquitous, location-aware advertisement, efficient guidance in public places like
train stations and airports, and last but not least, safer and faster evacuation from buildings in case
of emergency.

Among the available solutions, the most desirable are those that can be used by everybody in a
large variety of locations and those that do not require the deployment of any dedicated infrastructure.
Infrastructure-free positioning systems are considered cheaper, as no additional hardware like
beacons is required, which reduces the costs of deployment, particularly in large environments.
Also, positioning systems that do not require users to sport any additional equipment but work with
regular smartphones have a much bigger chance for commercial success. These requirements are met
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by approaches to positioning that utilize sensors commonly available in smartphones and natural
localization cues or signals emitted by devices already deployed in the environment for other purposes.

The majority of existing smartphone-based indoor positioning systems employ the mobile device’s
sensors to perform multi-sensor localization based on Bluetooth Low Energy (BLE), WiFi signals or
magnetic field changes [1]. Inertial sensors present in all modern smartphones are used to estimate
the user’s motion enabling continuous position tracking [2]. Despite a large number of existing
approaches, a single dominant method that would take the indoor localization market similarly
to the GPS still does not exist. Each of the used sensing modalities and proposed approaches has
its shortcomings; for example, the magnetic field-based approach relies on magnetometers that are
only available in selected models of smartphones, and BLE approaches require additional beacons,
whereas WiFi signals could not be captured by third-party applications on Apple’s mobile devices.
Reports from indoor positioning competitions, such as the 2016 International Conference on Indoor
Positioning and Indoor Navigation (IPIN) [3], suggest that the most commonly deployed positioning
systems in smartphone-based and infrastructure-free competition were based on Android devices
and utilized multi-sensor fusion based on WiFi scanning, inertial sensing, and additional, custom
processing strategies, e.g., detecting when a person is turning. Nevertheless, the recent changes in
Android WiFi scanning policy (https://developer.android.com/guide/topics/connectivity/wifi-scan)
will require modifications to those approaches since the WiFi scanning rate is reduced to four scans
per two minutes in the latest Android devices. This is a significantly lower value than the scanning
frequency typically used to obtain a reasonably dense positioning with WiFi-based fingerprinting [4].

Therefore, we propose an indoor positioning system that utilizes typical data from the sensors of
a mobile device, such as WiFi scans, inertial measurements, and orientation information, but fuses
these data with qualitative information coming from place recognition based on images. Qualitative
information is usually ignored in positioning fusion schemes due to challenges with proper
representation of the measurements. In our approach, the fusion is performed as graph-based
optimization, which is the state-of-the-art solution for Visual Odometry and Simultaneous Localization
and Mapping in robotics [5].

The concept of localization constraints stemming from qualitative observations of the environment
or information entered directly by the user was introduced in our conference paper [6]. However,
this journal article significantly extends the preliminary approach from [6], building upon our more
recent graph-based positioning system utilizing WiFi fingerprinting [4]. This paper introduced an
efficient opportunistic WiFi sensing framework that does not require laborious surveying of the site,
which is also adopted in the research presented here. The novel contribution of this article can be
summarized as:

• We introduce a new variant of our visual place recognition (VPR) algorithm that provides accurate
user position even in a self-similar environment with multiple corridors.

• We describe in details how to integrate VPR from image sequences in the graph-based position
estimation framework.

• We demonstrate experimentally that the proposed approach can be applied even when the WiFi
scans are available less frequently, making the WiFi map incomplete, and rendering the absolute
position updates from WiFi-based fingerprinting too sparse for correct trajectory estimation.
Thus, we show that our new approach meets the needs arising from the recent changes in Android
security policies.

2. Related Work

Even though indoor positioning with mobile devices is a very active field of research with
potentially high market value, none of the approaches proposed so far can be considered dominant.
Infrastructure-free positioning systems offer better chances for wide adoption than the iBeacon
technology [7,8] due to much lower deployment costs and better scalability with respect to the size
of the environment. The indoor positioning competition at the IPIN conference, e.g., in 2016 [3] and
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2017 [9], brings teams with different ideas about how the indoor localization should be performed.
Similar infrastructure-free competition, like the Microsoft Indoor Localization Competition during
IPSN conferences, reveal similar trends because most of these solutions employ the smartphone’s
internal sensors (accelerometers, gyroscopes, magnetometers) to obtain data for a pedestrian dead
reckoning (PDR) module, which is then combined with less frequent absolute localization information
computed by processing WiFi and/or Bluetooth signals. If a single type of sensor is used, like PDR in
the winning solution [10] at the 2018 Microsoft Indoor Localization Competition, there is no need for
additional fusion of information from multiple sources. This was an exception, as most commonly,
there are multiple sources of information and particle filtering is applied as the fusion and estimation
framework, as in [11], because particle filters make it possible to model multi-modal distribution, and
thus can represent localization ambiguity. Although this is not possible with the Kalman filter [12],
this framework is also applied to indoor positioning due to its computational efficiency [13]. Some
of the state-of-the-art positioning systems combine one of the basic approaches with additional
ideas that make them more robust and accurate, i.e., by employing a graph of possible routes in the
environment [14]. Also, information from known environment maps (floor plans) can be used to
constrain the localization estimates, which can easily be done when particle filtering is used [15],
but is more problematic in the case of Kalman filtering [16].

If an infrastructure-free system is considered, the most used information source is the WiFi adapter.
Two basic approaches to WiFi-based positioning are described in the literature: multilateration and
fingerprinting. The former estimates the distances between the Access Point (AP) locations and the
receiving mobile device using the strength of the received signals and some model of the WiFi signal
propagation [17]. The latter approach avoids direct modeling of signal propagation by defining the
fingerprints—vectors that contain the information about the AP (network ID) and the received signal
strength for the current position of the receiver [18]. Fingerprints are surveyed for a large number of
positions in a given location during the off-line phase. The collected fingerprints form a WiFi map that
is then used online to localize the smartphone. Different methods for matching of the fingerprints and
position determination have been proposed in the literature. Probabilistic fingerprinting models the
fingerprints as the Gaussian probability density function [19]. Although the probabilistic formulation
can improve the positioning accuracy, and it was demonstrated to work on different smartphones [20],
it increases the computing power requirements in the mobile device. Thus, it was also proposed in a
variant that is able to off-load computations to other devices in the so-called fog computing concept [21].
However, if all computations are accomplished on the mobile device, as in [22], there is no need to
use Internet access all the time, which can be an important advantage to the users. Systems lacking
any centralized processing are also more scalable with respect to the number of users and more robust
to hardware failures. Therefore, our indoor positioning system uses only local processing. We have
chosen a deterministic variant of fingerprinting that takes advantage of quickly computable similarity
metric, and the k-Nearest Neighbor [23] method, which is arguably the most widely investigated
WiFi-based positioning technique. In a large environment surveying Surveying the WiFi map in a
large environment becomes an issue. The density of a WiFi map can be increased without anadditional
amount of time and labor required for physical surveying by leveraging a signal propagation model
for the generation of additional “virtual” fingerprints [24]. An alternative solution, which does not
need to assume any propagation model is crowdsourcing—updating the WiFi map with data collected
by many users while they use the positioning service. This approach was investigated and shown
feasible in our recent work [4], and can be adopted also and can also be adopted to the solution
proposed in this article. However, our aim in this research is not to improve the efficiency of the
off-line preparation phase, but to find a solution that can compensate for the problem with WiFi signal
availability during the localization phase that emerged due to the security policy changes in the recent
generation of smartphones. Thus, our problem is not that producing a dense WiFi map takes time
and labour, but that the localization with WiFi becomes hardly possible with the recent variants of
Android OS. While other measurable signals can be potentially used for infrastructure-free indoor
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positioning, such as anomalies of the ambient magnetic field [25], and even light sources [26], none of
these solutions gained popularity so far as they struggle with serious calibration and reliability issues.
Moreover, some smartphones have a limited set of sensors, e.g., the magnetometer is not available in
many cheaper models.

Teams competing in the indoor positioning challenges mostly use modern smartphones
equipped with high-resolution cameras but do not utilize these sensors. Indeed, using vision for
smartphone-based positioning requires some user cooperation and does not provide an exact metric
estimate of the user’s pose (monocular vision), while image processing on a mobile device requires
a lot of computing power [27]. Nevertheless, there are solutions like [28], that try to utilize the
camera for indoor localization. More work on VPR can be found in robotics [29]. The seminal paper
on FAB-MAP [30] gave rise to a series of research focused on efficient image representations and
matching strategies, such as Bags of Visual Words [31] used for place recognition with the detected
and described local visual features. The computational efficiency of this approach was improved
in [32], where authors utilized binary features, making it possible to operate in larger environments.
Even though recent vision-based place recognition methods are fast and robust, they provide only
topological information: from the stored images they return the one, which is most similar to the
query (i.e., current scene view). Unfortunately, no metric information is made available as the two
images might be taken from different distances and viewing angles. Another possibility is to process
sequences of images, as proposed in SeqSLAM [33]. Considering entire sequences makes it possible
to correctly localize the camera even when individual images do not provide enough information,
i.e., due to self-similarities in the environment. This idea was extended in [34] utilizing a single global
Local Difference Binary (LDB) descriptor per image. We have shown in our previous work [35] that
this method can be implemented in a smartphone, presenting FastABLE—a significantly faster version
of the ABLE-M algorithm from [34].

Graph-based optimization is a state-of-the-art alternative to the filtration algorithms in robotics
and computer vision. Measurements taken by the sensory system are represented as edges that
constrain the graph vertices that represent user’s positions. The graph is then optimized to determine
the most probable locations of vertices that jointly explain all constraints. Although graph-based
optimization does not maintain several location hypotheses, like a particle filter, it does not marginalize
the past states (positions) of the moving agent, like a Kalman filter. Thus, a whole agent trajectory
is estimated, and it can be re-computed upon request if new measurements (constraints) become
available. This approach gained popularity in robotics [5] due to the efficient solvers, like g2o [36],
that make it possible to simultaneously optimize hundreds of parameters with thousands of constraints
in real time. The graph-based approach to indoor positioning was introduced in our previous research
concerning the localization of single [37] and multiple users [4]. In these papers, we focused on
the positioning accuracy of a system based on metric measurements—WiFi and inertial. In contrast,
our paper [6] focused on determining additional localization constraints from qualitative visual
observations and direct user input, but only a brief feasibility study was presented without thorough
evaluation. In this article, we extend the previous research by completely reworking the VPR, as it no
longer requires user input and is based on sequences of images, like in [35].

3. Graph-Based Optimization for Personal Indoor Localization

The problem considered in this paper is how to combine the user trajectory information obtained
from several sources of very different characteristics with respect to the quality of the position estimates
and the frequency this information can be obtained. We deal with two types of information: the PDR
system provides a semi-continuous, but quite uncertain estimate of the motion, while the WiFi
fingerprinting and VPR methods both make it possible to detect already known places. Both types of
information define constraints to the current location of the user. To make these constraints useful for
positioning we employ a graph-based model, which allows optimization of the collected constraints
(measurements) to determine the best location estimate. The graph of constraints is a state-of-the-art
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representation of optimization problems in robotics due to the common availability of fast solvers like
g2o [36] or GTSAM [38]. In the graph, the nodes represent the parameters that are optimized while
measurements correspond to the edges that can join one or multiple nodes depending on the type of
measurement.

Let us consider a measurement Mi,j,...,n represented as an edge that joins multiple optimized
parameters (v1, v2, . . . , vn). The error for that edge can be defined as:

ei,j,...,n
def
= e(v1, v2, . . . , vn, Mi,j,...,n), (1)

where ei,j,...,n can be an arbitrary vector function of the input variables defined in (1), although to obtain
good optimization results this function should have a continuous derivative. The edge joining only a
single node is called unary (Figure 1A), joining two nodes is called binary (Figure 1B) and joining three
nodes is called ternary (Figure 1C). Each edge has a corresponding symmetric square information
matrix Ω of the dimensions compatible with the dimensionality of the error vector ei,j,...,n. The
information matrix is the inverse of the covariance matrix of the measurement and can be determined
experimentally or derived from prior knowledge about the uncertainty of the sensor measurements
(an example procedure for RGB-D measurements is given in [39]). In practice, it is often considered as
a weight of the measurement importance and it is chosen directly upon the analysis of preliminary
optimization results.

Figure 1. The typical representation of the constraints used in graph-based optimization. An edge
joining a single location with measurement is called unary (A), joining two locations with measurement
is called binary (B), and ternary (C) is the case of joining three nodes with a measurement. It is also
possible to create a constraint joining more nodes, but it rarely occurs in practice.

Now let us consider the set E of all edges that are introduced into the current graph-based
optimization: ∧

e
e ∈ E , (2)

where e are individual edges (i.e., constraints). The edges that belong to this set define our optimization
problem. The graph-based optimization framework minimizes the weighted square error of every
edge in the graph, which can be written as:

argmin
v1 ,v2 ,...,vn

E =
h

∑
i=1

eT
i Ωiei, (3)

where ei is the i-th edge/measurement in the graph out of the total h edges in E , and Ωi stands for
the information matrix that corresponds to the i-th measurement. The system is optimized using
a gradient-based algorithm to determine the most likely configuration of nodes (values), which is
an equivalent of the optimization of the function E. As a result, the most plausible sequence of the
nodes (v1, v2, . . . , vn) is found that provides the best explanation of the h existing measurements in the
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graph. Since the optimization is performed with a gradient-based method [36], the process converges
to a local minimum. A poor initial guess of the location of nodes may result in a solution that is
significantly worse than the global minimum, which makes the choice of the initial configuration of
the graph important.

The proposed system focuses on utilizing all available information to determine the most probable
localization estimate. Therefore, the metric and non-metric sensor measurements are represented as
the edges in the graph-based optimization (Figure 2). The metric edges include information coming
from PDR and WiFi localization. The non-metric edges extend the already included information
by introducing information coming from VPR. Each edge has a corresponding error function and
information matrix that captures the importance of the measurement to the localization process. The
following sections introduce that information in more details.

Figure 2. Exemplary graph containing measurements from pedestrian dead reckoning (PDR), WiFi
Weighted K Nearest Neighbors (WKNN), visual place recognition (VPR), and step length prior placed
on the step estimation node.

4. Metric Constraints in the Graph-Based Optimization

4.1. PDR

The PDR is a system that determines the current location estimate based on the previous location,
the distance traveled, and the information about the change in the direction of walking. The distance
is estimated by the stepometer that is implemented based on the Fast Fourier Transform (FFT)
of the moving window of the samples consisting of total measured acceleration in all axes [37].
The orientation estimation is performed with the Adaptive Extended Kalman Filter that combines the
measurements from accelerometer, gyroscope, and magnetometer [40].

The PDR measurement in the graph-based optimization joins three nodes—previous pose (vi =

(xi, yi, θi)), current pose (vj = (xj, yj, θj)) and the step length estimate (vs = s). With the information
about the measurement Mijs = (stepij, ∆θij) it is possible to define the error of the edge as:

eijs =


xj − xi − s · stepij · cos

(
θi +

∆θij
2

)
yj − yi − s · stepij · sin

(
θi +

∆θij
2

)
θj − θi − ∆θij

 . (4)
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The step length is optimized jointly with the rest of the measurements as presented in our previous
work [4]. The information matrix for the PDR edge properly weights the metric and orientation error
and is defined as:

Ωpdr =

 1 0 0
0 1 0
0 0 kpdr

 , (5)

where the kpdr value should be set to kpdr ≥ 10 in order to reduce the orientation errors, as these errors
have the most deteriorating impact on the final estimate of the user position [37].

4.2. WiFi Fingerprinting

The WiFi fingerprinting technique computes the location of the WiFi receiver (in our case a
smartphone) in the environment by comparing the currently acquired WiFi scan (the observation) to a
map of WiFi scans stored prior to the operation of the positioning system. In the proposed solution,
we utilize the Weighted K Nearest Neighbors (WKNN) [41] algorithm that determines the k most
similar WiFi scans from the database to the currently captured WiFi scan. The similarity measure is
defined as the inverse distance between scans:

s(X ,Y) = 1
dwifi(X ,Y) + eps

, (6)

where X and Y are the WiFi scans, dwifi(·, ·) is the chosen distance measure between scans comprising
of unique network identifiers and corresponding signal strength measurements and eps is an
infinitesimal value to avoid division by zero. The dwifi(·, ·) is usually chosen depending on the
type of the environment, the density of the map and the used device from a list of typical measures,
like `2 norm, with more options described and analyzed in [42]. During the localization, the system
computes the final position estimate for scan X based on k most similar scans from the database based
on (6):

pwifi =
∑k

i=1 s(X ,Yi)pi

∑k
i=1 s(X ,Yi)

, (7)

where pi is the position of the i-th WiFi scan and pwifi is the final estimate of the user position.
The information from the WiFi system is added to the graph-based optimization as an edge

that constrains the i-th user position vi = (xi, yi, θi). Assuming that the WKNN estimate is equal to
pwifi = (xwifi, ywifi), the error of the edge can be written as:

ewifi
i =

[
xi − xwifi
yi −wifi

]
. (8)

The information matrix corresponding to the edge is set to Ωwifi = kwifiI2×2, where kwifi is the
weight assigned to the WiFi estimate. Currently, this value is assumed to be 10, as in [4].

The WKNN system requires capturing the map of WiFi scans in the environment in selected
locations with more locations resulting in more accurate localization estimate. Moreover, parameter
tuning is recommended to determine the distance measure dwifi used to compare scans similarity.
In the tests described in this article, we re-used the WiFi map surveyed during our earlier research
presented in [4]. The type of the dwifi measure and k used in WKNN was determined prior to indoor
localization by comparing the accuracy of WiFi fingerprinting with an exhaustive set of different
parameter settings on an independent training set. The best performance was reported for `2 norm
(the Euclidean norm of errors) with k = 4. These parameters remained unchanged when compared to
our previous work in the same environment [4].

Although a more accurate WiFi-based position estimate could be achieved with more accurate
WiFi map or with algorithms that model the propagation of the signal in the environment [43], such an
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approach was not in the focus of this research. The WiFi scans are already not available on the iOS
platform and soon the scanning rate on the Android devices will not be sufficient to properly run
indoor localization solutions just on PDR and WiFi-based position estimates, regardless of the method
used to compute these estimates. Therefore, we intentionally do not change our WiFi localization,
focusing on the integration of visual information, and demonstrating that it is possible to localize a
smartphone user even with a poor WiFi map, leveraging the qualitative visual information.

5. VPR

VPR focuses on estimating the user location based on the taken image. In our previous work [6],
we focused on applying the well-known FAB-MAP algorithm [30] that is used in the robotic community
to detect if the robot re-visits an already known location. We experienced several issues with the
assumed approach:

• a single image does not provide enough information to obtain a successful indoor localization,
• even with correct recognition it is impossible to determine the metric localization due to scale

ambiguity when performing 2D-2D image matching.

In [6], we solved the first problem by performing the same place recognition on several,
consecutive images. In the same work, the second issue was solved by providing a weak topological
constraint or a stronger constraint when an object of known size was present in the image or when the
user provided the system with more accurate distance estimate. In the end, the resulting system turned
out to be impractical, as the weak constraints were mostly useless for localization, while the stronger
ones required too complicated interaction with the user. Thus, whereas the approach from [6] proved
that it is possible to include non-metric constraints in the graph-based indoor localization framework,
it was infeasible for implementation in a localization system intended for non-expert users.

In this article, we propose to directly focus on comparing sequences of recorded images that are
greatly reduced to capture only the most important aspects of the image. The proposed solution is
based on the FastABLE [35] algorithm that is a faster modification of the original ABLE-M/OpenABLE
solution [44]. As all these VPR systems informed only about the visual similarity, we introduce a
procedure that treats the matching images similarly as the matching WiFi scans are used in the WKNN
algorithm. Finally, this procedure produces metric localization constraints that can be integrated into
our graph-based estimation framework.

5.1. FastABLE Algorithm

The full processing of the FastABLE algorithm is presented in Figure 3. At first, each captured
image is greatly resized to 64× 64 pixels and then the LDB descriptor [45] for the whole image is
computed. The descriptor is used to capture the visual characteristic of the image as a binary string.

As an LDB descriptor of a single image is not unique enough, the descriptors for consecutive
images in a moving window are compared. The current images are compared to the pre-recorded
sequences in the environment that are also stored as sequences of binary LDB descriptors. VPR is
performed by comparing the training sequence of descriptors and the current sequence of descriptors
in a moving window of size cl with the Hamming distance:

d(ai, bj) =
cl−1

∑
k=0

dhamming(ai−k, bj−k), (9)

where ai stands for the i-th image in the sequence a, and dhamming(ai, bj) denotes the sum of differences
between the LDB descriptors in the moving window from the i-th position in the a sequence and the
j-th position in the b sequence. The original algorithms (OpenABLE and FastABLE) determine the
most similar matches to the chosen moving window that can be compared to some preset threshold
but do not provide metric localization information.
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Both algorithms greatly depend on temporal relations between consecutive images reducing the
dependence on a single image. As a result, it is possible to greatly reduce the size of individual images
providing the VPR system with additional robustness to image acquisition problems or small changes
in the environment. Drastic changes in the environment or crowds in front of the camera might prevent
the system from correctly recognizing the place but even in these conditions satisfactory results were
reported as shown in [35].

Figure 3. Processing pipeline of the FastABLE algorithm starts with Local Difference Binary (LDB)
description of the captured image. The moving window of descriptors is compared to the window
of a fragment of the map (sequence of images) to achieve an error measure. If the error is below the
threshold, the correct recognition is reported.

5.2. Proposed Modifications to Obtain Localization Estimate

The FastABLE algorithm analyzes several consecutive images to determine visual similarity and
thus will not operate properly on crossings of the corridors inside buildings. Therefore, the existing
map of the environment is divided into n training sequences that cover the whole building assuming
that sequences should not overlap in the same direction. Following the idea in [35], the automatic
threshold computation is performed. In this process, each training sequence is matched against
the remaining n− 1 training sequences and the recognition threshold tr is set to the minimal value
that results in no matches. This assumption is based on the fact that each sequence represents a
different part of the environment and should not be matched by the system. These steps provide an
initial recognition threshold for each sequence that is further multiplied by the coefficient sr that was
determined experimentally and set to sr = 1.2.

The original FastABLE system informs that the user observes a part of the environment but fails
to inform about the current orientation or exact metric location of the user. Therefore, we extend the
system to obtain a more accurate position of the query image estimated upon the positions of the most
similar source images, assuming that the positions of source images are stored in the environment
map. This concept is presented in Figure 4.

During place recognition, the FastABLE matches the current window of last cl descriptors to all
possible windows of descriptors in all training sequences and returns the list of matching places with
the corresponding descriptor matching errors (the smaller the error, the better is the match). In order
to obtain a system that operates correctly also in case of a self-similar environment, additional locality
check was introduced that constrains the visual matches to a vicinity of the current pose estimate.
In the presented version, the matches in a radius of tinitial = 7 m from the current location estimate
were accepted for further processing.
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For each match, the place recognition estimate ppvr, is computed as the weighted average of
locations of all matches with errors smaller then thresholds:

pvpr =
∑k

i=1 s(a, bi)pi

∑k
i=1 s(a, bi)

, (10)

where a stands for the currently analyzed window of descriptors, bi is the window of descriptors for
the i-th match below threshold and s(a, bi) is the similarity measure between these windows. The
k determines the number of matches below the recognition threshold while pi is the location of the
i-match. The similarity of two sequences is set as the inverse of the sum of the Hamming distances
between corresponding descriptors for sequences:

s(a, bi) =
1

dhamming(a, bi) + eps
, (11)

where eps is a small value to ensure proper computation in the unlikely scenario of dhamming(a, bi) = 0.

Figure 4. The processing starts with multiple matches with the FastABLE that reported the error below
recognition threshold tr in a radius of tinitial from the current position estimate. The final estimate is
determined by averaging the locations corresponding to these matches with weights determined as the
inverse of the descriptor errors. Additional consistency checks (against tvicinity and ttime) are added to
ensure reliable estimation and to prevent incorrect results.

The final place recognition estimate is obtained as a weighted average of all accepted recognition
and thus is susceptible to outliers. Thus, we propose further processing that rejects any match if its
position pi is estimated to be further than tvicinity = 3 m from the VPR estimate pvpr. In that case, this
recognition is ignored and the whole estimation is repeated for the remaining matches. This procedure,
inspired by the WKNN algorithm for WiFi scans, provides a better estimate of the query image location
than matching to just a single image from the known map (sequence of images). The location of the
query image is assumed to be the location of the user holding the smartphone’s camera.

5.3. VPR as Graph-Based Constraint

The proposed VPR system provides exact position estimates based on the captured images and
therefore it is possible to represent the measurement as a graph edge. With the current estimate of the
user’s pose vi and VPR’s result pvpr = (xvpr, yvpr), the error of the edge can be defined as:

evpr
i =

[
xi − xvpr

yi − yvpr

]
. (12)
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In the proposed version of the error, the correct VPR does not constrain the angle of the observation
since sequences can be matched from a range of views. Nevertheless, the exact orientation could
be computed using the n-point algorithm [46]. This procedure has been shown to be feasible on a
smartphone in our earlier work [27] but is not used here because the pre-surveyed sequences of the
visual map do not have accurate orientation information. Additionally, the n-point algorithm requires
distinct visual features that are hard to detect in a self-similar, corridor-like environment. Hence,
the n-point algorithm, being quite expensive in terms of computations, does not bring any useful
orientation estimate with respect to the trajectory taken by the user.

As the images from the camera are recorded with 10 Hz, the VPR estimates can be determined
with the same frequency. On the other hand, the nodes in the graph representing the user locations
are placed with a frequency of about 1 Hz that is significantly lower than the frequency of possible
matches from the VPR. The mentioned problem is visualized in Figure 5. This problem could be solved
by increasing the number of graph nodes but it would also increase the computational burden of
optimization due to the increased number of states to estimate. We propose that each VPR estimate is
introduced to the graph if the difference between the timestamp of the image and the timestamp of the
selected node in the graph is below the ttime = 0.5 s. The value of 0.5 s was chosen as a tradeoff between
the inaccuracies introduced due to the incorrect timestamps and the number of states estimated in the
optimization.

Figure 5. The images are processed with greater frequency than the nodes representing user position
are placed in the graph. Therefore, the VPR is accepted for a graph node when the difference between
timestamps of an image and a graph node is below ttime = 0.5 s.

The information matrix of the VPR system is set to Ωvpr = kvprI1×1, with kvpr experimentally set
to 10.

5.4. Visual Map Acquisition and Storage

The considered application of the VPR algorithm requires a pre-surveyed map of the environment
that is used when comparing the images taken during the localization to known locations. The usual
visual map consists of multiple parts with each part covering a single route without crossroads in the
environment. Each part is comprised of consecutive images (image sequences) while moving along
the possible route with a reference absolute location for each image. Each image in the visual map
is preprocessed and stored as a 256-bit (32 bytes) global descriptor instead of images providing a
concise representation of the environment with corresponding (x, y) positions (16 bytes) with respect
to the global frame as presented in Figure 6. This representation could easily be extended to include
additional information about, i.e., floor number or even reduced with additional assumptions about
relations between locations of images in a single part.
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Figure 6. The visual map of the environment consists of multiple parts for each independent route in
the environment. Each part consists of a sequence of images stored as memory-efficient LDB descriptors
with corresponding absolute positions.

Whenever the visual map is acquired using a smartphone, the reference locations for captured
images with respect to the global frame are needed. We obtained these coordinates by assuming the
constant velocity of the motion with the beginning and end of each sequence anchored to known,
characteristic positions in the floor plan of the building. The characteristic positions are chosen
manually, in our test environment they are corridor junctions, dead ends or fire doors that divide the
corridor. Although any other localization system (e.g., motion capture equipment or a separate camera
and laptop for visual odometry) can be used to obtain the reference locations, we consider the use of a
smartphone as a practical, low-cost solution that yields positions of images that are accurate enough
with respect to the known floor plan.

Preprocessing the original images provides a concise representation of the environment that can
easily be stored even for large buildings on a mobile device. Figure 7 presents a simulation of a map
size depending on the metric length of all parts of the visual map with the assumed image capture rate
r and walking speed w. Even with r = 20 Hz and w = 1.0 m

s the map size did not exceed 15 MB for
10 km of routes in the environment making it feasible to deploy in real-life scenarios. It is important
to note that the images should be captured at a similar frequency and similar walking speed when
compared to sequences captured during the localization. We observed no issues with slight deviations
of walking speeds. Nevertheless, care should be taken to measure the user’s speed and adjust data in
a visual map to match the user’s speed and image capture rate.

Figure 7. Dependence between the visual map size and the total length of this visual map parts shown
for selected values of the image capture rate r and walking speed w.

6. Experimental Evaluation

6.1. Experimental Setup

The experimental verification requires additional image information that is not commonly
recorded for indoor localization datasets and was also not captured in our previous works. Therefore,
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a new dataset was recorded. In our experiments, a user equipped with the horizontally-held,
front-facing smartphone was asked to continuously move around the University building called
PUT MC along several trajectories. The Android-based system captured the raw data that was further
processed with the code that is made publicly available at Github (https://github.com/LRMPUT/
IndoorGraphLocalization in branch vpr).

The prior map for the system consists of the WiFi map and image map for VPR. The WiFi map
was taken from our previous work [4]. The whole image map was divided into 26 map parts and
sequences for VPR were captured in both directions for all available corridors. The WiFi and image
maps are presented in Figure 8. Each image taken in the training sequence has an assumed location that
was estimated based on the movement in the environment with the assumption of constant velocity
between points annotated on the map. The total number of images in the map is equal to 3489 images
with the exact size of each part presented in Table 1.

Figure 8. The above map of the environment contains information about the WiFi scans (red circles)
and map parts containing images recorded when walking in both directions (lines with a different
color for each segment).

Table 1. The environment was divided into 26 image sequences that capture all main routes in both
directions.

Map part 0 1 2 3 4 5 6 7 8 9 10 11 12
No. images 101 107 80 31 47 36 77 119 218 201 97 70 360

Map part 13 14 15 16 17 18 19 20 21 22 23 24 25
No. images 122 103 52 156 202 102 73 445 258 129 107 35 161

Some of the recorded image parts are short and therefore contain a small number of images. These
parts might not be used in the processing if the comparison window cl in the FastABLE is set to the
value greater than the length of that sequence due to an insufficient number of images that are needed
for the computation of bluean error.

As the information from images is already precomputed, each image is stored as a single 256-bit
descriptor and thus the whole map for VPR takes around 0.85 MB in memory. The LDB descriptors for
each map part are also used to automatically determine the safety detection thresholds for each map
part that are determined prior to real-life operation.

The performance of the system was verified on 14 sequences that were recorded by three users
with the same Xperia Z3 smartphone. The users moved in the environment on paths that resembled
real motion. The length and the number of images for each sequence are presented in Table 2. The total
length of all sequences is equal to 1025.4 m, and the total number of captured images is equal to 8960.
The ground truth motion for these sequences was manually annotated on blueprints of the building
and is presented in Figure 9. With this approach, there is no possibility to measure the user’s location

https://github.com/LRMPUT/IndoorGraphLocalization
https://github.com/LRMPUT/IndoorGraphLocalization
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error at the selected timestamp and the error is computed as a distance between the estimated user
pose and the closest point that lies on the ground truth trajectory. The error for the selected sequence is
computed as the RMSE or average error of all positions estimated by the indoor localization system.

Table 2. Lengths of the recorded sequences. The total length of all recorded sequences is equal to 1025.4
m and the total number of captured images is equal to 8960.

Sequence 1 2 3 4 5 6 7
Length [m] 101.6 49.09 79.1 50.49 53.11 52.66 49.72
No. images 864 456 604 458 454 454 411

Sequence 8 9 10 11 12 13 14
Length [m] 109.39 73.33 97.69 67.66 39.63 100.96 100.97
No. images 888 615 857 687 331 826 1055

Figure 9. The ground truth motion for 14 trajectories in the environment with each trajectory marked
by a different color and six exemplary views from the environment.

6.2. Performance of the System without VPR

The existing infrastructure-free, smartphone-based indoor localization solutions rely heavily
on WiFi signals to provide accurate absolute localization. The recent changes in the Android WiFi
scanning policy reduce the allowed frequency of WiFi scanning that influences the performance of
such systems. We wanted to measure the performance of the proposed system without VPR with the
reduced ability to rely on WiFi scans. Therefore, we measured the indoor localization accuracy when
the frequency of the WiFi scans was reduced and when the map of the environment degrades over
time. The obtained results for our trajectories are presented in Figure 10.

Figure 10. The performance of the original system depending on the percentage of the original WiFi
map size (A) and the percentage of processed WiFi scans from trajectories (B).
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Reducing the amount of WiFi information available for the indoor localization system results in
an increased localization error. When all available information is used, the system reports the RMSE of
about 1.1 m and an average error of 0.8 m when averaged for 14 available sequences. This accuracy
degrades even to 2.3 m of RMSE error when only 20% of the original pre-surveyed WiFi map is used
and it could be even worse as this value was obtained by averaging several runs with a random
selection of WiFi scans from the original map. A similar negative influence is observed when a dense
WiFi map is available, but only every 5-th WiFi scan from those acquired during the localization
experiment is used. This limitation, directly modeling a limit set on the WiFi scanning frequency,
resulted in RMSE of 2.15 m. The two scenarios of WiFi data degradation presented above result in
similar localization errors, but they represent two different issues that a smartphone-based indoor
localization system can face in practice. The former one simulates the negative influence of time
passed from the moment the map has been surveyed, as during that time the constellation of WiFi
networks in the given environment could change, thus the number of detectable networks could
decrease. The latter case simulates a situation when the WiFi scans cannot be acquired as often as
necessary, e.g., due to the smartphone’s operating system limitations. Both cases present different
challenges to localization, as presented in Figure 11.

Random selection of a part of the dense WiFi map results in reporting locations that are far
away from the true position of the user, thus introducing a strong bias to the estimated trajectory.
This problem is typically solved by updating the WiFi map by surveying the environment again or
by adding new scans from networks discovered online, like in our recent work [4]. On the other
hand, processing only a subset of available WiFi scans from the sequence results in sparse absolute
localization requiring the PDR to fill in the missing parts of the trajectory only upon the data from
inertial sensors. This is a problem that we are currently faced with less frequent WiFi scans on the
Android platform, but one should remember that the much reduced WiFi scanning frequency makes it
also problematic to improve a degraded global WiFi map. Therefore, this article presents how VPR can
be used to overcome both of these challenges.

Figure 11. Exemplary result obtained for sequence 4 when: all WiFi information was used (A), only
20% of the original WiFi map was used (B), and only every 5-th of the WiFi scans from the acquired
sequence was used (C).

6.3. Performance of the System with VPR

The presentation of the performance of the system utilizing PDR and WiFi scans without VPR in
a previous section serves as a basis for further analysis. Therefore, the left part of Table 3 contains the
results obtained for 14 considered sequences in that configuration. In this experiment, the original
performance of the system is compared to the system with additional VPR information. The results for
this configuration are presented in the right part of Table 3. The performance of the VPR depends on
several parameters (cl , trecognition, tvicinity, tinitial, ttime) that were determined experimentally and are
the same for all sequences and further analysis. It is probably possible to further tune the parameters
of the system but we wanted to avoid overfitting the parameters to our sequences.



Sensors 2019, 19, 3657 16 of 23

Table 3. Comparison between reported accuracy for analyzed sequences for the original configuration
of the system (PDR + WiFi) and the configuration with additional VPR (PDR + WiFi + VPR).

Localization Error of PDR + WiFi Localization Error of PDR + WiFi + VPR

Seq. RMSE Avg. Err. Seq. RMSE Avg. Err. Seq. RMSE Avg. Err. Seq. RMSE Avg. Err.

1 1.16 0.81 8 1.29 0.86 1 0.72 0.55 8 1.20 0.75
2 0.89 0.7 9 1.25 0.94 2 0.82 0.62 9 1.16 0.79
3 0.98 0.74 10 1.22 0.92 3 1.19 0.60 10 1.05 0.67
4 0.76 0.61 11 1.39 0.84 4 0.71 0.53 11 1.06 0.65
5 0.98 0.78 12 0.94 0.68 5 0.98 0.80 12 0.47 0.40
6 0.52 0.39 13 1.03 0.82 6 0.41 0.29 13 0.83 0.54
7 1.11 0.85 14 1.07 0.84 7 0.92 0.66 14 0.99 0.78

All 1.1 0.8 All 0.96 0.64

Additional information about the VPR reduces the average RMSE for all sequences by about 13%
and average error for all sequences by about 20%. Despite the overall reduction, the additional VPR
constraints can sometimes have zero or even negative effect on the obtained performances on some
sequences. This is mostly caused by the fact that the VPR results are not evenly distributed for the
whole lengths of the sequences. For locations with VPR constraints, the error is usually significantly
reduced but it may have a negative impact on other parts of the sequences. The trajectories obtained
for sequences 1, 9, and 12 with and without VPR are presented in Figure 12. In most cases, the VPR
constraints reduce the trajectory error and can even provide almost perfect localization for several
meters. In some cases, the VPR provides an additional source of information that can correct inaccurate
WiFi localization. Unfortunately, the VPR does not help on the crossing when additional challenges
must be faced due to large orientation changes.

Figure 12. Comparison between trajectories obtained without (A–C) and with VPR (D–F) for sequences
1 (A,D), 9 (B,E), and 12 (C,F). Green arrows highlight the parts of the trajectories that were corrected by
the VPR information while red arrow presents the negative impact of the VPR.

Commonly, the image processing algorithms are considered time-consuming and generating
additional localization latency. In order to show that this is not the case for our solution, we measured
and present the acquisition and processing times for the three main components of our positioning
system (Figure 13).

The data acquisition for PDR is performed with 200 Hz from accelerometers, while a single WiFi
scan takes around 4 s. The camera images are captured at 10 Hz, so we can safely assume that the visual
latency is not greater than 100 ms at this stage, and is much smaller than for the WiFi fingerprinting
component (Figure 13A). The PDR data sample processing is fast with FFT taking significantly less
than 1 ms. The processing time for WiFi fingerprinting depends on the size of the WiFi map (number
of fingerprints), and it took 1.34 ms on average to process a single WiFi scan for the map used in our
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experiments. The single image processing is fast, taking 1.66 ms on average (Figure 13B), which is a
result of several factors: resizing the images to low resolution, fast binary descriptor comparison, and
reusing the previous VPR results with the FastABLE algorithm performing descriptor comparisons in a
moving window [35]. Hence, the processing time for images is comparable with the same parameter for
the WiFi scans, and the whole place recognition system runs very fast in comparison to a classic visual
odometry algorithm implemented on a mobile device [27]. Taking into account both the acquisition
time and the processing time we can conclude that the WiFi fingerprinting module provides position
estimates at 0.25 Hz, while VPR can provide comparable estimates with the frequency of 10 Hz.

Figure 13. Comparison between the time required to capture and process data by PDR, WiFi
fingerprinting, and VPR: data acquisition time (A) and data processing time (B). Note that all measured
times are in ms. These times are different on different devices, but the proportions remain largely
unchanged.

6.4. VPR with Sparse WiFi Map

With the reduced amount of WiFi scans on the map, we would like to measure the robustness of
the system. In this experiment, the system without VPR information was compared to the system with
VPR information. The results for every execution are averaged by 10 runs and are presented in Table 4.

Independently of the kept percent of the WiFi map, the information from the VPR reduces the
RMSE and the average error. The gain from the VPR is more evident when the percentage of the
original WiFi map is lower, due to the fact that the WiFi information is more inaccurate. For these
conditions, the VPR information is more important than when the full WiFi map is available. The gains
from the VPR are between 10% and 30%. Although the robustness of the localization system has been
increased, it still requires a pre-surveyed WiFi map for proper operation. Figure 14 presents trajectories
obtained for sequences 5, 7 and 10 when only 20% of the original WiFi map were used.

On these trajectories, we can see that the VPR is crucial in obtaining accurate estimates as WiFi
localization is mostly greatly inaccurate. The VPR corrects trajectory when it is available, but when
VPR is not recognized, the system is inaccurate due to poor WiFi-based localization. Moreover, when
the WiFi map is very sparse, incorrect matches of WiFi scans occur frequently. Eventually, inconsistent
estimates from the VPR and WiFi WKNN result in trajectories that are not locally smooth.

Table 4. The comparison between the accuracy of the system with and without VPR with different
percent of the original WiFi map for 14 trajectories averaged over 10 runs.

Percentage of the Original WiFi Scans in the WiFi Map

20% 40% 60% 80% 100%

VPR RMSE Avg. Err. RMSE Avg. Err. RMSE Avg. Err. RMSE Avg. Err. RMSE Avg. Err.

Off 2.32 1.67 1.47 1.22 1.22 0.85 1.15 0.8 1.1 0.8
On 1.76 1.17 1.29 0.83 1.06 0.69 1.02 0.67 0.96 0.64

Gain 24.1% 29.9% 12.2% 23.2% 13.1% 18.8% 11.3% 16.3% 12.7% 20%



Sensors 2019, 19, 3657 18 of 23

Figure 14. Trajectories obtained for sequences 5 (A), 7 (B), 10 (C) when only 20% of the original
WiFi map is used. The usage of VPR makes is possible to correct trajectories despite inaccurate WiFi
measurements.

6.5. VPR with a Reduced Number of WiFi Scans in Trajectory

The current Android WiFi scanning policy reduces the maximum WiFi scanning frequency and
therefore we are interested in verifying the performance of the system with the reduced number of
processed WiFi scans for each sequence. This comparison is performed without and with VPR
to measure the possibility of applying the created system in the current Android environment.
The obtained results averaged on all analyzed sequences are presented in Table 5.

Table 5. The comparison between the accuracy of the system with and without VPR with different
percent of the original WiFi scans for 14 trajectories averaged over 10 runs.

Percentage of the Original WiFi Scans in the Trajectory

20% 40% 60% 80% 100%

VPR RMSE Avg. Err. RMSE Avg. Err. RMSE Avg. Err. RMSE Avg. Err. RMSE Avg. Err.

Off 2.15 1.65 1.57 1.12 1.24 0.9 1.17 0.83 1.1 0.8
On 2.99 2.0 1.34 0.86 1.07 0.72 0.99 0.65 0.96 0.64

Gain - - 14.7% 23.2% 13.7% 20.0% 15.4% 21.7% 12.7% 20%

The processing only a part of available WiFi scans makes the system more dependent on the
estimates from the PDR to provide a sensible trajectory estimate. Therefore, the addition of the
VPR almost universally decreases the localization error when compared to the version without VPR.
Naturally, with longer gaps between WiFi scans system is susceptible to drift. This prevents the
VPR from improving the performance of the system when only 20% of the available WiFi scans are
processed. This can be expected, as VPR determines its matches in local surroundings due to the
environment self-similarity, and might yield suboptimal matches between images when the current
estimate is far from the user’s real position in the environment. However, the VPR constraints were
correct even in those cases, but the estimated trajectory was prone to drift due to the high dependency
on the PDR, and large distances between the “anchors” provided by the few available constraints.
When the percentage of the pre-surveyed WiFi scans was greater than 20%, the improvement varied
from 10% to 20% when VPR was used. What is interesting, the system achieves almost the same
accuracy with the use of 60% WiFi scans for the trajectory and with VPR, as in the case when the VPR
matches were not considered, but all of the available WiFi scans were used.

The exemplary trajectories obtained in that experiment are presented in Figure 15. The smaller
number of available WiFi scans results in a trajectory that roughly follows the real motion of the user
as presented in Figure 15A,B. This trajectory depends on PDR for long periods of time. The addition
of the VPR constraints makes it possible to reduce the error when WiFi information is not available.
However, even a correct position constraint from the VPR might unintentionally change the orientation
estimate, causing that the PDR follows the trajectory in the wrong direction (Figure 15). In this extreme
case, the localization system requires more information (denser WiFi scans or more images in the
visual map) to obtain a better position estimate.
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Figure 15. Comparison between trajectories obtained without (A,B) and with VPR (C,D) for sequences 1
(A,C) and 9 (B,D) when 20% of WiFi scans for each trajectory were used. Green arrows point to the
parts of trajectory that were corrected due to VPR, while the red arrow shows the negative effect that is
amplified by the reliance on the PDR.

6.6. VPR as WiFi Alternative

The goal of this experiment is to answer the question if the VPR in the proposed version can
substitute the WiFi information altogether. Therefore, for each sequence, only the first WiFi scan
from the acquired test sequence was used to determine the initial position of the user, and then the
localization system relied on the PDR and VPR to provide position estimates. The obtained errors were
significantly larger than in any of the previously considered cases, and thus we propose to analyze
selected trajectories presented in Figure 16.

The results obtained in the presented sequence show that the detected VPR matches are correct,
but are too sparsely detected in the environment to provide an accurate position estimate of the user.
In every analyzed case, the system sooner or later diverges from the real path of motion. Once the local
estimate is too far from the real position, the VPR no longer searches for matching images in the proper
neighborhood, which in turn causes the PDR to drift away from the true trajectory. This demonstrates
that while the VPR is suitable as an additional source of localization constraints, it cannot be used
without WiFi WKNN constraints in the current form. Better performance could probably be expected
in an environment with fewer self-similarities, but still, the WiFi-based localization can be considered
more robust than the VPR.

Figure 16. The trajectories obtained with a system processing PDR and VPR constraints with a single,
initial location from WiFi on sequences 5 (A), 9 (B), and 13 (C). The obtained VPR are correct but are
too sparsely detected in the environment, which sooner or later leads to incorrect estimates.
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7. Conclusions

The article presents a way of utilizing the VPR for indoor localization and its integration into the
existing indoor localization framework. The VPR is performed based on a sequence of whole-image
LDB descriptors that capture the information stored in the images captured by a smartphone’s camera.
The usage of sequences allows our visual localization subsystem to operate in a highly self-similar
environment, while further modifications to the FastABLE algorithm proposed in this paper make it
possible to obtain an accurate position estimate of the user with respect to a known map of images.
The proposed procedure, inspired by the WKNN algorithm used to process the matching WiFi
scans, yields metric position information which is then introduced as constraints to the graph-based
localization framework. The form of metric position estimates computed by our VPR method is also
compatible with particle filtering and Kalman filtering frameworks, hence its ability to be adapted to
other indoor positioning systems.

The experiments were performed inside one of our University’s buildings with multiple visually
self-similar corridors. In spite of these similarities, the test locations were correctly distinguished by
the system. Additional VPR improves the performance of the system operating on PDR and WiFi
scans. The experiments with selected percentages of the original WiFi map reveal that the addition of
VPR makes the localization system more robust, as it can still operate despite inaccurate WiFi-based
position estimates. In the case of a reduced number of WiFi scans that are acquired by the user while
he/she uses the localization system, the configuration with VPR presents improved accuracy and
robustness. Nevertheless, the experiments without WiFi scans reveal that the VPR constraints alone
do not provide enough information to prevent the estimated trajectory from a significant drift. This
problem is related to the local search policy of the place recognition algorithm: Incorrect matches
lead to a trajectory drift, while the trajectory drift prevents the algorithm from finding the correctly
matching images. On the other hand, this local policy is necessary to prevent the VPR algorithm from
matching the query images to locations that are far away but are visually similar due to the nature of
the office-like environment. Therefore, despite certain gains from VPR, in the presented form, it cannot
replace WiFi signals. The code of the solution is publicly available, making it possible to verify our
results and build on our experience.
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40. Gośliński, J.; Nowicki, M.; Skrzypczyński, P. Performance comparison of EKF-based algorithms for
orientation estimation on Android platform. IEEE Sens. J. 2015, 15, 3781–3792. [CrossRef]

41. Kotanen, A.; Hannikainen, M.; Leppakoski, H.; Hamalainen, T.D. Positioning with IEEE 802.11b wireless
LAN. In Proceedings of the 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications,
Beijing, China, 7–10 September 2003; Volume 3, pp. 2218–2222.

http://dx.doi.org/10.1109/TIM.2011.2147690
http://dx.doi.org/10.1109/IPIN.2016.7743697
http://dx.doi.org/10.1109/TRO.2015.2496823
http://dx.doi.org/10.1177/0278364908090961
http://dx.doi.org/10.1109/TRO.2012.2197158
http://dx.doi.org/10.1007/s11277-017-4502-y
http://dx.doi.org/10.1109/TRO.2008.2006706
http://dx.doi.org/10.1007/s00138-018-0936-9
http://dx.doi.org/10.1109/JSEN.2015.2397397


Sensors 2019, 19, 3657 23 of 23

42. Torres-Sospedra, J.; Montoliu, R.; Trilles, S.; Belmonte, O.; Huerta, J. Comprehensive analysis of distance
and similarity measures for Wi-Fi fingerprinting indoor positioning systems. Expert Syst. Appl. 2015,
42, 9263–9278. [CrossRef]

43. Farid, Z.; Nordin, R.; Ismail, M. Recent Advances in Wireless Indoor Localization Techniques and System.
J. Comput. Netw. Commun. 2013, 2013. [CrossRef]

44. Arroyo, R.; Alcantarilla, P.F.; Bergasa, L.M.; Romera, E. OpenABLE: An open-source toolbox for application
in life-long visual localization of autonomous vehicles. In Proceedings of the 2016 IEEE 19th International
Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016;
pp. 965–970.

45. Yang, X.; Cheng, K.T. LDB: An ultra-fast feature for scalable augmented reality on mobile devices.
In Proceedings of the 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR),
Atlanta, GA, USA, 5–8 November 2012; pp. 49–57.

46. Nister, D. An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell.
2004, 26, 756–770. [CrossRef] [PubMed]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.eswa.2015.08.013
http://dx.doi.org/10.1155/2013/185138
http://dx.doi.org/10.1109/TPAMI.2004.17
http://www.ncbi.nlm.nih.gov/pubmed/18579936
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Graph-Based Optimization for Personal Indoor Localization
	Metric Constraints in the Graph-Based Optimization
	PDR
	WiFi Fingerprinting

	VPR
	FastABLE Algorithm
	Proposed Modifications to Obtain Localization Estimate
	VPR as Graph-Based Constraint
	Visual Map Acquisition and Storage

	Experimental Evaluation
	Experimental Setup
	Performance of the System without VPR
	Performance of the System with VPR
	VPR with Sparse WiFi Map
	VPR with a Reduced Number of WiFi Scans in Trajectory
	VPR as WiFi Alternative

	Conclusions
	References

