
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Gene 778 (2021) 145470

Available online 4 February 2021
0378-1119/© 2021 Elsevier B.V. All rights reserved.

Research paper 

Mutational analysis and assessment of its impact on proteins of SARS-CoV-2 
genomes from India 

Rezwanuzzaman Laskar , Safdar Ali * 

Clinical and Applied Genomics (CAG) Laboratory, Department of Biological Sciences, Aliah University, Kolkata, India   

A R T I C L E  I N F O   

Keywords: 
SARS-CoV-2 
Mutation 
Protein 
Asymptomatic 

A B S T R A C T   

Mutational status of SARS-CoV-2 genomes from India along with their impact on proteins was ascertained 
through multiple tools including MEGA, Genome Detective, SIFT, PROVEAN and ws-SNPs&GO. Excluding gaps 
and ambiguous sequences, 493 variable sites (152 parsimony informative and 341 singleton) were observed. 
NSP3 had the highest incidence of 101 sites followed by S protein (74), NSP12b (43) and ORF3a (31). Average 
mutations per sample for males and females was 2.56 and 2.88 respectively. Non-uniform geographical distri-
bution of mutations suggests that sequences in some regions are mutating faster than others. There were 281 
mutations (198 Neutral and 83 Disease) affecting amino acid sequence. NSP13 has a maximum of 14 Disease 
variants followed by S protein and ORF3a with 13 each. Disease mutations in genomes from asymptomatic 
people was mere 11% but those from deceased patients was at 38% indicating contribution of these mutations to 
the pathophysiology of the SARS-CoV-2.   

1. Introduction 

The ongoing COVID-19 global pandemic began from Wuhan, China 
and has devastated millions of lives, economies and even nations as a 
whole. The first reported case was in December 2019 and as of 1st 
September 2020, there have been 2,56,21,967 reported cases and 
8,54,235 deaths worldwide (www.worldometers.info/coronavirus/). Of 
these, 36,21,245 cases and 64,469 deaths have happened in India 
making it one of the most affected countries in the world (www.mygov. 
in/covid-19). 

The causative agent identified for COVID-19 is Severe Acute Respi-
ratory Syndrome Coronavirus 2 (SARS-CoV-2) which belongs to family 
Coronaviridae characterized by single strand positive sense RNA 
genome. Though this is novel virus but the outbreak is not the first one 
from members of Coronaviridae. Previously, Severe Acute Respiratory 
Syndrome (SARS) coronavirus in 2003 and Middle East Respiratory 
Syndrome (MERS) coronavirus in 2012 created a scare as they had a 
relatively higher mortality rate. However, SARS-CoV-2 is by far the most 
contagious one (Chan et al., 2020; Lee et al., 2003; Peiris et al., 2004; 
Zaki et al., 2012). 

The higher incidence of viral infections would imply a faster evolu-
tion process for SARS-CoV-2 (Rahman et al., 2020). This is so because 
more the virus replicates, higher are the chances of it accumulating 
mutations with the possibility of it leading to altered dynamics of its 
virulence, pathogenesis and interactions with host. The changes may not 
be necessarily favoring the virus; however, the unpredictability de-
mands caution. 

The SARS-CoV-2 genome encodes for 16 non-structural proteins in 
addition to the replicase polyprotein, the spike (S) glycoprotein, enve-
lope (E), membrane (M), nucleocapsid (N) and other accessory proteins 
(Ren et al., 2020). The impact of mutations in all the regions of the 
genome needs to be assessed to understand viral evolution. 

With a definitive possibility of India becoming the most affected 
country by SARS-CoV-2 in near future and the demographic burden 
involved, it is pertinent to be analyze the accumulating variations in the 
genome accounting for possible changes in protein and their potential to 
alter the virus in any manner. On 6th June 2020 we retrieved 611 FASTA 
sequence congregations from India along their rational meta data from 
GISAID EpiCoV server to construct the phylo-geo-network and analyze 
the haplogroups along with their geographical distribution across 
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different states of India (Laskar and Ali, 2020). Herein we extend our 
study using the same congregation of sequences to analyze the nature 
and composition of the observed mutations and their impact on proteins 
of SARS-CoV-2. 

2. Methodology 

2.1. Sequence congregations collection and alignment 

GISAID EpiCoV is an open access repository of genomic and epide-
miologic information about novel corona viruses from across the world 
from wherein sequences were extracted and alignment performed as 
previously reported (Laskar and Ali, 2020). Therein, 611 FASTA 
sequence congregations along their rational meta data from GISAID 
EpiCoV (www.epicov.org) server was used. 

In order to perform mutational profile analysis with clinical corre-
lation, we selected 15 genomes of deceased patients from existing 
congregation. However, there were just two genomes for asymptomatic 
patients in the congregations. So, on 09.12.2020, we downloaded 775 
FASTA sequences with patient status from the same server and selected 
30 genomes from asymptomatic patients. As the data filter for genome 
extraction, we used hCoV-19 as a virus name, human as a host, India as a 
location and complete sequence with high coverage. Details of the 
asymptomatic samples are given in Supplementary file 1. 

The sequence congregations of 611 genomes and 30 genomes of 
asymptomatic patients were aligned separately against the reference 
sequence (NC_045512.2) using the FFT-NS-fragment method which is a 
light-weight algorithm of MAFFT v7 web-server (https://mafft.cbrc. 
jp/alignment/software/closelyrelatedviralgenomes.html) and further 
studied using MEGA(v.10) (Katoh et al., 2019; Kumar et al., 2018). 

2.2. Nucleotide analysis 

MEGA(v.10) is a multithreaded tool for molecular and evolutionary 
analysis. Multiple Sequence Alignment (MSA) of the extracted sequences 
(Laskar and Ali, 2020) was initially visualized by this software then the 
variable sites are exported into spreadsheets with or without missing/ 
ambiguous and gap sites along their respective positions (Kumar et al., 
2018). Using this software, we estimate the MCL (Maximum Composite 
Likelihood) nucleotide substitution pattern and Tajima’s Neutrality test 
to understand transition transversion bias and nucleotide diversity 
(Tajima, 1989; Tamura et al., 2004). PIRO IGLSF is a MATLAB-based 
simulation software, we used this for the identify the location of 
mutated nucleotide position on specific gene (Alam et al., 2019). The 
nucleotide similarity percentage was validated by NCBI BLAST (blast. 
ncbi.nlm.nih.gov) to investigate the sequence diversity. 

2.3. Protein analysis 

Coronavirus Typing Tool of Genome Detective (v.1.13) and COVID- 
19 Genome Annotator of Coronapp are webtools for analysis of protein 
and nucleotide mutation (Mercatelli et al., 2020; Vilsker et al., 2019). 
We used these tools for annotation, identification and classification of 
mutated protein followed by verification and validation of the positions 
with the mutated nucleotide sites by the output of MEGA(v.10). The 
tools refer to the variable sites as SNP (affecting the protein sequence); 
SNP-silent (not affecting the protein sequence) and SNP-stop (intro-
ducing of a stop codon). 

2.4. Protein prediction Analysis: 

SIFT, PROVEAN and ws-SNPs&GO are the prediction tools which 
report positive or negative impact of variants on protein phenotype. The 
assessments are focused upon scores using several algorithms. It is ex-
pected that a SIFT score of <0.05 is diseased (“affect protein function”), 
and that >0.05 is neutral (“tolerated”). This is stated that a PROVEAN 

score of <− 2.5 is diseased (“deleterious”), and >− 2.5 is neutral. ws- 
SNPs&GO ’s PHD-SNP method is estimated to be >0.5 mutation in the 
probability of disease, and <0.5 is neutral (Capriotti et al., 2005; Choi 
et al., 2012; Sim et al., 2012) 

3. Results and discussion 

3.1. Composition and distribution of variable sites 

The observed MSA length was 29903 bp wherein the variable sites 
could be extracted through two different options. If we included gaps 
and ambiguous sequences, a total of 841 variable sites were observed 
with a percentage coverage of 2.81%, where percentage coverage =
[(No of variable site / MSA Length) * 100]. All the sites have been shown 
in Supplementary file 2. The Tajima’s D statistic was also analysed 
(Table 1) and its negative value indicated the significance of these 
variable sites. 

However, excluding the gaps and ambiguous sequences reduced this 
percentage coverage to 1.65% encompassing 493 variable sites which 
we have used for subsequent analyses reported in this study. This 
included 152 parsimony informative (PI) sites and 341 singleton sites 
(SNP: Single Nucleotide Polymorphism). The PI sites are those whose 
incidence was observed in multiple samples whereas singleton sites had 
a restricted single sample incidence. The distribution of these sites ac-
cording to various substitutions, protein localizations and impact 
therein has been summarized in Fig. 1, Supplementary file 2. As evident 
therein, C → T (181 sites) forms the most prevalent mutation in both PI 
and singleton sites and G → T (95 sites) comes a distant second. The 
common aspect of two most prevalent mutations is “T” being the 
substituted nucleotide. Further, there were two multi-variable (MV) 
sites each in PI and singleton category wherein two separate mutations 
were observed at the same site in different samples. The details of 
observed MV sites have been summarized in Table 2. 

The distribution of the variable sites across proteins of SARS-CoV-2 
in a non-uniform manner is reflective of the differential contributions 
of proteins in evolution. As per our data, NSP3 had the maximum of 101 
variable sites followed by S protein (74 sites), NSP12b (43 sites) and 
ORF3a (31 sites) (Fig. 1; Supplementary file 2). These four proteins 
account for over half of the total variable sites of the genome and may be 
considered as drivers of genomic evolution for SARS-CoV-2. The muta-
tions of S protein have been the focus for multiple research groups owing 
to its plausible impact on viral entry to the host cell but the mutations 
elsewhere may be equally relevant as the viral genome is known to 
harbor only what’s essential (Hassan et al., 2020; Mercatelli and Giorgi, 
2020; Sanjuán and Domingo-Calap, 2016). We believe a holistic 
approach is required to understand the evolution as more often than not 
the selection advantage being offered by any mutation is a chance event 
and can be from any part of the genome. 

In terms of the impact of these variable sites on amino acid sequence 
of the viral proteins we classified them into four categories. First, the 
sites located in the extragenic region and hence no influence on the 
coding proteins. There were 10 such variable sites localized to the UTR 
regions (2 in 3′UTR and 8 in 5′UTR). Secondly, SNP-silent included those 
variable sites wherein the nucleotide change was leaving the amino acid 
sequenced unaltered. A total of 186 such sites were distributed across 
the genome. Thirdly, the variable sites which were leading to the 
introduction of a stop codon were referred to as SNP-stop and there were 

Table 1 
Tajima’s Neutrality Test.  

m* S* Ps* Θ* π* D* 

612 841  0.028124268  0.004021699  0.000412328 − 2.69529519 

*m = number of sequences, n = total number of sites, S = Number of segregating 
sites, ps = S/N, Θ = ps/a1, π = nucleotide diversity, D = Tajima test statistic. 
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8 such sites in our study. Lastly, the variable sites which were affecting 
the protein sequence are referred as SNP in the study and there were 281 
such sites (Supplementary file 3). The prevalence and distribution of 
these sites has been summarized in Fig. 1 and results of the prediction of 
their impact on protein has been discussed later. 

3.2. Constitution of genome, variable sites and the substitutions 

In order to understand the underlying dynamics of substitutions, we 
performed the maximum composite likelihood estimate of nucleotide 
substitution as shown in Table 3. The reference and substituted nucle-
otide have been shown in rows and columns respectively. The values 
therein represent the probability of substitution (r) from one base to 
another. For simplicity, the sum of r values is made equal to 100. The 
nucleotide frequencies of the MSA are 29.87% (A), 32.14% (T/U), 
18.37% (C), and 19.63% (G). The transition/transversion rate ratios are 
k1 = 2.195 (purines) and k2 = 7.799 (pyrimidines). The overall tran-
sition/transversion bias is R = 2.356, where R = [A*G*k1 + T*C*k2]/ 
[(A + G)*(T + C)]. This substantiates the prevalence of certain muta-
tions (C → T and G → T) over others. 

We thereon looked at these variations in combination with their 
prevalence across samples. The most prevalent nucleotide at the vari-
able sites in reference sequence was C (209) followed by G (137) 

whereas T was by far the predominantly substituted nucleotide (293, 
60%). Also, the other three nucleotides had an almost equal represen-
tation in substitutions (A-68, G-68, T-64). This biased prevalence was 
not restricted to the alignment but was also getting translated to popu-
lation incidence. There was a total of 723 mutations with C as reference 
nucleotide and 1032 mutations with T as substituted nucleotide across 
611 studied genomes. The composition of 493 variable sites, their sub-
stitutions and prevalence across samples has been summarized in Fig. 2 
and Supplementary file 2. Evidently, any particular mutation may be 
incident across multiple samples and a single sample can harbor 

Fig. 1. Summary of variations observed in SARS-CoV-2 genomes from India. The nature of variations (Singleton/PI); type of mutation, genome localization and 
impact on protein (SNP, SNP-Silent, SNP-Stop, Extragenic) has been represented along with their interlinking. The width of the connecting lines represent number; 
broader the line more the number of that parameter. 

Table 2 
Localization and mutations observed at the multi-variable (MV) sites.  

S No Nucleotide Position Category Nucleotide Variant 1 Amino Acid Variant 1 Nucleotide Variant 2 Amino Acid Variant 2 

1 4893 Pi C > A T725K C > T T725I 
2 5821 SNP A > G L1034L A > T L1034F 
3 23,282 SNP G > C D574H G > T D574Y 
4 23,593 Pi G > T Q677H G > C Q677H  

Table 3 
Maximum Composite Likelihood Estimate of Nucleotide Substitution.   

Substituted  

Nt A T C G 

Reference A – 4.57 2.61 6.13 
T 4.25 – 20.39 2.79 
C 4.25 35.68 – 2.79 
G 9.33 4.57 2.61 – 

* Rates of transitional substitutions are bold and transversional substitutions are 
italicized 

R. Laskar and S. Ali                                                                                                                                                                                                                            
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multiple mutations. A cumulative number for the same has been referred 
to as “Sum of Mutation Incidence” herein and thereafter in this study. 

3.3. Age and gender wise distribution of samples and mutations therein 

We subsequently analyzed the patient’s dataset with reference to age 
and gender for the incidence of mutations. However, since patients’ data 
wasn’t cumulatively available, the data for this aspect isn’t exhaustive 
but representative for 255 samples (104 females and 151 males). The 
patients whose genomes were used in the study and age was known were 
classified into seven categories from infancy to over 75 years. The 
maximum number of patients for both males and females belonged to 
mature adulthood category of 50 to 74 years with 57 and 40 samples 
respectively (Fig. 3, Supplementary file 4). This adheres to the fact that 
the older population is at a greater risk for not clearing the infection 
owing to a possibly weaker immune system and other physiological 
conditions. 

The simple question of whether or not age and gender are associated 
with accumulation of genome variations has a not so simple answer. The 
overall average number of mutations per sample was 2.69 and the cor-
responding values for males and females separately was 2.56 and 2.88 
respectively. Thus, women were contributing more to the mutational 
accumulation as compared to males. The individual mutational load for 
different age groups in males and females has been represented in Fig. 4. 
Evidently, women are contributing more to the mutational load except 
for three age groups; 5–9 years, 10–14 years and 20–34 years. The 
highest difference on the basis of gender is for 15–19 years (2.67) but 
since there was just one female sample in that age group, it can’t be 
emphasized much in isolation but the overall pattern does seem 

relevant. This is more so because, in terms of incidence, males are almost 
1.5 times of the females but in terms of variations, fewer females are 
contributing more to the mutational load. Possibly, the virus is behaving 
differently depending on gender. 

3.4. Geographical distribution and accumulation of variable sites 

The mutational distribution across different states of India was 
subsequently ascertained. Generally speaking, more the virus replicates 
more should be the accumulated variations. The fact that the samples 
used in the study aren’t uniformly distributed across states provides for 
an intriguing template for analysis. The number of samples and the 
mutations therein for different states has been summarized in Fig. 5 and 
Supplementary file 4. Evidently, Gujarat with highest number of 199 
samples had maximum of 694 mutations. However, the correlation is 
neither uniform nor universal. For instance, Maharashtra with 94 sam-
ples had 203 variations whereas Telangana with 97 samples had 154 
variations. A plausible explanation for this can be one sequence in 
Telangana (Genome ID 458080) to be identical to reference sequence as 
reported (Laskar and Ali, 2020). That means, Maharashtra samples had 
more variations from reference sequence to begin with. But if we look at 
Odisha and Tamil Nadu with 30 and 31 samples accounting for 109 and 
40 variations respectively, it’s evident that sequences in some regions 
are mutating faster than others. Another contrasting example pair is 
Delhi (63 samples, 54 mutations) and West Bengal (40 samples, 70 
mutations). The exact mutational route can be revealed only with 
tracking the route of samples and spreading of infection which has not 
been feasible for present dataset due to paucity of information. How-
ever, we can surely say that some sequences are mutating more than the 

Fig. 2. Prevalence and composition of different nucleotides across reference and substituted positions in SARS-CoV-2 genomes from India.  

R. Laskar and S. Ali                                                                                                                                                                                                                            
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others but whether the geographical location is playing a role needs to 
be ascertained. 

3.5. Impact of variables sites on viral proteins 

A total of 281 SNPs which were present which were altering the 
amino acid sequence. Their details and positions have been summarized 
in Table 4 and Supplementary file 5. We also ascertained the prevalence 

of these variants across samples. The most incident variant Q57H 
localized to ORF3a was present in 127 samples followed by A994D in 
NSP3 present in 29 samples. Amongst the silent SNPs, Y71Y in M protein 
was present in 117 samples followed by D294D in S protein with 69 
incidences. The overall data for variants present in 10 genomes or more 
has been summarized in Fig. 6a. Conversely, we also assessed the 
accumulation of variations in a given genome as summarized in Fig. 6b. 
Interestingly, one sample (Genome ID 461495) had highest incidence of 

Fig. 3. Age and gender wise distribution of mutations in SARS-CoV-2 genomes from India. Number of male/female samples and sum of mutations incidence therein 
according to age group. 

Fig. 4. Average number of mutations per sample in different age groups of males/females and the differences therein.  
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Fig. 5. Number of samples and corresponding Sum of Mutation Incidence of SARS-CoV-2 across different states of India.  
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Table 4 
Distribution of SNPs across different proteins.  

S 
No 

Gene/ 
Protein 

No of 
Variable 
Sites 

Sum of 
Mutations 
Incidence 

Mutations affecting 
Protein (N = N2 +
N3; D = D2 + D3) 

Neutral by Three (N3) Disease by One/ 
Neutral by Two 
(N2) 

Disease by Two/ 
Neutral by One (D2) 

Disease by 
Three (D3) 

1 5′UTR 8 16 –     
2 ORF1a 231 578 127      

NSP1 14 19 7 
(N = 6; D = 1) 

H81Y, G137C, 
D147E, V169A 

R24C; V38F R124C   

NSP2 29 46 15 
(N = 14; D = 1) 

Y196H, L204F, K338R, 
I616F, Y621S, E633D, 
V682L, T708I, I739V,  
P765S 

G192D; P626T; 
I671T; V710F 

T592I   

NSP3 101 284 63 
(N = 54; D = 9) 

A872T, T882I, Y925C, E940D, 
P971S, G989V, S1029I, P1054L, 
M1083I, H1141Y, A1268T, S1534I, 
T1543K, T1567I, M1588I, V1629A, 
S1733G, T1761I, G1861S, T1822I, 
T1854A, T1854I, N1871T, K1973R, 
S2103F, K2029E, G2035E, P2144S, 
L2146F, A2249V, V2372I, T2274I, 
T2300I, L2323V, P2480L, H2520Y, 
A2593V, S2625F, S2661F 

D930G, D1036G, 
A1298V, A1649S 
S1515F, A1812D 
S1978P, P2046L 
P2079L, S2015K 
S2015R, G2118C 
S2303Y, V2613F 
V2629A 

A1306V 
P1472S 
D1625V 
L2146P 
S2242P 

G1069E 
Y1675C 
C2691S 
A2732D  

NSP4 26 109 14 
(N = 11; D = 3) 

W2769L, M2796I, H2831Y, A2994V, 
F3031Y, D3042N A3143V, L3161I 

T2777I 
T3058I 
Y3160H 

L2781P F3071Y T3223I  

NSP5 20 41 9 
(N = 4; D = 5) 

T3453A, Q3390R, P3395S N3405L S3386P L3338F 
A3379V 
Y3472H 
S3517F  

NSP6 17 30 7 
(N = 6; D = 1) 

Q3826H 
Q3826R 

I3731T, P3613L, 
D3681N, I3835T, 

I3731F   

NSP7 2 5 0      
NSP8 11 26 6 

(N = 3; D = 3) 
K4081R E3962K, K4069T M4032S, L4033F  R3993C  

NSP9 6 11 3 
(N = 2; D = 1)  

V4181I, V4242I  T4249I  

NSP10 4 4 2 
(N = 0; D = 2)    

A4271V 
A4273V  

NSP12a 1 3 1 
(N = 1; D = 0) 

S4398L    

3 ORF1ab 103 182 60      
NSP12b 43 84 22 

(N = 12; D = 10) 
A4487V, I4593L, S4621G, 
A4645G, T4685I, A4798V 
S5305L 

K4451N, R4565H 
M4588I, E4670D, 
L4721I 

K4483N, D4532G, 
A4577V,D4676Y, 
S4710T, M5148I,  
V5272I 

D5076G 
G5200E 
T4801I  

NSP13 30 49 21 
(N = 8; D = 14) 

P5377S, S5490A, K5669R, M5798V, 
V5894L I5899V,  
T5923I 

A5770V K5364R, E5492Q, 
I5617V, A5620S, 
P5624L, V5820L, 
N5827K, A5833G. 
M5900I 

W5830C 
Y5865C 
P5726S  

NSP14 15 20 7 
(N = 7; D = 0) 

A5926S, P5971L, M5974I, K6274N L5952I, T5930A 
S6180I    

NSP15 8 17 5 
(N = 3; D = 2) 

V6518L, A6533T G6581D  D6491Y 
K6486T  

NSP16 7 12 5 
(N = 4; D = 1) 

P6805S, L6909F, A6914S K6958R  G6837C 

4 S 74 227 49 
(N = 36; D = 13) 

L54F, N148Y, E156D, A243S, S255F, 
G261S, Q271R, T299I, T323I, 
E471Q, A520S, T572I, 
E583D, T602I, V622I, Q677H, 
A706S, T761S, 
G769V, T827I, A831S, A879S, 
T1027I, H1101Y, V1104L, G1124V, 
K1181R, K1191N, G1251V, Q1201K 

I434K, S494P, 
D574Y, A892V 
H1083Q, P1263L  

T723I, F797C, 
L828P, T941K, 
V1068F, D1153Y, 
C1243F  

G857C 
A930T 
A930V 
S1021F 
I1179N 
C1250F  

5 ORF3a 31 178 22 
(N = 9; D = 13) 

V13L, G18V, S74A, V77F, T175I L41F, S74F, 
S171L, T190I 

I62T, L83F, T176I I35T, L46F, 
L53F, 
Q57H, 
C81F, 
L85F, 
L86W, 
G172C, 
G196V, 
G251V 

6 E 5 8 1 
(N = 0; D = 1)    

V29S 

7 M 10 136 D3G, A68S, H125Y A69S, V70F   

(continued on next page) 
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11 mutations while 114 samples harbored just a single mutation. There 
were 156 samples with no mutations and 340 with more than one mu-
tation. To account for these, the Sum of Mutation Incidence has been 
used in this study as explained above. 

The impact of mutations on proteins was predicted through three 
different tools; SIFT, PROVEAN, ws-SNPs&GO; which classified the 
mutations as “Neutral/Tolerated” or “Disease/Affect Protein Function/ 
Deleterious”. For the sake of simplicity, we have referred the results 
from all sites as Neutral and Disease. Though the prediction outcomes of 
the three tools were not in sync for all sites but since the classification of 
outcomes were on similar lines, the results can be represented in a bi-
nary manner with four categories. First two categories represent 
wherein the three tools have the same prediction; either all predicting a 
site to be “Neutral” or “Disease”. The other two categories represent 
deviation between prediction outcomes. They are “Disease by One, 
Neutral by Two” and “Disease by Two and Neutral by One”. For com-
parison between variants, any mutation predicted as Disease by Two or 
Three tools are considered as Disease and mutations predicted as Neutral 
by Two or Three tools are considered as Neutral. 

The distribution of Disease and Neutral variants across the different 
genes of SARS-CoV-2 has been shown in Table 4 and Supplementary file 
5. These could be analyzed in three aspects. First, in terms of overall 
incidence. The maximum variants affecting protein sequence were 
present in NSP3 (63) followed by Spike (S) protein with 49 variants. 
Secondly, if we focus only on variants with predicted outcome as “Dis-
ease” then NSP13 has a maximum of 14 such variants followed by S 
protein and ORF3a with 13 variants each. Thirdly, we looked at those 
proteins which had more Disease variants as compared to Neutral. There 
were five such proteins namely: NSP5, NSP10, NSP13, ORF3a, E, ORF7a. 

Of these NSP10 had just two variants and both of them were predicted as 
Disease by all three tools. Others had differential bias towards Disease 
variants. Thus, we can say that though some regions of the genome have 
more variations but mostly Neutral while others with fewer variations 
are more impactful in terms of their predicted impact due to more Dis-
ease variants. Conversely, mutations in some proteins can be relatively 
better tolerated by the viral genome 

The overall protein prediction outcomes of the 611 genomes have 
been summarized in Fig. 7. There were total of 198 mutations (70%) and 
83 mutations (30%) which are predicted to be Neutral and Disease 
respectively by at least two tools. These predictions suggest that even 
though mutations are accumulating in SARS-CoV-2, they are predomi-
nantly neutral. This is the possible reason that no major virulence or 
physiological deviations have been observed so far. 

3.6. Mutational profile of asymptomatic and deceased samples 

In order to further assess impact of these variations we compared 
their prevalence across samples which were asymptomatic with those 
wherein the patient died. The idea was that if predictions are true, then 
asymptomatic samples should have more of neutral mutations whereas 
deceased ones should have more of disease mutations. The present 
congregation of samples in the study had just 2 asymptomatic samples 
and 15 deceased. Thereon, we included 30 new asymptomatic samples 
(Supplementary file 1) and compared their amino acid mutations with 
those of 15 deceased samples. Their comparative data has been shown in 
Table 5. The p value therein represents the probability that a given 
variant chosen at random to be Neutral or Disease. 

Taking the threshold as common prediction by at least two tools the 

Table 4 (continued ) 

S 
No 

Gene/ 
Protein 

No of 
Variable 
Sites 

Sum of 
Mutations 
Incidence 

Mutations affecting 
Protein (N = N2 +
N3; D = D2 + D3) 

Neutral by Three (N3) Disease by One/ 
Neutral by Two 
(N2) 

Disease by Two/ 
Neutral by One (D2) 

Disease by 
Three (D3) 

5 
(N = 5; D = 0) 

8 ORF6 6 17 2 
(N = 1; D = 1) 

I60V  D61L  

9 ORF7a 2 2 2 
(N = 0; D = 2)   

P45L G38V 

10 ORF7b 1 1 0     
11 ORF8 – – –     
12 N 20 38 13 

(N = 12; D = 1) 
S37L, L139F, A152S  P6T, P13L, G18V, 

G30V, S33I, 
D63N, D144Y, 
A156S, Q160P  

R92S 

13 ORF10 – – –     
14 3′UTR 2 3 0         

281      

Fig. 6. Prevalence of variant sites across studied genomes. a) Most prevalent SNP and SNP_Silent across studied samples. Variants which had incidence across more 
than ten genomes haven been represented. b) Samples with accumulated variations in genomes. 
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data gives interesting insights. As shown and previously mentioned, for 
the original congregation of 611 samples, 70% mutations were Neutral 
(p value 0.7) and 30% were Disease (p value 0.3). The asymptomatic 
samples with a total of 55 SNPs affecting amino acid sequence had p 
value of 0.89 for Neutral variants and 0.11 for Disease variants. Corre-
sponding data for the deceased samples with a total of 13 mutations 

affecting amino acid sequence had p values of 0.61 and 0.39 for Neutral 
and Disease variants respectively. Evidently, asymptomatic samples had 
majorly neutral mutations (89%) but deceased samples have a reduced 
share of neutral mutations (61%) and enhanced share of Disease mu-
tations (39%). The data were analyzed in terms of p value owing to the 
difference in number of samples in each category. We believe two 

Fig. 7. Predicting the impact of mutations affecting amino acid sequence on proteins through multiple tools.  

Table 5 
Predicting the impact of mutations on proteins from different set of genomes.    

Original congregation Asymptomatic Deceased 
No of Samples 611 30 15 
Samples with no mutation 156 0 01 
Total Variants 281 55 13 
Mutation 
Type 

Protein Prediction 
by tools 

No of 
variants 

p 
value 

Sum of Mutation 
Incidence 

No of 
variants 

p 
value 

Sum of Mutation 
Incidence 

No of 
variants 

p 
value 

Sum of Mutation 
Incidence 

NEUTRAL Three Tools (N3) 133 0.47 254 31 0.56 76 2 0.15 4 
Two Tools (N2) 65 0.23 160 18 0.33 60 6 0.46 10 
Total ¼ (N3 þ
N2) 

198 0.7 414 49 0.89 136 8 0.61 14  

DISEASE Three Tools (D3) 41 0.15 187 2 0.04 4 1 0.08 2 
Two Tools (D2) 42 0.15 70 4 0.07 2 4 0.31 6 
Total ¼ (D3 þ
D2) 

83 0.3 257 6 0.11 6 5 0.39 8 

Grand Total 281 1 671 55 1 142 13 1 22  
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aspects need to be considered while ascertaining this differential data. 
First, the variation in number of asymptomatic and deceases samples. 
Though we have analysed in terms of percentage and p value for uni-
formity the fact remains that data from more samples need to be studied. 
Secondly, there is a relatively reduced possibility for an asymptomatic 
sample being sequenced and hence a chance for underestimation of 
mutations in asymptomatic group. Thus, a larger data set analysis for all 
categories with clinical correlation is essential to provide greater insight 
into the impact of protein variations on SARS-CoV-2. 

4. Conclusions 

The mutational accumulation in SARS-CoV-2 genomes is a multi-
factorial event with some areas of genome more prone to mutations, 
selective mutations being more prevalent, non-linear assimilation of 
mutations across various states and differential correlation between 
mutational impact on proteins and physiological state. Though, age and 
gender specific bias in incidence of mutations was observed but data has 
to be inferred while acknowledging the absence of an established causal 
relationship between the disease and gender. Further, the asymptomatic 
samples had higher occurrence of Neutral variants while deceased 
samples had relatively higher incidence of Disease variants which needs 
to be reaffirmed in a larger sample set. A cross-linking of mutational 
dynamics and patient history will provide for better correlation and 
understanding of the variations in SARS-CoV-2 genomes. 
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