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A B S T R A C T   

In today’s business world, choosing a logistics supplier is a critical factor for companies to 
improve operational efficiency and reduce business costs. With the development of market 
economy, it is very difficult for companies to choose a suitable logistics provider according to 
specific rules. Therefore, this study proposes a new three-way decision making (TWD) technique 
for supplier selection in logistics service value creation. For this, we first develop a new concept 
called intuitionistic double hierarchy linguistic term set (IDHLTSs) that can describe uncertainty 
and ambiguity in a more flexible way. Some Hamacher aggregation operators for collecting 
IDHLTSs information and its basic aspect are proposed. The unknown weight vector for decision 
experts and criteria is determined by using entropy measures. In addition, the conditional 
probability is determined using TOPSIS which makes the decision making process more rational. 
And the decision result is conducted according to minimum loss principle. Finally, an example of 
3 PL supplier selection in the logistics service value co-creation environment and comparison is 
given to validate and demonstrate the effectiveness of the developed method.   

1. Introduction 

The global third-party logistics (3 PL) sector has expanded in recent years and is becoming increasingly important as a means of 
dealing with rapid changes in the global competitive environment. As a result of a rising tendency towards outsourcing logistics 
activities, shippers have been forced to choose the best acceptable 3 PL provider. The usage of 3 PL providers can result in significant 
benefits such as lower logistical costs and fixed logistics assets, higher order fill rates, and shorter average order-cycle lengths and cash- 
to-cash cycles. If an appropriate 3 PL provider is not selected, serious problems can occur, such as low-quality logistics services and 
contract nonfulfillment. As a result, the shipper’s reputation, image, and trust may suffer. Therefore, in today’s highly competitive 
business environment, more and more companies outsource their logistics services to 3 PL provider to reduce costs and improve 
business efficiency. The importance of supplier selection for effective logistics and supply chain management has received a lot of 
attention [1]. The 3 PL supplier selection issue is a common multi-criteria group decision-making problem (MCGDM) in complex 
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business environments because it focuses on 3 PL supplier selection criteria [2–5] and the selection of models approaches of 3 PL 
supplier [6,7]. Gergin et al. [8], integrated a new method to select the most suitable supplier for a company engage in activities in the 
automotive supply industry. Riaz and Farid [9] proposed a new method for 3 PL selection under a picture fuzzy set. Most decision data 
given by the decision maker in many scenarios is often inexact or uncertain due to the complex decision-making (DM) environment and 
a lack of data. To handle such complex DM problems, Zadeh [10], discovered a fuzzy set (FS) by implying that each element of a fixed 
set has a degree of membership (MD) belonging to [0,1]. FS creates a powerful notion of applicability compared to traditional 
mathematical binary representations. Thus, researchers studied the fuzzy theory to introduce similarity measures and fuzzy DM ap-
proaches. But this theory is limited by the lack of assigning a degree of non-membership to each element of a fixed set. Therefore, 
Atanassov [11] introduced an intuitionistic fuzzy set (IFS) by adding the non-membership (NMD) degree to the FS theory satisfying the 
condition MD + NMD ≤ 1. IFS is an important FS extension and is considered a good way to handle DM problems. Since its inception, 
the concept and results of IFS, as well as its application to DM problems, have been extensively studied. While FS and IFS are becoming 
popular techniques, peoples are more familiar with using linguistic term sets (LTSs) in fact to convey their assessment data, like “very 
bad”, “somewhat bad”, “excellent”, etc. Therefore, LTSs can effectively link with difficult circumstances. Since Zadeh [12] introduced 
the structure computing with word (CWW), also explained other extensions of LTSs [13–16]. Further Gou et al. [17,18], extended LTS 
and defined a double hierarchy linguistic term set (DHLTS) by considering the membership degree in the form of a linguistic variable 
for strong modeling of expert expressions. DHLTS is the combination of two sets namely first hierarchy and second hierarchy linguistic 
term sets, allowing more flexibility to describe uncertainty and ambiguity. In real-world problems mostly it is difficult for 
decision-makers (DMs) to provide an accurate assessment of the attributes. DHLTS solves these difficulties and conveys appropriate 
data more conveniently in complex expressions than single LTSs. Many researchers have used this concept successfully. Xang et al. 
[19], introduced the Hamacher aggregation operator and applied it to the three-way decision (TWD) problem. DHLTS is a powerful 
tool but there is no way to assign a degree of non-membership to an element individually and the degree of membership in DHLTS does 
not cover the uncertainty of an element in most DM problems. To fill this gap it is necessary to define a new theory by studying IFS and 
DHLTSs to properly handle DM problems. Aggregation operators (AOs) are tools for combining n-tuples of information into a single 
useful form. AOs find extensive applications in decision-making. So to express the operations in fuzzy set theory as a generalization of 
Boolean logical connectives, the researcher used the terms triangular norm (t-norm) and triangular co-norm (t-conorm). Menger [20] 
pioneered the concepts of t-norm and t-conorm in the context of probabilistic metric spaces in 1942. Later, the development of the 
t-norm and t-conorms was successfully carried out by Schweizer and Sklar [21]. The concepts of t-norm and t-conorm attracted the 
interest of scholars. Numerous scholars have made contributions to this topic and have proposed the multipurpose t-norms, such as the 
radical product, algebraic product, Lukasiewicz t-norm, Yager t-norm, Schweizer and Sklar t-norm, and Frank t-norm, as well as the 
corresponding t-conorms. Zimmermann and Zysno [22] later discovered that t-norm and t-conorm exhibit major behavior. This led to 
the invention of the compensation and averaging operators [23], which produce results that lie within an interval. In 1978, Hamacher 
[24] introduced a parameterized t-norm and its dual t-conorm as a generalization of Einstein product and Einstein sum, which are 
more broad and flexible than other existing norms. To the best of our knowledge and the above analysis up-till now no application with 
the hybrid study of IFSs and DHLTSs by applying Hamacher aggregation operators is reported. Therefore, this study motivates and fills 
the existing research gap to investigate a new concept namely intuitionistic double hierarchy linguistic term set (IDHLTSs) by studying 
IFSs and DHLTSs. 

The main objectives of this work are as follows:  

(i) To define a hybrid notion intuitionistic double hierarchy linguistic term set (IDHLTSs) by extending DHLTSs to an intuitionistic 
fuzzy set, which has greater application flexibility in real-world DM problems.  

(ii) To compare the intuitionistic double hierarchy linguistic numbers (DHLTNs), we define a new score and accuracy function  
(iii) Hamacher t-norm and t-conorm with flexible operational parameters have great significance as they incorporate the properties 

of several other widely used operators. The objective of the proposed operators is to present Hamacher weighted averaging 
operators in IDHLTSs circumstances.  

(iv) It is very essential to form operational laws during the aggregation procedure. Therefore, we develop some basic operations on 
IDHLTSs utilizing Hamacher operators by keeping the advantages of IDHLTSs.  

(v) Finding unknown weight vectors for decision-makers or criteria is a critical issue. To address this issue, the entropy measure of 
the IDHLTS-based process is used to obtain the weights of the DM and criteria to avoid adverse effects of the weights.  

(vi) We further investigate the theoretical and practical interpretation of the proposed tool by solving numerical examples. 

1.1. Related work 

In real life, traditional MCGDM [25,26] only provides a ranking of alternatives without providing specific recommendations to 
decision-makers. The three-way decisions (TWDs) overcome this constraint since they are a decision-making technique that is 
consistent with people’s thought processes. Thus Yao [27–29], proposed the three-way decision-making (TWDs) process and showed 
an important decision-making principle. Intuitively, the Bayesian method [30,31] classifies objects into three distinct regions. 
Whenever an object is assigned to a positive region, negative region, or boundary region, this is an indication that the DM should 
accept the object, reject the object, or delay the decision respectively. Although TWDs are relevant to human decision-making patterns, 
they have been applied in many domains, including health care [32,33], investment [34] and activity rehabilitation [35] decisions. To 
better express the loss function (LFs) in TWDs, more extended structures of fuzzy sets have been introduced in the process of TWDs, 
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including dual hesitant fuzzy sets [36–38], fuzzy set [39] and triangular fuzzy number [40]. Herbert and Yao [41] investigated game 
theory related to LFs determination techniques for constructing loss function matrices. Jia et al. [42], suggested a correction problem 
based on the link between loss functions and limit values and solved the optimization problem to yield limit values. Jia et al. [43], 
suggested some new approaches for computing LFs based on multiple-criteria environments. However, in practice, the LFs are eval-
uated by decision-makers according to their own historical experience and knowledge, and this study adopts the same method. Many 
scholars have studied the determination of conditional probability, which is another critical component of TWDs. Ye et al. [39], 
initially used the entropy weight method to calculate attribute weights and then used weighted aggregation to calculate conditional 
probability. While Liang et al. [44], applied the maximizing deviation approach [45] to first determine attribute weights and then use a 
technique called order performance by similarity to Ideal Solutions (TOPSIS) to achieve conditional probability. Wang et al. [46], 
calculated the conditional probability using DM methods based on third-generation prospect theory and then used the method for grey 
relational analysis (GRA) [47] to achieve the conditional probability. Liu and Yang [48], developed a decision-theoretic rough set 
(DTRS) model and applied it to TWDs. From the literature review, there are no such tools and implementations of the TWDs technique 
with the hybrid notion of DHLTs and IFSs where the weights of criteria and experts are completely unknown. Therefore, the motivation 
of this work is to investigate the above-mentioned specific goals. 

From the above-mentioned goals the major contributions and factors of this work are as follows:  

(i) The considerable contribution of this study is to define a new theory called intuitionistic double hierarchy linguistic term sets 
(IDHLTSs) because Gou et al. [17,18], developed DHLTSs by considering only the membership degree, but this idea has some 
limitations due to the lack of non-membership degrees. So we generalized this concept by adding the non-membership degree 
and applying the DHLTSs on IFS and defined IDHLTSs to study attributes and LFs values. They are adaptable tools that allow 
decision-makers to provide assessments in the form of IDHLTSs.  

(ii) To make capital of the parametric and flexible framework of Hamacher operations under the competitive and innovative model 
of IDHLTSs to accumulate the decision-making.  

(iii) The novelty of the proposed operators is due to their flexible structure and authentic outputs as they compile the IDHLTSs data 
deploying the brilliance of Hamacher operations, whereas the existing operators, developed based on Hamacher norms, are not 
applicable for IDHLTSs data due to nonavailability or strick condition of IDHLTSs.  

(iv) The entropy and distance measures were established for finding the unknown weight vector of experts and criteria.  
(v) Discuss the TOPSIS and GRA methods for calculating conditional probability using Hamacher aggregation operations and their 

further expected losses and score functions.  
(vi) To make an accurate decision a novel TWDs technique is given to select the best result based on three main principles. 

The summary of this paper is as follows: Section 2, includes the basic concepts related to IFSS, LTSs, and DHLTSs. Section 3, in-
cludes a novel notion of intuitionistic double hierarchy linguistic term set (IDHLTSs), score function accuracy function, and distance 
measure. Section 4, proposed some Hamacher aggregation operators such as the intuitionistic double hierarchy linguistic Hamacher 
weighted averaging (IDHLHWA) operator, intuitionistic double hierarchy linguistic Hamacher ordered weighted averaging (IDHL-
HOWA) operator, and also fundamental properties such as Idempotency and Boundedness are discussed. Section 5, proposed the 
algorithm for determining the conditional probability based on the TOPSIS methods. Section 6, introduces the Novel DHLDTRS model 
for the selection of the best optimal result. Section 7, describes the application of the proposed method by solving numerical examples 
to make an accurate decision. Section 8, we compare the proposed method with other MADM methods to demonstrate the applicability 
of our proposed method and to show the limitations and advantages. In section 9, explain the conclusion of the article. 

Following Table A represented the detail description of acronyms used in this work. Similarly, Table B summarized all the symbols 
used in this paper. 

Table A 
Description of acronyms used in this work.  

Acronym Description 

MCGDM Multi criteria group decision making 
MADM Multi attribute decision making 
DMs/EM Decision-maker(s)/Expert matrix 
DHLDTRS Double hierarchy linguistic decision-theoretic rough set 
MD Membership degree 
NMD Non-membership degree 
LTSs Linguistic term set 
DHLTSs Double hierarchy linguistic term set 
GRA Grey relational analysis 
PIS+ Positive ideal solution 
NIS− Negative ideal solution 
AOs Aggregation operators 
IO,RIO,LIO Ideal opinion matrix, Right ideal matrix, Left ideal matrix 
TWDs Three way decisions 
IDHLTSs Intuitionistic double hierarchy linguistic term set 

(continued on next page) 
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Table A (continued ) 

Acronym Description 

LF Loss function 
DTRS Decision-theoretic rough set  

Table B 
Representation of Symbols used in this work.  

Symbols Representation 

U Non empty universal set 
x x ∈ U 
uA(x), vA(x) Membership degree, Non-membership degree 
Sα(x) First hierarchy linguistic terms (Membership degree) 
Sβ(x) First hierarchy linguistic terms (Non-membership degree) 
Qk Second hierarchy linguistic terms (Membership degree) 
Ql Second hierarchy linguistic terms (Non-membership degree) 
AB Intuitionistic double hierarchy linguistic term set 

S
Q 

Double hierarchy linguistic term set 
Sc,Ac Score function, Accuracy function 
τ, δ Any even number 
t,α,β,k, l t,α,β ∈ [0, τ],k, l ∈ [0,δ]
aP,aB ,aN Positive, boundary, and negative regions 
TH

γ (u,v),SH
γ (u,v) Family of Hamacher t-norm (Product) and t-conorm (Sum) 

λ, γ λ, γ > 0(∈ R)

(M)
l
=

[ABij]m×n 

Expert evaluation matrix 

dIOi,dRIOi,dLIOi Distance from IO, RIO, LIO to (M)
l 

⨁H,⨀H,∨,∧ Hamacher Addition, Hamacher Multiplication, Union, Intersection 
ω,ϖ Expert weight, Criteria weight 
Ui,L j Alternatives, Criteria 
CI,Ei(Ψ) closeness indices, Entropy measure 
g+ij ,g−ij Grey relational coefficient from PIS+ and NIS−

2. Preliminaries 

Here we will put forward the notions of IFS, linguistic term set (LTSs), intuitionistic fuzzy linguistic term set (IFLTSs) and double 
hierarchy linguistic term sets (DHLTSs). These concepts will connect our study with upcoming sections. 

Definition 1. [11] Let U is a non empty set, then intuitionistic fuzzy set (IFS) is mathematically defined in equation (1) as follows. 

A=
{

x, 〈uA(x), vA(x)〉
⃒
⃒x∈U

}
(1)  

Where uA(x) ∈ [0,1] and vA(x) ∈ [0,1] are represents the membership and non-membership degree respectively, belong to [0, 1] with 
conditions 

(
uA(x),vA(x)

)
≤ 1.. 

Definition 2. [13] A non-empty set S with odd cardinality is known as a linguistic term set (LTSs), i.e. S = {St |t ∈ [0, τ]}, whereas St is 
the possible linguistic term with linguistic variable. 

Definition 3. [14] Let U be a universal set and S = {St |S0 ≤ St ≤ Sτ, t ∈ [0, τ]} be a continuous linguistic term set. Then intuitionistic 
fuzzy linguistic term set (IFLTSs), is defined in the finite universe of discourse U mathematically with the form given in equation (2) as 

A=
{

x, 〈Sα(x), Sβ(x)〉
⃒
⃒x∈U

}
(2)  

Where Sα(x) and Sβ(x) denotes the membership and non-membership degree in the from linguistic term such that α+ β ≤ τ or 
((α /τ)+(β /τ)) ≤ 1. For simplicity it is denoted by A = 〈Sα(x),Sβ(x)〉.. 

Definition 4. [17] Let S = {Sα|α= − τ, ..., − 1,0, 1, ..., τ} and Q = {Qk|k= − δ, ..., − 1, 0,1, ..., δ} be the first hierarchy and second hi-
erarchy LTSs, then the structure given in equation (3) 

SQ =
{

Sα〈Qk 〉
⃒
⃒α= − τ, ..., − 1, 0, 1, ..., τ; k= − δ, ..., − 1, 0, 1, ..., δ

}
, (3)  

is said to be double hierarchy linguistic term sets (DHLTSs), denoted by SQ, where Sα is the first hierarchy and Qk represents the second 
hierarchy linguistic terms respectively. 
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3. Intuitionistic double hierarchy linguistic term sets 

Here we will develop the hybrid notion of IFS and DHLTSs to obtained the notion of intuitionistic double hierarchy linguistic term 
set (IDHLTSs) and initiate the new score and accuracy functions and also put forward its basic operations in detailed. 

Definition 5. Let A = {〈Sα, Sβ〉
⃒
⃒α, β= 0,1, ..., τ} be the first and B = {〈Qk,Ql〉|k, l= 0,1, ..., δ} be the second hierarchy linguistic term 

sets, then the mathematical structure as given in equation (4) 

AB =
{

〈Sα〈Qk〉, Sβ〈Ql〉
〉
⃒
⃒
⃒α, β= 0, 1, ..., τ; k, l= 0, 1, ..., δ

}
(4)  

is said to be intuitionistic double hierarchy linguistic term sets (IDHLTSs). Where Sα, Sβ represents membership and non-membership 
degree of first hierarchy linguistic term sets and Qk,Ql is the membership and non-membership degree of second hierarchy linguistic 
term sets, such that α + β ≤ τ and k + l ≤ δ or ((α /τ)+(β /τ)) ≤ 1 and ((k /δ) + (l /δ)) ≤ 1. 

Definition 6. Let ABi = 〈Sαi 〈Qki 〉, Sβi 〈Qli 〉〉 be the intuitionistic double hierarchy linguistic term set. Then mathematically the score and 
accuracy function are denoted and defined in equations (5) and (6) respectively as follows. 

Sc=
( ( αi

τ

)
+
( ki

δ

)
−
( βi

τ

)
−
( li

δ

))

2
∈ [− 1, 1] (5)  

Ac=
( ( αi

τ

)
+
( ki

δ

)
+
( βi

τ

)
+
( li

δ

))

2
∈ [0, 1] (6)   

Definition 7. Consider AB1 = 〈Sα1 〈Qk1 〉, Sβ1 〈Ql1 〉〉 and AB2 = 〈Sα2 〈Qk2 〉, Sβ2 〈Ql2 〉〉 be two intuitionistic double hierarchy linguistic numbers 
(IDHLNs). Then the distance measure between any two IDHLTSs for any λ > 0(∈ R) is defined in equation (7) follows as 

d(AB1,AB2)=

⎡

⎢
⎢
⎢
⎢
⎣

1
4n

∑2

i=1

⎛

⎜
⎜
⎜
⎜
⎝

⃒
⃒
⃒
⃒
⃒
⃒
S(

α1
τ

) − S(
α2
τ

)

⃒
⃒
⃒
⃒
⃒
⃒

λ

+

⃒
⃒
⃒
⃒
⃒
⃒
Q(

k1
δ

) − Q(
k2
δ

)

⃒
⃒
⃒
⃒
⃒
⃒

λ

+

⃒
⃒
⃒
⃒
⃒
⃒
⃒

S(
β1
τ

) − S(
β2
τ

)

⃒
⃒
⃒
⃒
⃒
⃒
⃒

λ

+

⃒
⃒
⃒
⃒
⃒
⃒
Q(

l1
δ

) − Q(
l2
δ

)

⃒
⃒
⃒
⃒
⃒
⃒

λ

⎞

⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎦

1
λ

(7)   

4. Hamacher t-norm and t-conorm 

This section provides Hamacher t-norm and t-conorm for IDHLTSs. The Hamacher t-norm and t-conorm [24], are more flexible and 
generalized from algebraic and Einstein triangular norms [49,50] which are mathematically given below. 

Definition 8. Let u, v ∈ R and γ > 0, then Hamacher t-norm and t-conorm are defined in equations (8) and (9) as. 

TH
γ (u, v)=

uv
γ + (1 − γ)(u + v − uv)

(8)  

SH
γ (u, v)=

u + v − uv − (1 − γ)uv
1 − (1 − γ)uv

(9) 

The Hamacher norm reduces to the algebraic norm at γ = 1 and to the Einstein norm at γ = 2.. 

4.1. Hamacher operational laws of intuitionistic double hierarchy linguistic term set 

According to the Hamacher t-norm and t-conorm, a few hesitant Hamacher operators given that to aggregate [51] hesitant fuzzy 
information. Because the Hamacher t-norm and t-conorm operator laws are logical and closed, a few closed operational laws are 
defined as follows. 

Definition 9. Let AB1 = 〈Sα1 〈Qk1 〉, Sβ1 〈Ql1 〉〉 and AB2 = 〈Sα2 〈Qk2 〉, Sβ2 〈Ql2 〉〉 be two intuitionistic double hierarchy linguistic term set and 
γ ≥ 0,0 ≤ λ ≤ 1, then the algebraic Hamacher operational laws for intuitionistic double hierarchy linguistic term set are in equations 
(10) and (11) as follows. 
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AB1⨁AB2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

S

τ

⎛

⎜
⎝
(

α1
τ )+(

α2
τ )− (

α1
τ ).(

α2
τ )− (1− γ)(

α1
τ ).(

α2
τ )

1− (1− γ)(
α1
τ ).(

α2
τ )

⎞

⎟
⎠

〈Q

δ

⎛

⎜
⎝

(
k1
δ

)
+

(
k2
δ

)
−

(
k1
δ

)
.

(
k2
δ

)
− (1− γ)

(
k1
δ

)
.

(
k2
δ

)

1− (1− γ)
(

k1
δ

)
.

(
k2
δ

)

⎞

⎟
⎠

〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

S

τ

⎛

⎜
⎝

(
β1
τ

)
.

(
β2
τ

)

γ+(1− γ)
(

β1
τ

)
+

(
β2
τ

)
−

(
β1
τ

)
.

(
β2
τ

)

⎞

⎟
⎠〈Q

δ

⎛

⎜
⎝

(
l1
δ

)
.

(
l2
δ

)

γ+(1− γ)
(

l1
δ

)
+

(
l2
δ

)
−

(
l1
δ

)
.

(
l2
δ

)

⎞

⎟
⎠

〉

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)  

λ⨀HAB1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

S

τ

⎛

⎜
⎝

(1+(γ− 1).(
α1
τ ))

λ
− (1− (

α1
τ ))

λ

(1+(γ− 1).(
α1
τ ))

λ
+(γ− 1).(1− (

α1
τ ))

λ

⎞

⎟
⎠

〈Q

δ

⎛

⎜
⎜
⎝

(
1+(γ− 1).

(
k1
δ

))λ
−

(
1−
(

k1
δ

))λ

(
1+(γ− 1).

(
k1
δ

))λ
+(γ− 1).

(
1−
(

k1
δ

))λ

⎞

⎟
⎟
⎠

〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

S

τ

⎛

⎜
⎜
⎝

γ.
( (

β1
τ

))λ

(
1+(γ− 1).

(
β1
τ

))λ
+(γ− 1).

(
1−
(

β1
τ

))λ

⎞

⎟
⎟
⎠〈Q

δ

⎛

⎜
⎜
⎝

γ.
( (

l1
τ

))λ

(
1+(γ− 1).

(
l1
τ

))λ
+(γ− 1).

(
1−
(

l1
τ

))λ

⎞

⎟
⎟
⎠

〉

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11)   

Example 1. Let (τ, δ= 6) and AB1 = 〈S1〈Q3〉, S4〈Q3〉〉, AB2 = 〈S3〈Q2〉, S1〈Q4〉〉 be two IDHLNs, and γ = 2,λ = 0.6, then  

(1) AB1⨁AB2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎝

S
6
(
(1

6)+(
3
6)− (

1
6).(

3
6)− (1− 2)(1

6).(
3
6)

1− (1− 2)(1
6).(

3
6)

)

〈Q
6
(
(3

6)+(
2
6)− (

3
6).(

2
6)− (1− 2)(3

6).(
2
6)

1− (1− 2)(3
6).(

2
6)

)〉

⎞

⎟
⎟
⎟
⎠

S
6
(

(4
6)(

1
6)

2+(1− 2)(4
6)+(

1
6)− (

4
6).(

1
6)

)
〈Q

6

(
(3

6)(
4
6)

2+(1− 2)(3
6)+(

4
6)− (

3
6).(

4
6)

)〉

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. 

= 〈S3.69〈Q4.28〉, S0.48〈Q1.09〉〉    

(2). 0.6⨀HAB1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎝

S
6

(
(1+(2− 1).(1

6))
0.6

− (1− (1
6))

0.6

(1+(2− 1).(1
6))

0.6
+(2− 1).(1− (1

6))
0.6

)

〈Q
6

(
(1+(2− 1).(3

6))
0.6

− (1− (3
6))

0.6

(1+(2− 1).(3
6))

0.6
+(2− 1).(1− (3

6))
0.6

)〉

⎞

⎟
⎟
⎟
⎟
⎠

S
6

(
2.((4

6))
0.6

(1+(2− 1).(4
6))

0.6
+(2− 1).(1− (4

6))
0.6

)

〈Q

6

(
2.((3

6))
0.6

(1+(2− 1).(3
6))

0.6
+(2− 1).(1− (3

6))
0.6

)〉

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. 

= 〈S0.60〈Q1.90〉, S0.83〈Q0.68〉〉   

Definition 10. Let ABi = 〈Sαi 〈Qki 〉, Sβi 〈Qli 〉〉 (i= 1, 2, ..., n) be the collection of IDHLNs and ω = (ω1,ω2, ...,ωn)
T represent weight vectors 

of given collection restricted to ωi > 0,
∑n

i=1ωi = 1. Then based on the above operational laws intuitionistic double hierarchy 

A. Qadir et al.                                                                                                                                                                                                          



Heliyon 9 (2023) e18323

7

Hamacher weighted averaging operator is mapping IDHLHWA : Ωn→Ω is defined in equation (12) as. 

IDHLHWA(AB1,AB2, ...,ABn)=⨁n
i=1(ωi⨀HABi) (12) 

According to the above definition the aggregated result of IDHLHWA is given in Theorem 1. 

Theorem 1. Let ABi = 〈Sαi 〈Qki 〉, Sβi 〈Qli 〉〉 (i= 1,2, ..., n) be the collection of IDHLNs and ω = (ω1,ω2, ...,ωn)
T represent weight vectors of 

given collection restricted to ωi > 0,
∑n

i=1ωi = 1. Then intuitionistic double hierarchy Hamacher weighted averaging IDHLHWA operator is 
defined in equation (13) as. 

IDHLHWA(AB1,AB2, ...,ABn) = ⨁n
i=1(ωi⨀HABi)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

S

τ

⎛

⎜
⎜
⎝

∏n

i=1

(
1+(γ − 1).

(αi

τ

))ωi
−
∏n

i=1

(
1 −

(αi

τ

))ωi

∏n

i=1

(
1+(γ − 1).

(αi

τ

))ωi
+(γ − 1).

∏n

i=1

(
1 −

(αi

τ

))ωi

⎞

⎟
⎟
⎠

〈Q

δ

⎛

⎜
⎜
⎝

∏n

i=1

(

1+(γ − 1).
(

ki

δ

))ωi

−
∏n

i=1

(

1 −
(

ki

δ

))ωi

∏n

i=1

(

1+(γ − 1).
(

ki

δ

))ωi

+(γ − 1)
∏n

i=1

(

1 −
(

ki

δ

))ωi

⎞

⎟
⎟
⎠

〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

S

τ

⎛

⎜
⎜
⎝

γ.

∏n

i=1

(
βi

τ

)ωi

∏n

i=1

(

1+(γ − 1).
(

βi

τ

))ωi

+(γ − 1)
∏n

i=1

(

1 −
(

βi

τ

))ωi

⎞

⎟
⎟
⎠

〈Q

δ

⎛

⎜
⎜
⎝

γ.

∏n

i=1

(
li

δ

)ωi

∏n

i=1

(

1+(γ − 1).
(

li

δ

))ωi

+(γ − 1)
∏n

i=1

(

1 −
(

li

δ

))ωi

⎞

⎟
⎟
⎠

〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(13)   

Theorem 2. Let ABi = 〈Sαi 〈Qki 〉, Sβi 〈Qli 〉〉 (i= 1,2, ..., n) be the collection of IDHLNs and ω = (ω1,ω2, ...,ωn)
T represent weight vectors of 

given collection restricted to ωi > 0,
∑n

i=1ωi = 1. Then its desirable properties are as follows in equations (14)–(16).  

(1). (Idempotency): Suppose ABi = 〈Sαi 〈Qki 〉, Sβi 〈Qli 〉〉 (i= 1,2, ..., n) be the collection of IDHLNs, if ABi = 〈Sα〈Qk〉, Sβ〈Ql〉〉 for all i, then 

IDHLHWA(AB1,AB2, ...,ABn)=AB = 〈Sα〈Qk〉, Sβ〈Ql〉
〉 (14)    

(2). (Monotonicity): Suppose CDi = 〈S∗
αi〈Q∗

ki
〉, S∗

βi〈Q∗
li

〉〉(i∈ N) be another collection of IDHLNs such that S∗
αi
≥ Sαi , S∗

βi
≤ Sβi and Q∗

ki
≥ Qki , 

Q∗
li ≤ Qli then 

IDHLHWA(AB1,AB2, ...,ABn) ≤ IDHLHWA(CD1,CD2, ...,CDn) (15)    

(3). (Boundedness): Let (ABi)
−
= min

1≤i≤n
〈Sαi 〈Qki 〉, Sβi 〈Qli 〉〉 and (ABi)

+
= max

1≤i≤n
〈Sαi 〈Qki 〉, Sβi 〈Qli 〉〉, then 

(ABi)
−
≤ IDHLHWA(AB1,AB2, ...,ABn) ≤ (ABi)

+ (16)   

Definition 11. Let ABi = 〈Sαi 〈Qki 〉, Sβi 〈Qli 〉〉 (i= 1, 2, ..., n) be the collection of IDHLNs and ω = (ω1,ω2, ...,ωn)
T represent weight vectors of 

given collection restricted to ωi > 0,
∑n

i=1ωi = 1. Then based on the above operational laws intuitionistic double hierarchy Hamacher ordered 
weighted averaging operator is mapping IDHLHWA : Ωn→Ω is defined in equation (17) as. 
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IDHLHOWA(AB1,AB2, ...,ABn)=⨁n
i=1(ωi⨀HA℘Bi

) (17) 

According to the above definition the aggregated result of IDHLHOWA is given in Theorem 3. 

Theorem 3. Let ABi = 〈Sαi 〈Qki 〉, Sβi 〈Qli 〉〉 (i= 1,2, ..., n) be the collection of IDHLNs and ω = (ω1,ω2, ...,ωn)
T represent weight vectors of 

given collection restricted to ωi > 0,
∑n

i=1ωi = 1. Then intuitionistic double hierarchy Hamacher ordered weighted averaging IDHLHWA 
operator is defined in equation (18) as. 

IDHLHOWA(AB1,AB2,…,ABn) = ⨁n
i=1(ωi⨀HA℘Bi

)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

S

τ

⎛

⎜
⎜
⎝

∏n

i=1

(
1+(γ − 1).

(α℘i

τ

))ωi
−
∏n

i=1

(
1 −

(α℘i

τ

))ωi

∏n

i=1

(
1+(γ − 1).

(α℘i

τ

))ωi
+(γ − 1)

∏n

i=1

(
1 −

(α℘i

τ

))ωi

⎞

⎟
⎟
⎠

〈Q

δ

⎛

⎜
⎜
⎝

∏n

i=1

(

1+(γ − 1).
(

k℘i

δ

))ωi

−
∏n

i=1

(

1 −
(

k℘i

δ

))ωi

∏n

i=1

(

1+(γ − 1).
(

k℘i

δ

))ωi

+(γ − 1).
∏n

i=1

(

1 −
(

k℘i

δ

))ωi

⎞

⎟
⎟
⎠

〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

S

τ

⎛

⎜
⎜
⎝

γ.

∏n

i=1

(β℘i

τ

)ωi

∏n

i=1

(

1+(γ − 1).
(β℘i

τ

))ωi

+(γ − 1)
∏n

i=1

(

1 −
(β℘i

τ

))ωi

⎞

⎟
⎟
⎠

〈Q

δ

⎛

⎜
⎜
⎝

γ.

∏n

i=1

(
l℘i

δ

)ωi

∏n

i=1

(

1+(γ − 1).
(

l℘i

δ

))ωi

+(γ − 1)
∏n

i=1

(

1 −
(

l℘i

δ

))ωi

⎞

⎟
⎟
⎠

〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(18)  

Where ωi⨀HA℘Bi 
represent the largest value of the given collection. 

Theorem 4. Let ABi = 〈Sαi 〈Qki 〉, Sβi 〈Qli 〉〉 (i= 1,2, ..., n) be the collection of IDHLNs and ω = (ω1,ω2, ...,ωn)
T represent weight vectors of 

given collection restricted to ωi > 0, 
∑n

i=1ωi = 1. Then its desirable properties are as follows in equations (19)–(21).  

(1). (Idempotency): Suppose ABi = 〈Sαi 〈Qki 〉, Sβi 〈Qli 〉〉 (i= 1,2, ..., n) be the collection of IDHLNs, if ABi = 〈Sα〈Qk〉, Sβ〈Ql〉〉 for all i, then 

IDHLHOWA(AB1,AB2, ...,ABn)=AB = 〈Sα〈Qk〉, Sβ〈Ql〉
〉 (19)    

(2). (Monotonicity): Suppose CDi = 〈S∗
αi〈Q∗

ki
〉, S∗

βi〈Q∗
li

〉〉(i∈ N) be another collection of IDHLNs such that S∗
αi
≥ Sαi , S∗

βi
≤ Sβi and Q∗

ki
≥ Qki , 

Q∗
li ≤ Qli then 

IDHLHOWA(AB1,AB2, ...,ABn) ≤ IDHLHOWA(CD1,CD2, ...,CDn) (20)    

(3). (Boundedness): Let (ABi)
−
= min

1≤i≤n
〈Sαi 〈Qki 〉, Sβi 〈Qli 〉〉 and (ABi)

+
= max

1≤i≤n
〈Sαi 〈Qki 〉,Sβi 〈Qli 〉〉, then 

(ABi)
−
≤ IDHLHOWA(AB1,AB2, ...,ABn) ≤ (ABi)

+ (21)   

5. Conditional probability based on GRA method 

The TWD approach is based on two main elements namely; LF and conditional probability. We first defined IDHLTSs to find the 
conditional probability. 
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Let Ui = {u1, u2,…, um} be the set of alternatives and L j = {L 1,L 2,…,L n} be conditional attribute in the form of IDHLTSs with 
unknown weight vectors. Also, let there be e number of decision experts, El (l = 1, 2,3,…, e) with unknown weights vector to provide 
an evaluation reports for each alternative based on conditional attribute in the form of IDHLTS. Then the decision expert matrix is 
represented in equation (22). 

(M)
l
=
[
Al

Bij

]

m×n
(l = 1, 2, 3,…, e) (22) 

The conditional probabilities based on the TOPSIS method with IDHLTSs are calculated in the following four steps. 
Phase-I (Finding Expert weights) 
In this phase, first, construct the decision expert’s matrix in the form of IDHLTSs with unknown weights of each expert matrix. So 

when the weights of experts are unknown it is very difficult for decision expert to make an accurate decision. Hence it is important to 
evaluate the weights of each decision expert matrix. For this, we first construct the ideal opinion matrix, right ideal and left ideal 
opinion matrix, represented by (IO), (RIO) and (LIO) respectively. Then we determine the distance measure denoted by (dIOi), (dRIOi)

and (dLIOi) from decision experts matrix (M)
l to IO, RIO and LIO. Further, we find the closeness index and at last calculate the weights 

of each decision expert matrix. The stepwise detail is as follows. 

(I-a) Construct decision expert’s matrix in the form of IDHLTSs as follows in equation (23). 

(M)
l
=
[
Al

Bij

]

m×n
=

u1
u2
u3
⋮

um

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

L 1 L 2 L 3 L n

Al

B11
Al

B12
⋯ Al

B1n

Al

B21
Al

B22
⋯ Al

B2n

⋮ ⋯ ⋱ ⋮
Al

Bm1
Al

Bm2
⋯ Al

Bmn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(23)  

Where Al

Bij
= 〈Sl

αij 〈Qkij
〉
, Sl

βij 〈Qlij
〉
〉 (i= 1,2, ...,m), (j= 1,2, ...,m) and (l = 1, 2, ..., e).. 

(I-b) Construct the Ideal opinion matrix IO by using equation (25) that is closer to each decision expert matrix as follows in equation 
(24). 

IO=

⎡

⎢
⎢
⎣

IO11 IO12 ⋯ IO1n
IO21 IO22 ⋯ IO2n

⋮ ⋮ ⋱ ⋮
IOm1 IOm2 ⋯ IOmn

⎤

⎥
⎥
⎦ (24)  

Where IOij =
∑e

l =1
1
e 〈Sl

αij〈Qkij
〉
,Sl

βij〈Qlij
〉
〉 = . 

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

S

τ

⎛

⎜
⎜
⎝

∏e

l =1

(
1 + (γ − 1).

(αi

τ

))1
e
−
∏e

l =1

(
1 −

(αi

τ

))1
e

∏e

l =1

(
1 + (γ − 1).

(αi

τ

))1
e
+ (γ − 1).

∏e

l =1

(
1 −

(αi

τ

))1
e

⎞

⎟
⎟
⎠

〈Q

δ

⎛

⎜
⎜
⎜
⎝

∏e

l =1

(

1 + (γ − 1).
(

ki

δ

))1
e

−
∏e

l =1

(

1 −

(
ki

δ

))1
e

∏e

l =1

(

1 + (γ − 1).
(

ki

δ

))1
e

+ (γ − 1)
∏e

l =1

(

1 −

(
ki

δ

))1
e

⎞

⎟
⎟
⎟
⎠

〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

S

τ

⎛

⎜
⎜
⎜
⎝

γ.

∏e

l =1

(
βi

τ

)1
e

∏e

l =1

(

1 + (γ − 1).
(

βi

τ

))1
e

+ (γ − 1)
∏e

l =1

(

1 −

(
βi

τ

))1
e

⎞

⎟
⎟
⎟
⎠

〈Q

δ

⎛

⎜
⎜
⎜
⎝

γ.

∏e

l =1

(
li

δ

)1
e

∏e

l =1

(

1 + (γ − 1).
(

li

δ

))1
e

+ (γ − 1)
∏n

l =1

(

1 −

(
li

δ

))1
e

⎞

⎟
⎟
⎟
⎠

〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(25) 

(I-c) Compute the right ideal opinion RIO and left ideal opinion LIO matrix’s by using equations (27) and (29) as follows in 
equations (26) and (28): 

RIO=

⎡

⎢
⎢
⎣

RIO11 RIO12 ⋯ RIO1n
RIO21 RIO22 ⋯ RIO2n

⋮ ⋮ ⋱ ⋮
RIOm1 RIOm2 ⋯ RIOmn

⎤

⎥
⎥
⎦ (26)  

Where 

RIOij =

{

max
l

(

Sc〈Sl
αij 〈Qkij 〉

, Sl
βij 〈Qlij 〉

〉
)}

(27)  

LIO=

⎡

⎢
⎢
⎣

LIO11 LIO12 ⋯ LIO1n
LIO21 LIO22 ⋯ LIO2n

⋮ ⋮ ⋱ ⋮
LIOm1 LIOm2 ⋯ LIOmn

⎤

⎥
⎥
⎦ (28)  

Where 

LIOij =

{

min
l

(

Sc〈Sl
αij 〈Qkij 〉

, Sl
βij 〈Qlij 〉

〉
)}

(29) 

(I-d) Calculate the distance measure denoted by dIOi, dRIOi and dLIOi from each decision experts matrix (M)
l to IO, RIO and LIO 

matrixs by using equation (7). 
(I-e) Evaluate closeness indices (CIs) “Yue [52]” by using equation (30). 

CI(l ) =

∑m

i=1
dRIOi +

∑m

i=1
dLIOi

∑m

i=1
dIOi +

∑m

i=1
dRIOi +

∑m

i=1
dLIOi

(30) 

(I-f) Calculate the decision expert’s weight by the following formula (31) as: 

ω(l ) =
CI(l )

∑l

i=1
CI(l )

(31)  

For l = 1, 2, ...,e. 
Phase II (Finding criteria weights) 
(II-a) Aggregate the expert matrix’s Ml to single matrix M by using intuitionistic double hierarchy linguistic weighted averaging 

operators’ definition 10 as given in (32). 

M =
[
ABij

]

m×n =

u1
u2
u3
⋮

um

⎡

⎢
⎢
⎢
⎢
⎣

L 1 L 2 L 3 L n
AB11

AB12
⋯ AB1n

AB21
AB22

⋯ AB2n
⋮ ⋯ ⋱ ⋮

ABm1
ABm2

⋯ ABmn

⎤

⎥
⎥
⎥
⎥
⎦

(32)  

Where ABij
= 〈Sαij 〈Qkij 〉, Sβij 〈Qlij 〉

〉 for (i= 1, 2, ...,m) and (j = 1, 2, ...,n). 

(II-b) By using equation (33) calculate the entropy measure [53] corresponding to each criteria of aggregated matrix. 
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Ei(Ψ)=
1
n
∑n

j=1

⎡

⎢
⎣

⎧
⎪⎨

⎪⎩

̅̅̅
2

√
cos π

⎛

⎜
⎝

( αi
τ

)
−
( βi

δ

)

4

⎞

⎟
⎠+

̅̅̅
2

√
cos π

⎛

⎜
⎝

( ki
τ

)
−
( li

δ

)

4

⎞

⎟
⎠ − 1

⎫
⎪⎬

⎪⎭
×

1
̅̅̅
2

√
− 1

⎤

⎥
⎦. (33) 

The weights of the criteria are determined by the following equations (34) and (35). 

Ej(A)=
1
m

∑m

i=1
Ei(Ψ), j = 1, 2, ..., n (34) 

Implies that 

ϖj =
Ej(A)

∑n

j=1
Ej(A)

(35) 

Phase-III (Conditional Probability based on TOPSIS method) 
(III-a) Compute the positive ideal solution (PIS) and negative ideal solution (NIS) of IDHLTSs by equations (36) and (37). i.e. U+ =

(u+
1 , u

+
2 , u

+
3 ,…, u+

n ) and U− = (u−
1 , u−

2 , u−
3 ,…, u−

n ) as follows: 

u+
j =

{

max
1≤i≤n

(

Sc〈Sαij 〈Qkij 〉, Sβij 〈Qlij 〉
〉
)}

(36)  

And 

u−
j =

{

min
1≤i≤n

(

Sc〈Sαij 〈Qkij 〉, Sβij 〈Qlij 〉
〉
)}

(37)  

Where (j = 1, 2, ...,m). When the TWDs, PIS and NIS are added together, they are equal to the set of states, X and XC.. 
(III-b) Determine the distance of each ui object of aggregated matrix to u+

j and u−
j by equations (38) and (39). 

d
(

ui, u+
j

)
=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
4n

∑n

j=1
ϖj

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⃒
⃒
⃒
⃒
⃒
⃒
S(αij

τ

) − S(α+j
τ

)

⃒
⃒
⃒
⃒
⃒
⃒

λ

+

⃒
⃒
⃒
⃒
⃒
⃒
⃒

Q(
kij
δ

) − Q(
k+j
δ

)

⃒
⃒
⃒
⃒
⃒
⃒
⃒

λ

+

⃒
⃒
⃒
⃒
⃒
⃒
⃒

S(
βij
τ

) − S(
β+j
τ

)

⃒
⃒
⃒
⃒
⃒
⃒
⃒

λ

+

⃒
⃒
⃒
⃒
⃒
⃒
⃒

Q(
lij
δ

) − Q(
l+j
δ

)

⃒
⃒
⃒
⃒
⃒
⃒
⃒

λ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎦

1
λ

(38)  

d
(

ui, u−
j

)
=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
4n

∑n

j=1
ϖj

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⃒
⃒
⃒
⃒
⃒
⃒
S(αij

τ

) − S(α−j
τ

)

⃒
⃒
⃒
⃒
⃒
⃒

λ

+

⃒
⃒
⃒
⃒
⃒
⃒
⃒

Q(
kij
δ

) − Q(
k−j
δ

)

⃒
⃒
⃒
⃒
⃒
⃒
⃒

λ

+

⃒
⃒
⃒
⃒
⃒
⃒
⃒

S(
βij
τ

) − S(
β−j
τ

)

⃒
⃒
⃒
⃒
⃒
⃒
⃒

λ

+

⃒
⃒
⃒
⃒
⃒
⃒
⃒

Q(
lij
δ

) − Q(
l−j
δ

)

⃒
⃒
⃒
⃒
⃒
⃒
⃒

λ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎦

1
λ

(39) 

(III-c) Calculate the relative closeness (RC) of the object ui by equation (40) and denoted by F i.. 

F i =
d
(

ui, u−
j

)

d
(
ui, u+

j
)
+ d

(
ui, u−

j
) (40) 

(III-d) Here F i assume to be conditional probability represented by (Pr) of an object belongs to the state X as follows in equation 
(41). 

Pr(X / ui)=F i (41)  

Where 0 ≤ Pr(X /ui) ≤ 1.. 

6. A novel DTRSs model with DHLDTRS expression of loss functions 

Phase-IV: As from the definition of IDHLSs, they consists of two terms namely first and second hierarchy linguistic term sets, which 
easily handle uncertainty and vagueness more than a single term set. In this section, we attempt to express the loss function in TWDs 
using IDHLTSs and suggest a new DTRSs model based on IDHLTSs information. Here, we addressed the loss functions in TWDs using 
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intuitionistic double hierarchy linguistic number (IDHLTNs) as well as how to build a new DTRS model for IDHLTNs. This model 
consist of two states such as ψ = {X,Xc} which expressed an element belong to X or not, and regard to three actions like φ = {aP,aB,

aN}. Where aP, aB, aN shows actions which is applied for determining the objects ui such as aP denotes ui ∈ POS(X) positive region, aB 
denotes ui ∈ BND(X) boundary region and aN denotes ui ∈ NEG(X) of respectively. The overall situation are represents of an object, 
while the judgement are represented by the action. Here we construct the LF matrix for the IDHLTS environment given in Table 1. 

From Table 1, we see that the determined LFs are IDHLTNs. hρPP, hρBP and hρNP represent loss degrees with DHLNs produced by 
taking actions of aP, aB and aN, for u given state X, respectively. Similarly the loss degrees generated by conducting the same actions on 
u specific state . So, in this case, hρ ∕= φ. Based on the definition of IDHLNs and the semantics of DTRS [38,54] the acceptable relation 
are given in equations 42 and 43. 

hρPP≼hρBP ≺ hρNP (42)  

hρNN≼hρBN ≺ hρNN (43)  

That is, the loss degrees of incorrect judgment is more than the loss degree of delaying decision, and both of these loss degree is more 
than the loss degree of correct judgement. The conditional probability is one of the important part of Bayesian decision making 
technique [30,31]. 

Pr(X|ui),Pr(Xc|ui), represents the conditional probability of an object ui belonging to X and Xc respectively. They are all related to 
real numbers, such that PPr(X|ui),Pr(Xc|ui) = 1. Thus, given in object ui the expected loss for the corresponding action R(aΛ|ui) where 
(Λ= P,B,N) can be determined in following equations (44)–(46). 

R(aP|ui)=Pr(X|ui)⨀HhρPP⨁H Pr(Xc|ui)⨀HhρPN (44)  

R(aB|ui)=Pr(X|ui)⨀HhρBP⨁H Pr(Xc|ui)⨀HhρBN (45)  

R(aN |ui)=Pr(X|ui)⨀HhρNP⨁H Pr(Xc|ui)⨀HhρNN (46) 

Based on the minimum loss decision rules can be derived by using the result given [27,28], which are given in equations (47)–(49) 
as follows  

(1) Decide ui ∈ POS(X) indicate that the action are acceptable, if 

Sc(R(aP|ui))≤ Sc(R(aB|ui)) ≤ Sc(R(aN|ui)) (47)    

(2) Decide ui ∈ BND(X), shows the action are delayed, if 

Sc(R(aB|ui))≤ Sc(R(aP|ui)) ≤ Sc(R(aN |ui)) (48)    

(3) Decide ui ∈ NEG(X), represents the action are rejected, if 

Sc(R(aN |ui))≤ Sc(R(aP|ui)) ≤ Sc(R(aB|ui)) (49) 

Based on the results mentioned above, we propose a novel MCGDM method in the environment of IDHLTSs. As shown in Fig. 1, the 
description of the proposed method is given in the following short steps. 

Step 1. On the basis of the practical context, we determine the elements of the IDHLTSs information system including alternatives 
and criteria. 

Step 2. According to the distance measure of ideal opinion, left ideal opinion, and right ideal opinion, and the closeness indices and 
decision expert’s weights are attained. 

Step 3. Determine the aggregated matrix by using the weights of the decision expert weight and the proposed IDHLHWA operator. 

Step (4). The weights of the criteria can be evaluated by entropy measure. The weights of criteria reflect the importance of these 
criteria in the evaluation system. 

Step (5). Determine u+
j and u−

j based on formula (36) and (37). Combining the TWDs, PIS+ and NIS− are equivalent to the set of 

Table 1 
Loss functions.   

X(P) Xc(N)

aP hρPP = 〈SαPP 〈QkPP 〉 ,SβPP 〈QlPP 〉〉 hρPN = 〈SαPN 〈QkPN 〉,SβPN 〈QlPN 〉〉 
aB hρBP = 〈SαBP 〈QkBP 〉 ,SβBP 〈QlBP 〉〉 hρBN = 〈SαBN 〈QkBN 〉,SβBN 〈QlBN 〉〉 
aN hρNP = 〈SαNP 〈QkNP 〉,SβNP 〈QlNP 〉〉 hρNN = 〈SαNN 〈QkNN 〉 ,SβNN 〈QlNN 〉〉  
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states, that is X and Xc. Then determine the distance of each ui object of aggregated matrix to u+
j and the u−

j by equations (38) and (39), 
and the relative closeness coefficient (RC) expressed as F i can be calculated by formulas (40-41). And the conditional probability that 
the object belongs to the state X can be estimated based on the TOPSIS method. 

Step (6). Based on the Hamacher aggregation operators, the expected loss of each action can be aggregated respectively by formulas 
(44-46). And then, the score functions of expected losses can be calculated. 

Step (7). In light of the decision rules (47–49), we can ascertain the decision result for each object further. And the decision rules 
(47–49) are deduced by the minimum-loss principle. 

7. Application of proposed method 

A practical DM problem concerning to selection of sustainable Logistics supplier considered as an example in this section to validate 
the applicability and practicality of the developed methodology. 

7.1. Case study 

Logistics supplier selection is a multi-criteria problem that necessitates the consideration of several attributes. Thus, for logistics 
provider selection, Spencer et al. [2] and Govindan et al. [9] identified 23 and 35 potential attributes, respectively. Aicha identified 11 
key 3 PL criteria, each with its own set of criteria [5]. Although the above selection criteria are often used in the selection of 3 PLs and 
they are operational in nature, supply chain strategy and service value creation elements are rarely considered in the selection of 
logistics providers in past studies. In the scenario of logistics service value co-creation, it is necessary to reconsider the selection 
criteria. 

The main principle of creating and maintaining customer relationships and the main objective and process of economic exchange is 
the creation of value [55]. In today’s supply chain management climate, greater and greater businesses recognize the potential of 
logistics service value co-creation with customers. Logistics service value co-creation has emerged as a new option for 3 PLs to gain a 
competitive edge. While also providing clients with more tailored product and service offerings [56]. One of the best critical concerns 
for logistics service value co-creation in a supply chain management environment is supplier selection [57]. The combination of 
conventional selection variables including cost, quality, fast response, and location with new aspects in service value co-creation like as 
unique value creation, knowledge management, and service development is an emerging trend in 3 PL supplier selection. We combine 
conventional operational-focused selection characteristics with value co-creation focused supply chain management strategic selection 
criteria to provide a broad set of selection criteria for logistics service value co-creation scenarios. The step wise procedure are given in 
next section. 

7.1.1. Numerical steps 
In this section, we will explore at a group of logistic supply chain DM challenges that include a 4 PL solution supplier searching for 

the best 3 PL provider for service value co-creation with its client (an international manufacturing company group). Assume there are 

Fig. 1. Graphical representation of proposed method.  
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six global 3 PL suppliers Ui(i= 1,2,…,6) and three decision experts with unknown weight ω(l ) from various professional disciplines 
are included in the decision-making. Let there are six criteria L j(i= 1, 2,…,6) with unknown weight information ϖj for selecting 3 PL 
suppliers in a service value co-creation environment, the detail description are as follows. 

L 1: Value collaboration ability: The foundation of value co-creation is value collaboration, which should be presented from the 
perspectives of strategic, business aim, and market. 

L 2: Knowledge matching ability: Knowledge is essential in logistics service value co-creation, knowledge management is included 
in the value co-creation process. 

L 3: Service innovation ability: Service innovation demonstrates the 3 PL ability to achieve service value co-creation in logistics 
service solutions. 

L 4: Quality of service: The conventional assessment quality for 3 PL selection is service quality, which also shows service value co- 
creation. 

L 5: Resource interaction ability: Logistics resources are the material basis forco-creation service value. The logistics service is 
provided combination and interaction with various logistic resources from the participating 3 PLs. 

L 6: Risk analysis: Risk is an important factor in logistic service value Cocreation order delay sare the risk for all companies which is 
an important outsource their logistics activities. 

The decision results are summarized in the following steps four Phases. 
Phase-I (Expert weights): 
(I-a) Construct the experts evaluation matrix E1, E2 and E3 in the form of intuitionistic double hierarchy linguistic term sets, so the 

linguistic term set is denoted by S = {S0 = medium, S1 = low, S2 = sligtly low, S3 = very low, S4 = high, S5 = slightly high, S6 = very high}
and Q = {Q0 = right,Q1 = only right,Q2 = much,Q3 = very much,Q4 = little,Q5 = just little,Q6 = extremely little} are defined based on 
the following set as follows in Tables 2a, 2b, 3a, 3b, 4a and 4b: 

(I-b) Calculate the Ideal opinion matrix by using equation (25) as shown in Table-5a, 5b: 
(I-c) Evaluated the right and left ideal matrix by using equations 27 and 29 is shown in Table-6a, 6b, 7a and 7b: 
(I-d, e, f) Based on equation (7) determine the distance measure denoted by dIOi, dRIOi and dLIOi and by using equations 30 and 31 

the weights of experts are determined as follows: 

ω1 = 0.353,ω2 = 0.324,ω3 = 0.323 

Phase-II (Criteria weights) 
(II-a) Aggregate all the expert matrix’s Ml to single matrix M by using the proposed aggregation (IDHLHWA) operators is given in 

Table-8a, 8b: 
(II-b, c) Calculate the entropy measure (33) of aggregated matrix, and by equations (34) and (35) calculate the criteria weights as 

follows. 

ϖ1 = 0.184,ϖ2 = 0.17,ϖ3 = 0.176,ϖ4 = 0.17,ϖ5 = 0.124,ϖ6 = 0.176.

Phase-III (Conditional probability) 
(III-a) Applying equations (36) and (37) to determine the PIS and NIS as follows. 

u+
j =

(
〈S6〈Q2.94〉, S0〈Q1.26〉〉, 〈S3.4〈Q2.57〉, S1.62〈Q2〉〉, 〈S2.57〈Q2.19〉, S2.13〈Q2.1〉〉,
〈S2.77〈Q2.04〉, S2.13〈Q1.6〉〉, 〈S6〈Q1.2〉, S0〈Q3.33〉〉, 〈S3.42〈Q2.47〉, S1.6〈Q1.69〉〉

)

u−
j =

(
〈S1.77〈Q1.98〉, S1.57〈Q2.63〉〉, 〈S1.52〈Q1.88〉, S2〈Q1.62〉〉, 〈S1.78〈Q1.79〉, S2.1〈Q0〉〉,

〈S2.69〈Q1.82〉, S0〈Q0〉〉, 〈S0.88〈Q3.12〉, S2.3〈Q0〉〉, 〈S1.47〈Q1.52〉, S1.8〈Q2.36〉〉

)

(III-b) By equations (38) and (39) the distance of each object ui of aggregated matrix to u+
j and u−

j are calculated in Table-9. 
(III-c, d). The relative closeness F i and conditional probability are evaluated by equations (40) and (41) in Table-10. 
Phase-IV (Decision making) 
(IV-a) Construct the loss functions matrix in the form of IDHLTSs is given in Table 11 as follows: 
(IV-b) On the basis of loss functions and conditional probability, the expected losses can be determined apply equations (44)–(46). 

Consider that γ = 2 is a parameter. To make the comparison easier, the expected loss is finally transform into score functions. The result 
is given in Table 12. 

(IV-c) Determine the decision result for each object further using the decision rules (1), (2) and (3) based on the minimum loss 

Table-2a 
Expert matrix E1.   

L 1 L 2 L 3 

u1 〈S3〈Q2〉,S1 〈Q3〉〉 〈S2〈Q3〉,S3〈Q2〉〉 〈S0〈Q2〉,S3〈Q4〉〉 
u2 〈S2〈Q1〉,S3 〈Q4〉〉 〈S5〈Q1〉,S1〈Q1〉〉 〈S3〈Q1〉,S1〈Q2〉〉 
u3 〈S4〈Q2〉,S1 〈Q3〉〉 〈S2〈Q4〉,S2〈Q1〉〉 〈S3〈Q2〉,S1〈Q4〉〉 
u4 〈S6〈Q4〉,S0 〈Q1〉〉 〈S4〈Q3〉,S1〈Q2〉〉 〈S5〈Q2〉,S1〈Q3〉〉 
u5 〈S1〈Q2〉,S4 〈Q3〉〉 〈S4〈Q2〉,S0〈Q3〉〉 〈S6〈Q2〉,S0〈Q2〉〉 
u6 〈S2〈Q3〉,S4 〈Q2〉〉 〈S5〈Q3〉,S1〈Q2〉〉 〈S2〈Q4〉,S3〈Q1〉〉  

A. Qadir et al.                                                                                                                                                                                                          



Heliyon 9 (2023) e18323

15

principle. Based on the rules (1), (2) and (3), the final result of each object’s decision can be determined that as POS(X) = {u2,u4,u6}, 
BND(X) = {u1, u3, u5} and NEG(X) = φ. The result are shown in Fig. 2. From the above result we analyze that u2, u4, u6 are considered 
to be selected and u1, u3, u5 can gather extra information and await future decisions. 

Table-2b 
Expert matrix E1.   

L 4 L 5 L 6 

u1 〈S1〈Q3〉,S4 〈Q3〉〉 〈S4〈Q3〉,S1〈Q2〉〉 〈S3〈Q2〉,S1〈Q3〉〉 
u2 〈S3〈Q5〉,S1 〈Q1〉〉 〈S6〈Q1〉,S0〈Q4〉〉 〈S2〈Q3〉,S2〈Q2〉〉 
u3 〈S4〈Q2〉,S1 〈Q0〉〉 〈S1〈Q4〉,S2〈Q0〉〉 〈S4〈Q1〉,S1〈Q3〉〉 
u4 〈S0〈Q3〉,S4 〈Q2〉〉 〈S1〈Q3〉,S3〈Q2〉〉 〈S0〈Q0〉,S2〈Q4〉〉 
u5 〈S1〈Q5〉,S4 〈Q0〉〉 〈S4〈Q2〉,S1〈Q0〉〉 〈S3〈Q4〉,S3〈Q1〉〉 
u6 〈S3〈Q1〉,S3 〈Q2〉〉 〈S2〈Q1〉,S3〈Q1〉〉 〈S5〈Q3〉,S0〈Q2〉〉  

Table-3a 
Expert matrix E2.   

L 1 L 2 L 3 

u1 〈S1〈Q0〉,S2 〈Q5〉〉 〈S3〈Q2〉,S2〈Q1〉〉 〈S2〈Q0〉,S4〈Q5〉〉 
u2 〈S4〈Q2〉,S1 〈Q3〉〉 〈S0〈Q1〉,S4〈Q3〉〉 〈S2〈Q3〉,S2〈Q2〉〉 
u3 〈S2〈Q2〉,S3 〈Q3〉〉 〈S3〈Q1〉,S2〈Q4〉〉 〈S2〈Q2〉,S3〈Q0〉〉 
u4 〈S2〈Q1〉,S0 〈Q1〉〉 〈S2〈Q1〉,S3〈Q2〉〉 〈S2〈Q1〉,S3〈Q1〉〉 
u5 〈S1〈Q3〉,S4 〈Q2〉〉 〈S3〈Q2〉,S2〈Q2〉〉 〈S3〈Q2〉,S1〈Q1〉〉 
u6 〈S1〈Q5〉,S4 〈Q0〉〉 〈S2〈Q1〉,S4〈Q2〉〉 〈S2〈Q1〉,S3〈Q3〉〉  

Table-3b 
Expert matrix E2.   

L 4 L 5 L 6 

u1 〈S3〈Q2〉,S1 〈Q4〉〉 〈S3〈Q2〉,S1〈Q2〉〉 〈S2〈Q3〉,S2〈Q1〉〉 
u2 〈S1〈Q0〉,S3 〈Q3〉〉 〈S4〈Q2〉,S0〈Q3〉〉 〈S4〈Q1〉,S1〈Q3〉〉 
u3 〈S4〈Q1〉,S0 〈Q3〉〉 〈S2〈Q3〉,S3〈Q0〉〉 〈S2〈Q2〉,S2〈Q0〉〉 
u4 〈S1〈Q2〉,S4 〈Q2〉〉 〈S4〈Q1〉,S1〈Q3〉〉 〈S5〈Q4〉,S1〈Q1〉〉 
u5 〈S1〈Q0〉,S1 〈Q6〉〉 〈S6〈Q4〉,S0〈Q1〉〉 〈S0〈Q3〉,S6〈Q2〉〉 
u6 〈S3〈Q1〉,S1 〈Q2〉〉 〈S3〈Q3〉,S1〈Q2〉〉 〈S0〈Q0〉,S3〈Q4〉〉  

Table-4a 
Expert matrix E3.   

L 1 L 2 L 3 

u1 〈S2〈Q4〉,S2 〈Q1〉〉 〈S4〈Q1〉,S2〈Q3〉〉 〈S1〈Q4〉,S5〈Q3〉〉 
u2 〈S0〈Q1〉,S5 〈Q3〉〉 〈S2〈Q2〉,S3〈Q3〉〉 〈S0〈Q2〉,S3〈Q1〉〉 
u3 〈S2〈Q1〉,S2 〈Q3〉〉 〈S0〈Q1〉,S2〈Q1〉〉 〈S1〈Q2〉,S3〈Q2〉〉 
u4 〈S3〈Q4〉,S3 〈Q2〉〉 〈S2〈Q3〉,S1〈Q2〉〉 〈S3〈Q4〉,S2〈Q1〉〉 
u5 〈S2〈Q3〉,S2 〈Q1〉〉 〈S3〈Q2〉,S3〈Q2〉〉 〈S2〈Q3〉,S2〈Q0〉〉 
u6 〈S1〈Q3〉,S1 〈Q2〉〉 〈S3〈Q4〉,S1〈Q2〉〉 〈S4〈Q2〉,S1〈Q1〉〉  

Table-4b 
Expert matrix E3.   

L 4 L 5 L 6 

u1 〈S4〈Q1〉,S1 〈Q3〉〉 〈S3〈Q3〉,S1〈Q2〉〉 〈S0〈Q0〉,S3〈Q4〉〉 
u2 〈S3〈Q3〉,S2 〈Q1〉〉 〈S4〈Q1〉,S1〈Q3〉〉 〈S3〈Q4〉,S1〈Q1〉〉 
u3 〈S0〈Q3〉,S2 〈Q2〉〉 〈S0〈Q3〉,S2〈Q1〉〉 〈S2〈Q3〉,S1〈Q2〉〉 
u4 〈S3〈Q4〉,S1 〈Q1〉〉 〈S2〈Q4〉,S2〈Q1〉〉 〈S4〈Q3〉,S2〈Q1〉〉 
u5 〈S2〈Q6〉,S2 〈Q0〉〉 〈S2〈Q3〉,S3〈Q2〉〉 〈S2〈Q3〉,S2〈Q0〉〉 
u6 〈S3〈Q4〉,S3 〈Q1〉〉 〈S4〈Q2〉,S1〈Q3〉〉 〈S4〈Q1〉,S1〈Q3〉〉  
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8. Comparison section 

In this section, we compare our proposed method with the GRA method and discuss the advantages and implementation of the 
proposed method. To determine the conditional probability based on GRA with TWDs is proposed by Liang et al., [47]. 

Hence this comparison is taken by considering the decision expert matrix and the same expert weights ω = (0.353,0.324,0.323)T 

and criteria weights ϖ = (0.184,0.17,0.176,0.17,0.124,0.176)T as we have calculated in above example. Aggregate the all the de-

Table-5a 
Ideal opinion matrix.   

L 1 L 2 L 3 

u1 〈S2.02〈Q2.18〉,S1.61 〈Q2.64〉〉 〈S3.05〈Q2.02〉,S2.32〈Q1.86〉〉 〈S1.01〈Q2.18〉,S4〈Q2.91〉〉 
u2 〈S2.18〈Q1.33〉,S2.64 〈Q3.34〉〉 〈S2.82〈Q1.33〉,S2.38〈Q2.13〉〉 〈S1.72〈Q2 〉,S1.86〈Q2.32〉〉 
u3 〈S2.75〈Q1.66〉,S1.86 〈Q3.02〉〉 〈S1.72〈Q2.16〉,S2.02〈Q1.67〉〉 〈S2.02〈Q1.98〉,S2.13〈Q0〉〉 
u4 〈S6〈Q3.16〉,S0 〈Q1.28〉〉 〈S2.75〈Q2.37〉,S1.48〈Q2.02〉〉 〈S3.59〈Q2.46〉,S1.86〈Q1.50〉〉 
u5 〈S1.33〈Q2.66〉,S3.25 〈Q1.86〉〉 〈S3.34〈Q1.98〉,S0〈Q2.32〉〉 〈S6〈Q2.33〉 ,S0〈Q0 〉〉 
u6 〈S1.33〈Q3.84〉,S2.63 〈Q0〉〉 〈S3.59〈Q2.78〉,S1.67〈Q2.02〉〉 〈S2.75〈Q2.45〉,S2.13〈Q2.1〉〉  

Table-5b 
Ideal opinion matrix.   

L 4 L 5 L 6 

u1 〈S2.78〈Q2.02〉 ,S1.67〈Q3.34〉〉 〈S3.34〈Q2.66〉,S1.01〈Q2.1〉〉 〈S1.72〈Q1.72〉,S1.86〈Q2.38〉〉 
u2 〈S2.37〈Q3.12〉 ,S1.86〈Q1.48〉〉 〈S6〈Q1.33〉,S0〈Q3.34〉〉 〈S3.05〈Q2.78〉,S1.28〈Q1.85〉〉 
u3 〈S2.92〈Q2.02〉 ,S0〈Q0 〉〉 〈S1.01〈Q3.34〉,S2.32〈Q0〉〉 〈S2.75〈Q2.37〉,S1.28〈Q0 〉〉 
u4 〈S1.39〈Q3.05〉 ,S2.62〈Q1.61〉〉 〈S2.45〈Q2.78〉,S1.86〈Q1.86〉〉 〈S3.47〈Q2.52〉,S1.61〈Q1.67〉〉 
u5 〈S1.33〈Q6 〉,S2.08〈Q0〉〉 〈S6〈Q3.05〉,S0〈Q0〉〉 〈S1.72〈Q3.34〉,S4.2〈Q0 〉〉 
u6 〈S2.97〈Q2.16〉 ,S2.13〈Q1.61〉〉 〈S3.05〈Q2〉 ,S1.48〈Q1.86〉〉 〈S3.48〈Q1.39〉,S0〈Q2.95〉〉  

Table-6a 
Right ideal matrix.   

L 1 L 2 L 3 

u1 〈S2〈Q4〉,S2 〈Q1〉〉 〈S3〈Q2〉,S2〈Q1〉〉 〈S1〈Q4〉,S5〈Q1〉〉 
u2 〈S4〈Q2〉,S1 〈Q3〉〉 〈S5〈Q1〉,S1〈Q1〉〉 〈S2〈Q3〉,S2〈Q2〉〉 
u3 〈S4〈Q2〉,S1 〈Q3〉〉 〈S2〈Q4〉,S2〈Q1〉〉 〈S2〈Q2〉,S3〈Q0〉〉 
u4 〈S6〈Q4〉,S0 〈Q1〉〉 〈S4〈Q3〉,S1〈Q2〉〉 〈S3〈Q4〉,S2〈Q1〉〉 
u5 〈S2〈Q3〉,S2 〈Q1〉〉 〈S4〈Q2〉,S0〈Q3〉〉 〈S3〈Q2〉,S1〈Q1〉〉 
u6 〈S1〈Q5〉,S4 〈Q0〉〉 〈S5〈Q3〉,S1〈Q2〉〉 〈S2〈Q4〉,S3〈Q1〉〉  

Table-6b 
Right ideal matrix.   

L 4 L 5 L 6 

u1 〈S4〈Q1〉,S1 〈Q3〉〉 〈S3〈Q3〉,S1〈Q2〉〉 〈S2〈Q3〉,S2〈Q1〉〉 
u2 〈S3〈Q5〉,S1 〈Q1〉〉 〈S6〈Q1〉,S0〈Q4〉〉 〈S3〈Q4〉,S1〈Q1〉〉 
u3 〈S4〈Q2〉,S1 〈Q0〉〉 〈S2〈Q3〉,S3〈Q0〉〉 〈S2〈Q3〉,S2〈Q0〉〉 
u4 〈S3〈Q4〉,S1 〈Q1〉〉 〈S2〈Q4〉,S2〈Q1〉〉 〈S5〈Q4〉,S1〈Q1〉〉 
u5 〈S2〈Q6〉,S2 〈Q0〉〉 〈S6〈Q4〉,S0〈Q1〉〉 〈S2〈Q3〉,S2〈Q0〉〉 
u6 〈S3〈Q4〉,S3 〈Q1〉〉 〈S3〈Q3〉,S1〈Q2〉〉 〈S5〈Q3〉,S0〈Q2〉〉  

Table-7a 
Left ideal matrix.   

L 1 L 2 L 3 

u1 〈S1〈Q0〉,S2 〈Q5〉〉 〈S4〈Q1〉,S2〈Q3〉〉 〈S1〈Q4〉,S5〈Q1〉〉 
u2 〈S2〈Q1〉,S3 〈Q4〉〉 〈S2〈Q2〉,S3〈Q3〉〉 〈S0〈Q2〉,S3〈Q3〉〉 
u3 〈S2〈Q1〉,S2 〈Q3〉〉 〈S0〈Q1〉,S2〈Q1〉〉 〈S1〈Q2〉,S3〈Q2〉〉 
u4 〈S2〈Q1〉,S0 〈Q1〉〉 〈S2〈Q1〉,S3〈Q2〉〉 〈S2〈Q1〉,S3〈Q1〉〉 
u5 〈S1〈Q3〉,S4 〈Q2〉〉 〈S3〈Q2〉,S2〈Q2〉〉 〈S3〈Q2〉,S1〈Q1〉〉 
u6 〈S2〈Q3〉,S4 〈Q2〉〉 〈S2〈Q1〉,S4〈Q2〉〉 〈S2〈Q4〉,S3〈Q3〉〉  
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cision matrix to a single decision matrix by using proposed aggregation operators and the PIS and NIS are calculated by equations (36) 
and (37) as 

Table-7b 
Left ideal matrix.   

L 4 L 5 L 6 

u1 〈S1〈Q3〉,S4 〈Q3〉〉 〈S3〈Q2〉,S1〈Q2〉〉 〈S0〈Q0〉,S3〈Q4〉〉 
u2 〈S1〈Q0〉,S3 〈Q3〉〉 〈S4〈Q1〉,S1〈Q3〉〉 〈S2〈Q3〉,S2〈Q2〉〉 
u3 〈S0〈Q3〉,S2 〈Q2〉〉 〈S0〈Q3〉,S2〈Q1〉〉 〈S4〈Q1〉,S1〈Q3〉〉 
u4 〈S0〈Q3〉,S4 〈Q2〉〉 〈S1〈Q3〉,S3〈Q2〉〉 〈S0〈Q0〉,S2〈Q4〉〉 
u5 〈S1〈Q0〉,S1 〈Q6〉〉 〈S2〈Q3〉,S3〈Q2〉〉 〈S0〈Q3〉,S6〈Q2〉〉 
u6 〈S3〈Q1〉,S3 〈Q2〉〉 〈S4〈Q2〉,S1〈Q3〉〉 〈S0〈Q0〉,S3〈Q4〉〉  

Table-8a 
Aggregated IDHLT matrix.   

L 1 L 2 L 3 

u1 〈S1.77〈Q1.98〉,S1.57〈Q2.63〉〉 〈S2.98〈Q1.78〉,S2.31〈Q1.84〉〉 〈S0.99〈Q1.98〉,S3.95〈Q2.9〉〉 
u2 〈S1.99〈Q1.2〉 ,S2.62〈Q3.33〉〉 〈S2.58〈Q1.2〉 ,S2.29〈Q2.1〉〉 〈S1.45〈Q1.9〉 ,S1.8〈Q2.29〉〉 
u3 〈S2.5〈Q1.46〉,S1.8〈Q3 〉〉 〈S1.52〈Q1.88〉,S2〈Q1.62〉〉 〈S1.78〈Q1.79〉,S2.1〈Q0〉〉 
u4 〈S6〈Q2.94〉,S0〈Q1.26〉〉 〈S2.5〈Q2.13〉,S1.44〈Q2 〉〉 〈S3.39〈Q2.28〉,S1.8〈Q1.49〉〉 
u5 〈S1.2〈Q2.49〉,S3.26〈Q1.87〉〉 〈S3.12〈Q1.79〉,S0〈Q2.31〉〉 〈S6〈Q2.14〉,S0 〈Q0〉〉 
u6 〈S1.11〈Q3.68〉,S2.64〈Q0〉〉 〈S3.4〈Q2.57〉,S1.62〈Q2 〉〉 〈S2.57〈Q2.19〉,S2.13〈Q2.1〉〉  

Table-8b 
Aggregated IDHLT matrix.   

L 4 L 5 L 6 

u1 〈S2.9〈Q2.67〉 ,S1.78〈Q1.69〉〉 〈S3.13〈Q2.44〉,S1〈Q2〉〉 〈S1.47〈Q1.52〉,S1.8〈Q2.36〉〉 
u2 〈S2.13〈Q2.89〉,S1.8〈Q1.44〉〉 〈S6〈Q1.2 〉,S0〈Q3.33〉〉 〈S2.89〈Q2.57〉,S1.28〈Q1.84〉〉 
u3 〈S2.69〈Q1.82〉,S0〈Q0〉〉 〈S0.88〈Q3.12〉,S2.3〈Q0〉〉 〈S2.49〈Q2.25〉,S1.25〈Q0 〉〉 
u4 〈S1.37〈Q2.84〉,S2.64〈Q1.6〉〉 〈S2.34〈Q2.57〉,S1.87〈Q1.8〉〉 〈S3.42〈Q2.47〉,S1.6〈Q1.69〉〉 
u5 〈S1.2〈Q6 〉,S2.1〈Q0 〉〉 〈S6〈Q2.89〉,S0〈Q0〉〉 〈S1.45〈Q3.12〉,S4.15〈Q0 〉〉 
u6 〈S2.77〈Q2.04〉,S2.13〈Q1.6〉〉 〈S2.89〈Q1.9 〉,S1.5〈Q1.8〉〉 〈S3.27〈Q1.11〉,S0〈Q2.89〉〉  

Table-9 
Distance of each ui to u+

j and u−
j .  

U u1 u2 u3 u4 u5 u6 

d(ui,u+
j ) 0.0245 0.0346 0.0081 0.0341 0.0312 0.0332 

d(ui,u−
j ) 0.0349 0.0217 0.0428 0.0171 0.0335 0.0253  

Table-10 
The RC and Conditional Probability with TOPSIS method.  

U u1 u2 u3 u4 u5 u6 

F i 0.4125 0.6145 0.1591 0.6654 0.4815 0.5675 
Pr(X|ui) 0.4125 0.6145 0.1591 0.6654 0.4815 0.5675  

Table-11 
Loss function information.   

X(P) Xc(N)

aP 〈S2.17〈Q1.35〉 ,S2.63〈Q3.3〉〉 〈S2.63〈Q3.3〉,S2.17〈Q1.35〉〉 
aB 〈S1.71〈Q2.12〉 ,S2〈Q1.65〉〉 〈S2〈Q1.65〉,S1.71〈Q2.12〉〉 
aN 〈S2.73〈Q1.66〉 ,S1.86〈Q3 〉〉 〈S1.86〈Q3〉,Sβ2.73 〈Q1.66〉〉  
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u+
j =

(
〈S6〈Q2.94〉, S0〈Q1.26〉〉, 〈S3.4〈Q2.57〉, S1.62〈Q2〉〉, 〈S2.57〈Q2.19〉, S2.13〈Q2.1〉〉,
〈S2.77〈Q2.04〉, S2.13〈Q1.6〉〉, 〈S6〈Q1.2〉, S0〈Q3.33〉〉, 〈S3.42〈Q2.47〉, S1.6〈Q1.69〉〉

)

u−
j =

(
〈S1.77〈Q1.98〉, S1.57〈Q2.63〉〉, 〈S1.52〈Q1.88〉, S2〈Q1.62〉〉, 〈S1.78〈Q1.79〉, S2.1〈Q0〉〉,

〈S2.69〈Q1.82〉, S0〈Q0〉〉, 〈S0.88〈Q3.12〉, S2.3〈Q0〉〉, 〈S1.47〈Q1.52〉, S1.8〈Q2.36〉〉

)

Calculate the grey relational coefficient (GRC) by equations (50) and (52) on the jth criterion among ui and PIS+,NIS− and the 
degree of grey relational coefficient of each alternative from PIS+,NIS− are determined by using equations (51) and (53) in Table 13. 

g+
ij =

min
1≤i≤n

(

min
1≤j≤n

)

d+
ij + ζmax

1≤i≤n

(

max
1≤j≤n

)

d+
ij

d+
ij + ζmax

1≤i≤n

(

max
1≤j≤n

)

d+
ij

(50)  

Table-12 
Score functions of expected losses.  

U u1 u2 u3 u4 u5 u6 

Sc(R(aP |ui)) 0.2781 0.2123 0.3571 0.1957 0.2549 0.2273 
Sc(R(aB |ui)) 0.2170 0.2850 0.0951 0.2999 0.2429 0.2710 
Sc(R(aN|ui)) 0.2584 0.2999 0.1738 0.3084 0.2747 0.2917  

Fig. 2. Graphical Representation of Alternative ranking.  

Table-13 
GRC between PIS and NIS.  

U u1 u2 u3 u4 u5 u6 

G+
i 0.6064 0.7238 0.5678 0.8051 0.5037 0.7537 

G−
i 0.7365 0.6206 0.8808 0.5841 0.5256 0.5913  

Table-14 
RRD and its Conditional probability.  

U u1 u2 u3 u4 u5 u6 

F i 0.4515 0.5384 0.3919 0.5795 0.4894 0.5604 
Pr(X|ui) 0.4515 0.5384 0.3919 0.5795 0.4894 0.5604  
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G+
i =

∑m

j=1
ωg+

ij (51)  

g−
ij =

min
1≤i≤n

(

min
1≤j≤n

)

d−
ij + ζmax

1≤i≤n

(

max
1≤j≤n

)

d−
ij

d−
ij + ζmax

1≤i≤n

(

max
1≤j≤n

)

d−
ij

(52)  

G−
i =

∑m

j=1
ωg−

ij (53) 

d+
ij = (uij, u+

j ) , d−
ij = (uij, u−

j ) and (i = 1, 2, ...,m)(j = 1, 2, ...,n). 
The relative relational degree (RRD) denoted by F i and conditional probability (Pr) of an object belongs to the state X based on 

GRA method are determined by equations (54) and (55) as 

F i =
G+

i

G+
i + G−

i
(54)  

Pr(X/ui) = F i (55) 

The relative relational degree (RRD) and Conditional probability based on GRA method is evaluated in Table 14. 
Next, we assume the same loss function as obtained in Table-11, based on IDHLTS operational laws also we determine the expected 

loss based on LF as shown in Table-15. 
Hence the final result of each object’s decision can be determined according to the minimum loss principle, (1), (2) and (3) that as 

POS(X) = {u2, u5}, BND(X) = {u1, u3, u4, u6} and NEG(X) = φ. From Table-15, shows that the GRA method makes nearly identical 
decisions as our suggested method. In this way, the effectiveness of our proposed method can be demonstrated. The difference between 
the results of the GRA and our method is the object u4, u6 is divided into POS(X) to BND(X) and the object u5 is divided by BND(X) to 
POS(X). The reasons can be conculuded due to the distance formula of the GRA method cannot accurately reflect the position rela-
tionship of each scheme, and there may be a situation that the scheme is close to both positive and negative ideal solutions, so it cannot 
fully reflect the advantages and disadvantages of the comprehensive level of each assessed object. There are other conditional 
probability findings that are calculated using various methodologies and operators. Hence it is analyzed that our proposed method is 
efficient and practical to solve the ambiguity and uncertainty to solve the DM problems. There are more results, ranking, and con-
ditional probabilities we calculated based on different methods and aggregation operators, as a result, u₄ is our best result as shown in 
Table-16, 17. 

The TWD as a key component, the conditional probabilities can also be used in ranking schemes. Conditional probabilities are 

Table-15 
Score functions of expected losses.  

U u1 u2 u3 u4 u5 u6 

Sc(R(aP |ui)) 0.2722 0.2634 0.2732 0.2406 0.2217 0.2693 
Sc(R(aB |ui)) 0.2319 0.3013 0.2092 0.1687 0.2449 0.2684 
Sc(R(aN|ui)) 0.2679 0.2860 0.2533 0.2741 0.2760 0.2902  

Table-16 
Conditional probability of MADM methods.  

Methods Pr(X|u1) Pr(X|u2) Pr(X|u3) Pr(X|u4) Pr(X|u5) Pr(X|u6)

GRA Method [48] 0.4515 0.5384 0.3919 0.5795 0.4894 0.5604 
WAM [39] 0.4558 0.5597 0.3899 0.6092 0.5149 0.5901 
BP method [58,59] 0.4495 0.5383 0.3163 0.6040 0.4871 0.5361 
Our method 0.4125 0.6145 0.1591 0.6654 0.4815 0.5675  

Table-17 
Conditional probability wise ranking of the objects.  

Methods Ranking 

GRA Method [48] u4 ≻ u6 ≻ u2 ≻ u5 ≻ u1 ≻ u3 

WAM [39] u4 ≻ u6 ≻ u2 ≻ u5 ≻ u1 ≻ u3 

BP method [58,59] u4 ≻ u2 ≻ u6 ≻ u5 ≻ u1 ≻ u3 

Our method u4 ≻ u2 ≻ u6 ≻ u5 ≻ u1 ≻ u3  
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computed using the weighted aggregation method in the TWDs model proposed by Ye et al. [39] The bidirectional projective (BP) [58, 
59] technique considers the connection between the project and the ideal solution, making conditional probability computation more 
objective. Considering the same weights of attributes the conditional probability is obtained in Table-16, based on MADM methods. 
And Table-17, shows the ordering of alternatives based on conditional probability. Hence from Table-16, we analyzed that the best 
result is u₄ obtained from other MADM methods which are similar to that of the proposed method, which shows the practicability of the 
proposed methods. 

8.1. Discussions on the limitations and advantages 

The DRTS model, as an aspect of TWDs, may present the loss caused by various actions at various stages and select the action that 
produces the least loss. The conditional probability is the other components of the TWDs technique. In all existing TWDs models [60, 
61], the conditional probability are directly determined by DMs, making the decision results less rigorous. Estimate the weight of each 
attribute using the entropy measure, and the TOPSIS method is used to convert the RRC of the computed object into a conditional 
probability. Linguistic terms are more compatible with human expression tendencies when expressing the problem of quality. IDHLTSs 
provides more versatile methods to describe quality information than a collection of single Linguistic term set. IDHLTSs give TWDs a 
new way to express diagnostic data. While DMs analyses project attribution data, they may employ IDHLTSs to make the assessment’s 
value more comprehensible, reducing decision time tremendously. The model we present is created in the IDHLT environment. The 
TWDs model is a brand-new research tool based on IDHLT data systems. As a result, it has a high research value. 

A particular parameter is included in Hamacher t-norm and t-conorm, which allows for more adaptable data processing and better 
modelling of real decision-making tasks. They consider the various decision-making attitudes of DMs, making the decision more 
practical. This article has also demonstrated some of the IDHLHWA operator’s needed qualities. The crucial advantages of the proposed 
method are shown are as below:  

(1) The diagnosis of more flexible DMs in the process of TWDs may be expressed using IDHLE, which is made up of FHLT and SHLT. 
As a result, the TWD technique based on IDHLEs can help in decision-making.  

(2) The conditional probability is derived using the TOPSIS technique, which improves the GRA model by changing the distance as 
a measure of distance using a weighted grey relational degree. Hamacher operators, LFs accumulation takes into consideration 
DMs’ diverse decisive attitudes. They make the DM process better acceptable. The proposed technique, however, has several 
restrictions.  

(3) This work does not cover the status of group choices or the weight of various experts to simplify computations. In future work, 
we’ll expand this concept to group choices and make it more valuable. 

9. Conclusions 

In this article a three way decision approach is proposed for the selection of Logistics supplier based on the loss function with the 
hybrid study IFS and DHLTSs set model. Therefore this study first examine the hybrid study of IFS and DHLTSs set and develop a new 
theory called intuitionistic fuzzy double hierarchy set (IDHLTSs) to handle the uncertainty TWD process. Also proposes the basic 
operational laws and aggregation operators for IDHLTSs to aggregate the DM process. IDHLTSs are a powerful tool as a combination of 
first-level and second-level linguistic term sets to more flexibly describe uncertainty and ambiguity. The weight of experts and criteria 
are determined by distance a measure and entropy measure. To make the decision making process more rational conditional prob-
ability is determined using TOPSIS method. The attribute values and LFs in TWDs are described using IDHLTSs. The step-wise detail of 
the proposed method is constructed. Finally, an illustrative example in 3 PL supplier selection domains and comparison is given to 
verify the developed approach and to demonstrate its practicality and effectiveness. 

10. Limitations and future direction 

The proposed operators are introduced in IDHLTSs, which are an efficient generalization, and they conveys appropriate data more 
conveniently in complex expressions than single LTSs. But, this theory has its own limitations, as they do not work in the case of 
((α /τ)+(β /τ)) > 1 and ((k /δ)+(l /δ)) > 1. To overcome the shortcomings of the proposed work, this work can be further extended to 
future studies by using fuzzy extensions, such as the Pythagorean double hierarchy linquistic term set, Fermatean double hierarchy 
linguistic term set, and various aggregation operators like Yager, Einstein aggregations operators for solving different MCGDM 
problems. 
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