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Multifractal analysis of weighted 
networks by a modified sandbox 
algorithm
Yu-Qin Song1,2,*, Jin-Long Liu1,*, Zu-Guo Yu1,3 & Bao-Gen Li1

Complex networks have attracted growing attention in many fields. As a generalization of 
fractal analysis, multifractal analysis (MFA) is a useful way to systematically describe the spatial 
heterogeneity of both theoretical and experimental fractal patterns. Some algorithms for MFA of 
unweighted complex networks have been proposed in the past a few years, including the sandbox 
(SB) algorithm recently employed by our group. In this paper, a modified SB algorithm (we call it 
SBw algorithm) is proposed for MFA of weighted networks. First, we use the SBw algorithm to 
study the multifractal property of two families of weighted fractal networks (WFNs): “Sierpinski” 
WFNs and “Cantor dust” WFNs. We also discuss how the fractal dimension and generalized fractal 
dimensions change with the edge-weights of the WFN. From the comparison between the theoretical 
and numerical fractal dimensions of these networks, we can find that the proposed SBw algorithm 
is efficient and feasible for MFA of weighted networks. Then, we apply the SBw algorithm to study 
multifractal properties of some real weighted networks — collaboration networks. It is found that the 
multifractality exists in these weighted networks, and is affected by their edge-weights.

Complex networks have attracted growing attention in many fields. More and more research works have 
shown that they connect with many real complex systems and can be used in various fields1–4. Fundamental 
properties of complex networks, such as the small-world, the scale free and communities, have been stud-
ied5,6. Song et al.1 found the self-similarity property7–9 of complex networks. Gallos et al. gave a review 
of fractality and self-similarity in complex networks10. At the same time, some methods for fractal anal-
ysis and how to numerically calculate the fractal dimension of complex networks have been proposed. 
Especially, the box-counting algorithm11,12 was generalized and applied to calculate the fractal dimension 
of complex networks. Subsequently, an improved algorithm was proposed to investigate the fractal scaling 
property in scale-free networks13. In addition, based on the edge-covering box counting, an algorithm was 
proposed to explore the self-similarity of complex cellular network14. A ball-covering approach and an 
approach defined by the scaling property of the volume were proposed to calculate the fractal dimension 
of complex networks15. Later on, box-covering algorithms for complex networks were further studied16,17.

Although fractal analysis can describe global properties of complex networks, it is inadequate to 
describe the complexity of complex networks by a single fractal dimension. For systematically characteriz-
ing the spatial heterogeneity of a fractal object, multifractal analysis (MFA) has been introduced18,19. MFA 
has been widely applied in many fields, such as financial modeling20,21, biological systems22–32, geophysical 
systems33–40 and also complex networks41–45. Lee et al.46 mentioned that MFA is the best tool to describe 
the probability distribution of the clustering coefficient of a complex network. Some algorithms were pro-
posed for MFA of unweighted complex networks in past a few years41–45. Furuya and Yakubo41 pointed 
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out that a single fractal dimension is not enough to characterize the fractal property of a scale-free net-
work when the network has a multifractal structure. They also introduced a compact-box-burning (CBB) 
algorithm for MFA of complex networks. Wang et al.42 proposed an improved fixed-size box-counting 
algorithm to study the multifractal behavior of complex networks. Then this algorithm was improved 
further by Li et al.43. They applied the improved fixed-size box-counting algorithm to study multifractal 
properties of a family of fractal networks proposed by Gallos et al.47. Recently, Liu et al.45 employed the 
sandbox (SB) algorithm proposed by Tél et al.48 for MFA of complex networks. The comparison between 
theoretical and numerical results of some networks showed that the SB algorithm is the most effective 
and feasible algorithm to study the multifractal behavior of unweighted networks45.

However, all the algorithms for MFA in refs 41–45 are just feasible for unweighted networks. Actually, 
there are many weighted networks in real world49–51, but few works have been done to study the fractal 
and multifractal properties of the weighted networks. Recently, an improved box-covering algorithm for 
weighted networks was proposed by Wei et al.52. They applied the box-covering algorithm for weighted 
networks (BCANw) to calculate the fractal dimension of the “Sierpinski” weighted fractal network 
(WFN)53 and some real weighted networks. But the BCANw algorithm was only designed for calculating 
the fractal dimension of weighted networks.

In this work, motivated by the idea of BCANw, we propose a modified sandbox algorithm (we call it 
SBw algorithm) for MFA of weighted networks. First, we use the SBw algorithm to study the multifractal 
property of two families of weighted fractal networks (WFNs): “Sierpinski” WFNs and “Cantor dust” 
WFNs introduced by Carletti et al.53. We also discuss how the fractal dimension and generalized fractal 
dimensions change with the edge-weights of the WFN. Through the comparison between the theoretical 
and numerical fractal dimensions of these networks, we check whether the proposed SBw algorithm is 
efficient and feasible for MFA of weighted networks. Then, we apply the SBw algorithm to study multi-
fractal properties of some real weighted networks — collaboration networks54.

Results and Discussion
Multifractal properties of two families of weighted fractal networks. In order to show that the 
SBw algorithm for MFA of weighted network is effective and feasible, we apply our method to study the 
multifractal behavior of the “Sierpinski” WFNs and the “Cantor dust” WFNs53. These WFNs are con-
structed by Iterated Function Systems (IFS)55, whose Hausdorff dimension is completely characterized by 
two main parameters: the number of copies s >  1 and the scaling factor 0 <  f <  1 of the IFS. In this case, 
the fractal dimension of the fractal weighted network is called the similarity dimension and given by53:
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To construct “Sierpinski” WFNs and “Cantor dust” WFNs53, a single node and a triangle is set as a initial 
network G0 respectively. The first a few steps to construct them are shown in parts a) and b) of Fig. 1 
respectively.

We first consider two “Sierpinski” WFNs with parameters s =  3, f =  1/2 and s =  3, f =  1/3 respectively. 
Considering the limitation of the computing capability of our computer, we construct the 8th generation 
G8 of these two networks. There are 9841 nodes and 9837 edges in the G8 of these two networks. For the 
case s =  3, f =  1/2, the edge-weights of G8 are equal to 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, respectively; 
the diameter of G8 is less than 4. When we use the SBw algorithm for MFA of G8, radiuses r of sandboxes 
are set to 1/128, 1/128 +  1/64, ···, 1 +  1/2 +  1/4 +  1/8 +  1/16 +  1/32 +  1/64 +  1/128, respectively for this 
case. We can do similar analysis for G8 of network with s =  3, f =  1/3. It is an important step to look 
for an appropriate range of r (i.e., r ∈  [rmin, rmax]) for obtaining the generalized fractal dimensions D(q) 
(defined by equations (6) and (7)) and the mass exponents τ(q) (defined by equation (5)). In this paper, 
we set the range of q values from − 10 to 10 with a step of 1.

When q =  0, D(0) is the fractal dimension of a complex network. Now we adopt the SBw algorithm to 
estimate the fractal dimension of two “Sierpinski” WFNs with parameters s =  3, f =  1/2 and s =  3, f =  1/3 
respectively. We show the linear regression of ln(〈 [M(r)]q−1〉 ) against (q −  1)ln(r/d) for q =  0 in Fig.  2. 
By means of the least square fit, the slope of the reference lines are estimated to be 1.5419 and 1.0169, 
with standard deviations 0.0309 and 0.0148, respectively. It means that the numerical fractal dimension is 
1.5419 ±  0.0309 and 1.0169 ±  0.0148, respectively; they are very close to the theoretical similarity dimen-
sion 1.5850 and 1.0 respectively. Hence we can say that the numerical fractal dimension obtained by the 
SBw algorithm is very close to the theoretical similarity dimension for a “Sierpinski” WFN.

To further check the validity of the SBw algorithm, let the copy factor s be 3 and the scaling factor f be 
any positive real number in the range 0 <  f <  1. From Equation (1), we can get the relationship between 
the fractal dimension and the scaling factor f of the “Sierpinski” WFN as:
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For each value of f =  1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, we calculate fractal dimensions and their 
standard deviations of the 8th generation “Sierpinski” WFN G8 by the SBw algorithm. The results are 
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Figure 1. (a) The “Sierpinski” weighted fractal networks, s =  3, f =  1/2 and G0 is composed by a single 
node. From the left to the right, the 1th generation G1, the 2th generation G2, and the 3th generation G3 are 
shown. The fractal dimension of the limit network is log(3)/log(2) ≈  1.5850. (b) The “Cantor dust” weighted 
fractal networks, s =  4, f =  1/5 and G0 is a triangle. From the left to the right, the 0th generation G0, the 1th 
generation G1, and the 2th generation G2 are shown. The fractal dimension of the limit network is log(4)/
log(5) ≈  0.8614.
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Figure 2. Examples of fractal analysis of the “Sierpinski” weighted fractal networks G8 with 9841 nodes. 
Here, copy factor s =  3 and the scaling factor f =  1/2, 1/3, respectively. By means of the least square fit, the 
slope of the reference lines are 1.5419 ±  0.0309 and 1.0169 ±  0.0148 respectively. The theoretical result is 
1.5850 (for f =  1/2) and 1.0 (for f =  1/3), respectively.
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shown in part a) of Fig. 3, where each error bar takes twice length to the standard deviation. This figure 
shows that the numerical fractal dimensions obtained by the SBw algorithm agree well with the theoret-
ical fractal dimensions of these networks. This figure also shows that the fractal dimension of WFNs is 
affected by the edge-weight. This result coincides with the conclusion obtained by Wei et al.52.

Hence we can apply the SBw algorithm to calculate the generalized fractal dimensions D(q) and their 
standard deviations of “Sierpinski” WFNs. In parts b) and c) of Fig. 3, we show the generalized fractal 
dimensions D(q) of the 8th generation G8 of “Sierpinski” WFNs, with the parameter s =  3, f =  1/2, 1/3, 
1/4, 1/5 and 1/6, 1/7, 1/8, 1/9 respectively. From these figures, we can see that all the 8th generation G8 
of “Sierpinski” WFNs for different f have multifractal property, and the multifractal property of these 
weighted networks is affected by their edge-weights. The result also shows that the generalized fractal 
dimension D(q) almost decreases with the decrease of the scaling factor f for any q.

For “Cantor dust” WFNs, we can only construct the 5th generation networks with s =  4 and f =  1/2, 
1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, respectively. We first calculate fractal dimensions and their standard devi-
ations of these WFNs by the SBw algorithm. The results are shown in part a) of Fig. 4. From this figure, 
we can see that the numerical fractal dimensions obtained by the SBw algorithm are very close to the 
theoretical fractal dimensions dfract =  − log(4)/log(f) for these WFNs. Then we apply the SBw algorithm 
to calculate the generalized fractal dimensions D(q) and their standard deviations of these “Cantor dust” 
WFNs. We show the numerical results of the 5th generation G5 of “Cantor dust” WFNs in parts b) and 
c) of Fig. 4. From these figures, we can see that all D(q) curves are nonlinear. It indicates that all these 
weighted networks have multifractal property. Similar to “Sierpinski” WFNs, the multifractal property 
of these networks is affected by their edge-weights.

The multifractal property of “Sierpinski” WFNs and “Cantor dust” WFNs revealed by the SBw algo-
rithm indicates that these model networks are very complicated, and cannot be characterized by a single 
fractal dimension.

Applications: multifractal properties of three collaboration networks. Now we apply the SBw 
algorithm to study multifractal properties of some real networks. We study three collaboration networks: 
the high-energy theory collaboration network54, the astrophysics collaboration network54, and the com-
putational geometry collaboration network56.

High-energy theory collaboration network. This network has 8361 nodes and 15751 edges, the 
edge-weights are defined as54:
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Figure 3. (a) The fractal dimensions and their standard deviations of G8 of “Sierpinski” WFNs with 
parameter s =  3. The solid curve represents the theoretical dfract given by Eq. (2), circles are the numerical 
fractal dimensions estimated by the SBw algorithm. (b,c) The generalized fractal dimensions D(q) curves and 
their standard deviations of the 8th generation G8 of “Sierpinski” WFNs estimated by the SBw algorithm. 
Here, the parameter s =  3, f =  1/2, 1/3, 1/4, 1/5 and 1/6, 1/7, 1/8, 1/9, respectively. Each error bar takes twice 
length to the standard deviation for all the results.
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where nk is the number of co-author in the kth paper (excluding single authored papers), δi
k equals to 1 

if the ith scientist is one of the co-author of the kth paper, otherwise it equals to 0. The data contains all 
components of the network, for a total of 8361 scientists, not just the largest component of 5835 scien-
tists. When two authors share many papers, the weight value is larger, thus the distance is less. So, in 
Equation(9), p had better be a negative number (e.g. − 1 given by Newman54). For different values of p, 
we can calculate the shortest path by Equation(9) and obtain different weighted networks. Then we apply 
the SBw algorithm to calculate the generalized fractal dimensions D(q) and their standard deviations of 
the largest component of the network with 5835 nodes. We show the relation between the numerical 
fractal dimension of the High-energy theory collaboration networks and values of p in part a) of Fig. 5. 
From this figure, we can see the value of fractal dimension decreases with the increase of the absolute 
value of p, the values of fractal dimensions are almost symmetric about the vertical axis. We show the 
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Figure 4. (a) The fractal dimensions and their standard deviations of G5 of “Cantor dust” WFNs with 
parameter s =  4. The solid curve represent the theoretical dfract given by Eq. (1), circles indicate the numerical 
fractal dimension estimated by the SBw algorithm. (b,c) The generalized fractal dimensions D(q) curves and 
their standard deviations of G5 of “Cantor dust” WFNs estimated by the SBw algorithm. Here, the parameter 
s =  4, f =  1/2, 1/3, 1/4, 1/5 and 1/6, 1/7, 1/8, 1/9, respectively. Each error bar takes twice length to the 
standard deviation for all the results.
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Figure 5. (a) The relation between values of the fractal dimension of the High-energy theory collaboration 
networks and values of p. We set the range of the p values from − 3 to 3 with a step of 0.5. (b,c) The 
generalized fractal dimensions D(q) curves and their standard deviations of the the High-energy theory 
collaboration network by using the SBw algorithm. Here, the range of the p values from − 3 to 3 with a step 
of 0.5. Each error bar takes twice length to the standard deviation for all the results.
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numerical results on the generalized fractal dimensions D(q) of the High-energy theory collaboration 
networks for different values of p in parts b) and c) of Fig. 5. From these figures, we can see that all the 
High-energy theory collaboration networks for different p have multifractal property, and the multifrac-
tal property of these weighted networks is affected by the edge-weight. We can also see that the general-
ized fractal dimensions D(q) almost decrease with the increase of the absolute value of p.

Astrophysics collaboration network. This network has 16706 nodes and 121251 edges, the edge-wights 
is defined as Equation(3). Here, the data contains all components of the network, for a total of 16706 
scientists, not just the largest component of 14845 scientists. When two authors share many papers, the 
weight value is larger, thus the distance is less. So, in Equation(9), p had also better be a negative number 
(e.g. − 1 given by Newman54). We calculate the shortest path by Equation (9) and obtain some weighted 
networks with different values of p. Then we apply the SBw algorithm to calculate the generalized frac-
tal dimensions D(q) and their standard deviations of the largest component of the network with 14845 
nodes. We show the numerical results of the astrophysics collaboration networks in parts a) and b) of 
Fig. 6. From this figure, we can see that these networks also have multifractal property, and the multi-
fractal property of these weighted networks is affected by the edge-weight.

Computational geometry collaboration network. The authors collaboration network in computa-
tional geometry was produced from the BibTeX bibliography which obtained from the Computational 
Geometry Database. This network has 7343 nodes and 11898 edges. Two authors are linked with an 
edge, if and only if they wrote a common paper or book, etc. The value of edge-weight is the number 
of common works, so the value is one integer, such as 1, 2, 3, ···, etc. The data contains all components 
of the network, for a total of 7343 scientists, not just the largest component of 3621 scientists. The data 
can be got from Pajek Data56. When two authors share many papers, the weight value is larger, thus the 
distance is less. So, in Equation (9), p had better be a negative number. We calculate the shortest path 
by Equation (9) and obtain some weighted networks with different values of p. Then we apply the SBw 
algorithm to calculate the generalized fractal dimensions D(q) and their standard deviations of the larg-
est component of the network with 3621 nodes. Because the way to define the weight of this network is 
different from another two real networks, we can only calculate the generalized fractal dimensions D(q) 
and their standard deviations of the largest component of the network with 3621 nodes for p ≥  − 1. We 
show the numerical results of the computational geometry collaboration networks in part c) of Fig.  6. 
From this figure, we can also see that these networks have multifractal property, and the multifractal 
property of these weighted networks is affected by the edge-weight (but the impact is relatively small).

Conclusions
In this paper, a modified sandbox algorithm (we call it SBw algorithm) for MFA of weighted networks is 
proposed. First, we used the SBw algorithm to study the multifractal property of two families of weighted 
fractal networks (WFNs): “Sierpinski” WFNs and “Cantor dust” WFNs. We also discussed how the frac-
tal dimension and generalized fractal dimensions change with the edge-weights of the WFN. From the 
comparison between the theoretical and numerical fractal dimensions of these networks, we can find that 
the proposed SBw algorithm is efficient and feasible for MFA of weighted networks.

Figure 6. The generalized fractal dimensions D(q) curves and their standard deviations of (a,b) the astrophysics 
collaboration networks, and (c) the computational geometry collaboration networks estimated by the SBw 
algorithm. Here, we set the range of the p values from − 1 to 3 with a step of 0.5. Each error bar takes twice 
length to the standard deviation for all the results.
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In addition, we applied the SBw algorithm to study the multifractal properties of some real net-
works — the high-energy theory collaboration network, the astrophysics collaboration network, and the 
computational geometry collaboration network. We found that multifractality exists in these weighted 
networks, and is also affected by their edge-weight. Our result indicates that multifractal property of 
weighted networks are affected both by their edge weight and their topology structure.

Methods
Multifractal analysis. The fixed-size box-counting algorithm is one of the most common and effec-
tive algorithms to explore multifractal properties of fractal sets19. For a support set E in a metric space 
Ω  and a normalized measure μ (i.e. 0 ≤  μ(Ω ) ≤  1), we consider the partition sum:

∑ µ( ) = ( ) ,
( )

ε
µ ( )

Z q B[ ]
4B

q

where q ∈  R, and the sum runs over all different non-overlapping boxes B which cover the support set E 
with a given size ε. The mass exponents τ(q) of the measure μ is defined as:
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The generalized fractal dimension D(q) of the measure μ is defined as:
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where Z1,ε =  ∑μ(b)≠0μ(B)lnμ(B). A numerical estimation of the generalized fractal dimension D(q) can be 
got from the linear regression of lnZε(q)/q −  1 against lnε for q ≠ 1, Z1,ε against lnε for q =  1, respectively.

Tèl et al.48 proposed the sandbox (SB) algorithm for MFA of fractal sets which is an extension of the 
box-counting algorithm19. The generalized fractal dimensions D(q) are defined as48:
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1 7r

q

0

1

where M(r) is the number of points in the sandbox with radius r, M(0) is the number of all points in 
the fractal object. It is denoted the brackets 〈 ⋅〉  to take statistical average over randomly chosen centers 
of the sandboxes. From Equation (7) we can get the relation:

( ( ) ) ∝ ( )( − ) ( / ) + ( − ) ( ). ( )−M r D q q r d q Mln [ ] 1 ln 1 ln 8q 1
0

From Equation (8), we can obtain an estimation of the generalized fractal dimension D(q) by the lin-
ear regression of ln(〈 [M(r)]q−1〉 ) against (q −  1)ln(r/d). Then, we can also get the mass exponents τ(q) 
through τ(q) =  (q −  1)D(q). Specifically, D(0) is the fractal dimension, D(1) is the information dimen-
sion, D(2) is the correlation dimension of the fractal object, respectively.

A modified sandbox algorithm for multifractal analysis of weighted networks. Recently, our 
group employed the SB algorithm proposed by Tél et al.48 for MFA of unweighted complex networks45. 
In the SB algorithm45, the radiuses r of the sandbox are set to be integers in the range from 1 to the 
diameter of the unweighted network. However, in weighted networks, the values of edge-weights could 
be any real numbers excluding zero and the shortest path is defined by the path between two nodes such 
that the sum of values of its edge-weights to be minimized in some way57. So, the shortest path between 
two nodes could be any real numbers excluding zero. In this paper, for weighted networks, we denote 
the length of shortest path between node i and node j by dij, and dij is defined as52:

( )= + + + + , ( )−
d w w w wmin 9ij i j

p
j j
p

j j
p

j j
p

m m m1 1 2 1

where wkh means the edge-weight of directly connecting node k and node h in a path, jm(m =  1, 2, ···) are 
IDs of nodes and p is a real number. In particular, when p equal to zero, the length of the shortest path 
given by Equation(9) is the same as unweighted networks57. If the edge-weight is only a number without 
obvious physical meaning, we set p equals to 1, such as the “Sierpinski” WFN53. In some real weighted 
networks, one case is that the bigger edge-weight of between any two nodes is, the less distance is, such 
as the collaboration networks, where p <  054; the other case is that the bigger edge-weight of between any 
two nodes is, the further distance is, such as the real city network and the “Sierpinski” WFN, where p >  0.
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The SB algorithm is unfeasible for MFA of weighted networks because we cannot obtain enough 
numbers of boxes (even only one sandbox we can obtain when the diameter of the weighted network is 
less than one). Wei et al.52 proposed an improved box-covering algorithm for fractal analysis of weighted 
network (BCANw). In the present work, motivated by the idea of BCANw, we propose a modified sand-
box algorithm (we call it SBw algorithm) for MFA of weighted networks. The SBw algorithm can deal 
with the multifractal property (hence can also deal with the fractal property) of weighted networks.

Before we apply the SBw algorithm for MFA of weighted networks, we need to calculate the 
shortest-path distance matrix D of the network and set the range of radiuses r of the sandboxes. The 
detail is given as:

•	 A network is mapped to an adjacent matrix WN × N, where N is the total number of nodes in the 
network. For any given real numbers p, the elements of the adjacent matrix ≠w 0ij

p  is the edge-
weight between directly connecting nodes i and j, otherwise =w 0ij

p . According to the adjacent 
matrix WN × N, we can calculate the shortest path distance matrix D by applying the Floyd’s algo-
rithm58 of Matlab BGL toolbox59;

•	 For any given real numbers p, order the edge-weights wij
p as w1 ≤  w2 ≤  ··· ≤  wm, where m is the num-

ber of edge-weights. From the fractal theory, we should look for an appropriate range of radiuses r 
to perform the least square linear fit and then obtain the generalized fractal dimensions D(q) accu-
rately. We tried choosing the radius r from 0 to diameter d with equal (linearly or logarithmically) 
intervals. But we found it is hard to look for an appropriate range of radiuses r to perform the least 
square linear fit and then obtain the generalized fractal dimensions D(q) of weighted complex net-
works we considered accurately. So the radiuses r of the sandboxes are obtained by accumulating the 
value of the edge-weights until it is larger than the diameter d of the network. So, we can get the set 
of radiuses (denoted as R), where = , + , , ∑ ≤=R w w w w k m{ : }i

k
i1 1 2 1  and 

∑ ≤ < ∑= =
+w d wi

K
i i

K
i1 1

1 . Specifically, for any i, j, if wi =  wj =  1, then the radius set R is the same as 
the SB algorithm for unweighted network.

In this sense, the SBw algorithm can be applied to calculate the mass exponents τ(q) and the general-
ized fractal dimensions D(q) not only for unweighted network but also for weighted networks. Now we 
propose a modified SB algorithm (SBw) for MFA of weighted network as:

•	 Initially, ensure that all nodes in the network are not covered and not selected as a center of a 
sandbox.

•	 Set every element in the radius set R as the radius r of the sandbox which will be used to cover the 
nodes, where R is obtained as above. (in the SB algorithm the radius r in the range r ∈  [1, d], where 
d is the diameter of the network).

•	 Rearrange the nodes of the entire network into a random order. Make sure the nodes of the network 
are randomly chosen as the center of a sandbox.

•	 According to the size N of networks, choose the first 1000 nodes in a random order as the center of 
1000 sandboxes, then for each sandbox, search all the neighbor nodes which have a distance to the 
center node within r.

•	 Count the number of nodes in each sandbox of radius r, denote the number of nodes in each sandbox 
of radius r as M(r).

•	 Calculate the statistical average 〈 [M(r)]q−1〉  of [M(r)]q−1 over all 1000 sandboxes of radius r.
•	 For different values in the radius set R, repeat steps (2) to (6) to obtain the statistical average 

〈 [M(r)]q−1〉  and then use 〈 [M(r)]q−1〉  for linear regression.
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