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Abstract: The platform chemicals n-caproate and iso-butyrate can be produced by anaerobic
fermentation from agro-industrial residues in a process known as microbial chain elongation.
Few lactate-consuming chain-elongating species have been isolated and knowledge on their shared
genetic features is still limited. Recently we isolated three novel clostridial strains (BL-3, BL-4, and BL-6)
that convert lactate to n-caproate and iso-butyrate. Here, we analyzed the genetic background of
lactate-based chain elongation in these isolates and other chain-elongating species by comparative
genomics. The three strains produced n-caproate, n-butyrate, iso-butyrate, and acetate from lactate,
with the highest proportions of n-caproate (18%) for BL-6 and of iso-butyrate (23%) for BL-4 in batch
cultivation at pH 5.5. They show high genomic heterogeneity and a relatively small core-genome
size. The genomes contain highly conserved genes involved in lactate oxidation, reverse β-oxidation,
hydrogen formation and either of two types of energy conservation systems (Rnf and Ech). Including
genomes of another eleven experimentally validated chain-elongating strains, we found that the chain
elongation-specific core-genome encodes the pathways for reverse β-oxidation, hydrogen formation
and energy conservation, while displaying substantial genome heterogeneity. Metabolic features of
these isolates are important for biotechnological applications in n-caproate and iso-butyrate production.

Keywords: novel clostridial species; carboxylate platform; medium-chain carboxylates; branched-
chain carboxylates; anaerobic fermentation; reverse β-oxidation

1. Introduction

Speciality chemicals such as n-caproate and iso-butyrate are valuable products of the carboxylate
platform, with a broad range of potential applications in agriculture and industry [1–3]. For example,
n-caproate can be used as promoter of plant growth and feed additive, or as precursor for the
production of biofuels, lubricants, and fragrances [1,4–7]. Currently, n-caproate is mainly produced
from vegetable oils such as palm kernel oil [8], though it can be produced from more sustainable
feedstocks such as agro-industrial waste by anaerobic fermentation and microbial chain elongation [9,10].
Compared to linear carboxylates, branched-chain carboxylates such as iso-butyrate are of special
interest for alternative applications due to their different physical properties, including higher viscosity,
higher oxidative stability, and a lower boiling point [11]. For example, iso-butyrate can be used for
the synthesis of texanol, which is a widely used coalescent for latex paints [2]. Currently, iso-butyrate
is manufactured by acid-catalyzed Koch carbonylation of propylene, which is derived from fossil
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feedstock [2]. Microbial production of iso-butyrate from organic wastes or biomass residues is a more
sustainable alternative as demonstrated by recent studies [12,13].

The metabolic process to produce n-caproate by anaerobic fermentation is called microbial chain
elongation, also known as reverse β-oxidation. Some strictly anaerobic bacteria are known as chain
elongators that use ethanol as electron donor providing reducing equivalents and acetyl-CoA for the
elongation of acyl-CoA units, thereby increasing the chain length of carboxylates by two carbons
with each cycle [1]. For example, Clostridium kluyveri has been well described to elongate short-chain
carboxylates (e.g., acetate) to n-caproate through reverse β-oxidation with ethanol and acetate as sole
carbon and energy sources [14]. Additionally, odd-numbered electron acceptors such as propionate
can be elongated, leading to the formation of n-valerate and n-heptanoate [1,9]. The review paper
of Angenent et al. highlighted the importance of the ethanol-based chain elongation pathway in
biotechnology studies [1]. Additionally, chain elongation with lactate is getting increasing attention
because some feedstocks (e.g., ensiled plant biomass) are rich in lactate, which is an important
intermediate in the anaerobic breakdown of carbohydrates. To date, only few chain-elongating bacteria
have been isolated that utilize lactate to produce n-caproate, including strains of Megasphaera elsdenii,
Megasphaera hexanoica, Pseudoramibacter alactolyticus, and Ruminococcaceae bacterium CPB6. It has
been assumed that the mechanism of chain elongation with lactate is similar to that described
for chain elongation with ethanol [10,15]. However, insufficient knowledge has been generated
yet on the physiology of lactate-based chain elongation from pure culture studies, and there is a
lack of genome-level information to explore the genetic characteristics shared by chain-elongating
bacteria. Previous studies have shown that iso-butyrate can be produced in methanol-based chain
elongation [3,12,13]. The results suggested that Clostridium luticellarii might be responsible for the
iso-butyrate formation during mixed culture fermentation, which was further tested by pure culture
study of C. luticellarii, showing its ability to convert acetate and methanol to iso-butyrate [16]. However,
the physiological reason for iso-butyrate formation in a chain elongation process has not been fully
elucidated, particularly when lactate is the electron donor.

Recently, we reported on a complex bioreactor community that produced n-caproate from
lactate-rich corn silage [17], and later a mixed culture producing n-caproate was enriched with
lactate and xylan in a daily-fed bioreactor [18]. To investigate functional key species involved in
n-caproate formation, we isolated several strains that are capable of converting lactate to n-caproate and
iso-butyrate. For three isolates that turned out to represent novel species according to their 16S rRNA
gene sequences, we performed whole genome sequencing and assembled the genomes with a short-
and long-read sequencing hybrid approach as recently announced [19]. Further insight into the
genomic and metabolic features of these strains may facilitate detailed understanding of lactate-based
chain elongation.

The objectives of this study were to investigate the product spectrum of the three new lactate-
consuming strains and to give insights into their metabolism based on their genomes. Batch experiments
were conducted to explore the fermentation profiles with lactate. Functional genome annotation and
phylogenomic analysis aimed at elucidating the genetic background of n-caproate and iso-butyrate
production and the genetic heterogeneity between the three strains. To analyze the genomic diversity of
the entire repertoire of chain-elongating species and to identify the core genes of chain elongation-related
pathways and their conservation, we performed a comparative genome analysis by including eleven
more genomes of experimentally validated chain-elongating species.

2. Materials and Methods

2.1. Enrichment, Isolation, and Identification of Lactate-Consuming Strains

Anaerobic fermentation broth from a caproate-producing reactor (38 ◦C, pH 5.5, and hydraulic
retention time of 4 d) fed with corn silage was initially taken as the inoculum. Serum bottles (120 mL)
with 45 mL mineral medium [18] containing 5 g/L lactic acid (initial pH 5.5) were inoculated with



Microorganisms 2020, 8, 1970 3 of 23

5 mL of the sieved reactor broth (mesh size 2 mm). After replacing the headspace by N2/CO2 (80:20 in
volume ratio, 100 kPa), the bottles were statically incubated at 37 ◦C in the dark. Liquid samples were
collected every two weeks at the beginning, and later lactic acid was replenished when it had been
consumed. Four successive transfers (1:10 dilution in fresh medium) were done, spanning more than
700 days.

A single bottle of the fourth transfer was used to isolate lactate-consuming strains. The culture
was plated on complex agar (medium DSM104c with additional 5 g/L lactic acid) and incubated in
an anaerobic chamber at 37 ◦C for two weeks. Colonies were picked and re-streaked three times
for purification, and then transferred to liquid mineral medium bottles to determine their product
spectrum. Further, the isolates that produced iso-butyrate and n-caproate were identified by Sanger
sequencing of the 16S rRNA gene (details in Supplementary Methods). Based on 16S rRNA gene
identity with their closest relatives, potential new species including the isolates designated as strains
BL-3, BL-4, and BL-6 were selected for whole genome sequencing.

2.2. Batch Cultivation

To analyze the fermentation products from lactate at pH 5.5, batch cultures of isolates BL-3, BL-4,
and BL-6 were run in mineral medium with lactate as sole carbon source and 0.05% yeast extract as
described above. The bottles were inoculated with 5 mL seed cultures (optical density at 600 nm
[OD600]~2), which were routinely cultivated in a complex medium (DSM 104c with extra 5 g/L of lactic
acid added). The pH was adjusted to 5.5 with 1 M NaOH or 1 M H2SO4 after adding 50 mM lactic
acid (85%, FCC grade; Sigma Aldrich, St. Louis, MO, USA) to the bottles. The cultivation bottles were
statically incubated at 37 ◦C. Liquid samples were collected twice per week. After one week, lactic acid
(75 mM) was added again to each bottle, and the pH was adjusted to 5.5 accordingly. All batch tests
were carried out in duplicate.

For further investigation of the growth of isolate BL-4 on other carbon sources, anoxic bicarbonate-
buffered freshwater medium pH 7.3 reduced with cysteine was used. The basal medium consisted
of NaCl (1 g/L), MgCl2 (0.4 g/L), KH2PO4 (0.2 g/L), NH4Cl (0.25 g/L), KCl (0.5 g/L), CaCl2 (0.15 g/L),
and Na2SO4 × 10 H2O (0.16 g/L) and was autoclaved for at least 30 min at 121 ◦C and 1 bar overpressure
in a Widdel-flask. After cooling to room temperature under a stream of N2/CO2 (80:20), a separately
autoclaved solution of NaHCO3 was added to a final concentration of 30 mM. Then each 1 mL of
trace element solution SL13, 7-Vitamin solution and selenite-tungstate solution were added per liter
medium (modified after [20–23]). Finally, the medium was amended with 0.4 mg/L resazurin as a
redox indicator and filter-sterilized cysteine-HCl (3 mM final concentration) as reducing agent. In case
the redox indicator of the medium did not turn colorless within 30 min of stirring under N2/CO2,
25 µM to 50 µM titanium(III)-nitrilotriacetic acid was added from a filter-sterilized stock solution
to aid in establishing reduced conditions. This was the case for all pH 7.3-media used in this study.
After the medium turned colorless, the pH of the medium was adjusted to pH 7.3 and the medium
was thereafter dispensed into the cultivation vessels under N2/CO2. Where indicated, 0.05% yeast
extract was added as an additional source of vitamins and amino acids. Strain BL-4 was cultivated
in 25-mL tubes closed with rubber stoppers and filled with 10 mL medium at 37 ◦C. The OD600 was
monitored over time with a Camspec tube photometer as described before [24].

2.3. Analytical Techniques

Liquid samples from the batch cultures at pH 5.5 were centrifuged for 10 min at 20,817× g
(Centrifuge 5417R; Eppendorf, Hamburg, Germany) to remove cells. Acetate, lactate, propionate,
iso-butyrate, n-butyrate, n-valerate, n-caproate, n-caprylate, and ethanol concentrations of the
supernatant were determined in triplicate by high performance liquid chromatography (HPLC;
Shimadzu Corporation, Kyoto, Japan) equipped with a refractive index detector RID-10A and a HiPlex
H column together with a pre-column (Agilent Technologies, Palo Alto, CA, USA) as previously
described [25]. HPLC samples from batch cultures at pH 7.3 were first acidified with 20µL of 1 M H2SO4
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prior to centrifugation, and the supernatant was analyzed by refractive index detection after separation
on a Rezex RHM monosaccharide column with 30 mM sulfuric acid at 40 ◦C as described [24].

2.4. Gene Prediction and Annotation

We sequenced the genomes of the three isolates with the Oxford Nanopore Technologies
MinION and the Illumina NextSeq platforms, and three complete genomes were constructed
using a hybrid assembly approach as described previously [19]. Prediction and functional
annotation of coding sequences (CDSs) was accomplished by the MicroScope automatic annotation
pipeline [26]. Automatic annotations of selected CDSs were manually curated by comparing the
protein sequences with the PkGDB, Swiss-Prot, TrEMBL, COG (Clusters of Orthologous Groups),
EGGNOG (Evolutionary Genealogy of Genes: Non-supervised Orthologous Groups), FIGfams,
and InterPro databases [26–31] by using the following methods: MaGe/Curated annotation, Syntonome
RefSeq, Similarities SwissProt, Similarities TrEMBL, UniFIRE SAAS, UniFIRE UniRules, PRIAM
EC number, FigFam, InterProScan and PsortB. COGNiTOR [32] was used to classify the CDSs
into COG functional categories. CDSs classification into EGGNOG (v4.5.1) was performed by
eggNOG-mapper v1.0.3 [29]. All these databases and tools are integrated in the MicroScope platform
as described by Vallenet et al. [26]. Genomes of Clostridium jeddahense JCD, Ruminococcaceae bacterium
CPB6, Clostridium merdae Marseille-P2935, Megasphaera elsdenii 14-14, Eubacterium pyruvativorans i6,
Megasphaera hexanoica MH, Caproiciproducens sp. NJN-50, Caproiciproducens galactitolivorans BS-1,
Eubacterium limosum KIST612, Candidatus Weimeria bifida, Candidatus Pseudoramibacter fermentans,
and Pseudoramibacter alactolyticus ATCC 23263 were submitted to the MicroScope platform. The genome
annotation of these strains available in the MicroScope PkGDB database was done by following the
same procedures.

2.5. Phylogenetic Analysis and Taxonomic Classification

Phylogenetic analysis of 16S rRNA gene sequences was performed on the Phylogeny.fr
platform [33]. According to the Nucleotide BLAST (Basic Local Alignment Search Tool) comparison
result against the rRNA/ITS databases (16S ribosomal RNA sequences (Bacteria and Archaea)) of NCBI
(National Center for Biotechnology Information) [34], the ten hits with the highest BLAST score for
each isolate were selected. The 16S rRNA gene sequences of all selected strains were aligned using
MUSCLE v3.8.31 with default settings [35]. After alignment, Gblocks v0.91b was used to remove
ambiguous regions (i.e., containing gaps and/or poorly aligned) as described by Castresana [36].
The phylogenetic tree was reconstructed using the maximum likelihood method contained in PhyML
v3.1 [37,38]. Robustness of tree topology was assessed by 100 bootstrap replicates. Finally, the tree
was visualized by using TreeDyn v198.3 [39]. Besides the taxonomic classification of the genomes
in MicroScope, GTDB-Tk v1.0.2 was used for taxonomic assignment to GTDB (Genome Taxonomy
Database) [40] and the corresponding NCBI taxonomy.

A phylogenomic tree of strains BL-3, BL-4, BL-6, and other chain-elongating bacteria was
calculated based on genomic similarity. The genomic similarity was estimated using Mash [41],
which computes the distance between two genomes. This distance D is correlated to the average
nucleotide identity (ANI) like: D ≈ 1-ANI. A neighbor-joining tree with clustering annotations was
constructed. This clustering was calculated from all-pairs distances ≤0.06 (≈94% ANI) corresponding
to the ANI standard to define a species group. The Louvain method for community detection was
used for computing the clustering [42]. The ANI (OrthoANIu value) comparison of the genomes of the
isolates to related genomes was calculated by an ANI calculator that improved the original OrthoANI
(Average Nucleotide Identity by Orthology) algorithm by applying USEARCH instead of BLAST as
described by Yoon et al. [43].

Default settings were used for all tools unless otherwise specified.
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2.6. Pan-Genome Analysis

The interface Comparative Genomics of the MicroScope platform was employed to analyze the
pan-genome, core-genome, and variable genome for our newly sequenced genomes and for all the
available genomes of chain-elongating bacteria in the comparison. The MicroScope homologous gene
families (MICFAM, protein sequence pairs with at least 80% amino-acid identity and 80% alignment
coverage) [44] were considered for these analyses.

2.7. Data Availability

All data generated or analyzed during this study are included in this published article and its
additional files. The full-length 16S rRNA gene sequences of the three isolates have been deposited in
the European Nucleotide Archive (ENA, https://www.ebi.ac.uk/ena/browser/home) under BioProject
PRJEB39379, with the accession numbers LR861112, LR861113 and LR861114. The genome data of
the three isolates have been deposited in ENA under BioProject PRJEB36835, with Whole Genome
Sequencing or Chromosome accession numbers CADDXC010000000, LR778134, and LR778135.

3. Results and Discussion

3.1. Isolation and Identification of Lactate-Consuming Strains

After incubation and four transfers of fermentation broth from a corn silage reactor with lactate as
substrate, we enriched a mixed culture that produced acetate, n-butyrate, iso-butyrate, and n-caproate
(Figure S1). Isolation of lactate-consuming strains was achieved by plating the mixed culture on
complex agar to isolate single colonies. Eleven pure cultures were obtained as confirmed by 16S rRNA
gene sequencing. In liquid culture using mineral medium, three strains (designated as BL-3, BL-4
and BL-6) were found to convert lactate to iso-butyrate and n-caproate. The 16S rRNA gene sequence
of BL-3 was 96.8% identical to that of Clostridium luticellarii FW431, BL-4 was 93.8% identical to that
of Ruminococcaceae bacterium CPB6, and BL-6 was 96.3% identical to that of Clostridium jeddahense
JCD. According to the current species threshold (98.7%) based on 16S rRNA gene identity [45],
these three strains can be assumed to represent novel species and were consequently selected for whole
genome sequencing.

3.2. Conversion of Lactate to n-Caproate and iso-Butyrate in Batch Cultivation

The pure culture batch experiments showed that all three newly isolated strains can convert
lactate into acetate, n-butyrate, iso-butyrate, n-valerate, and n-caproate (Figure 1). Started at an initial
pH 5.5, the three strains displayed different product spectra even though growing in the same mineral
medium with lactate as the sole carbon source. Specifically, all three strains produced a large share
of acetate (23% to 43%) and n-butyrate (34% to 57%), whereas propionate and n-caprylate were not
detected. Based on the final concentrations (mmol C/L), strain BL-6 produced the highest proportion
of n-caproate (18% for BL-6, 10% for BL-4, and 4% for BL-3) and strain BL-4 produced the highest
proportion of iso-butyrate (23% for BL-4, 2% for BL-3, and 2% for BL-6), while only 1% n-valerate
was produced by all three strains. As shown in Figure 1, the n-butyrate production rate decreased
in cultures of BL-4 and BL-6 after the second spiking with lactate but was constant in the culture of
BL-3. Simultaneously, the iso-butyrate production rate increased in BL-4 and the n-caproate production
rate increased in BL-6. This indicates that further chain elongation of n-butyrate to n-caproate was
catalyzed by strain BL-6 while strain BL-4 might convert n-butyrate to iso-butyrate.

https://www.ebi.ac.uk/ena/browser/home
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Figure 1. Fermentation products of strains BL-3, BL-4, and BL-6 during growth on lactate at an initial
pH 5.5 and in the presence of 0.05% yeast extract. After one week, 75 mM lactic acid was replenished.
Mean values of six measurements of duplicate batch cultures are given; error bars represent the
standard deviation.

3.3. Genomic Heterogeneity of Strains BL-3, BL-4, and BL-6

The genomes of all three isolates were sequenced to better understand the genetic background
of their metabolism, particularly of n-caproate and iso-butyrate formation from lactate. Based on the
hybrid genome assembly of short reads (Illumina) and long reads (Oxford Nanopore Technologies),
we recently announced high-quality genomes of these strains with CheckM completeness of 98.6%,
97.9% and 98% and contamination of 1.0%, 0.3%, and 1.3% for BL-3, BL-4, and BL-6, respectively [19].
Single circular contigs were assembled for strains BL-4 and BL-6 while the genome assembly of
BL-3 resulted in seven contigs. The genome sizes are depicted in Figure 2 and detailed in Table 1.
According to the taxonomic classification of GTDB, BL-3 was assigned to the genus Clostridium_B
(Clostridiaceae), whereas BL-4 and BL-6 were assigned to the genera UBA4871 and Clostridium_E,
respectively, both belonging to the Acutalibacteraceae (Ruminococcaceae according to the NCBI taxonomy).
The number of predicted gene CDSs ranges from around 2300 to almost 3900 in the three genomes
(Table 1). For all three genomes, most of the CDSs could be classified in COG functional categories
(76% for BL-3, 75% for BL-4, and 73% for BL-6; see details in Table S1) and EGGNOG categories
(86% for BL-3, 85% for BL-4 and 83% for BL-6; see details in Table S2). Comparative genome analysis
revealed a total of 6654 homologous gene families with 9508 genes identified in all three genomes and
indicates a relatively small core-genome size of 504 homologous gene families (Figure 2). As for the
2064 genes conserved in the core-genome, proportions of 27.2%, 20.9%, and 19.1% can be considered
core CDSs of strains BL-3, BL-4, and BL-6, respectively. The core CDSs include all necessary genes
involved in bioprocesses of lactate oxidation to acetyl-CoA, reverse β-oxidation, hydrogen formation,
and energy conservation (see Table 2 and details in Supplemental file 2). According to the pairwise
comparison of the three genomes, a few synteny groups on nucleotide level are shared (Figure S2),
which indicates the low conservation of genome organization and underlines the genomic heterogeneity
of the three isolates.
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Figure 2. Genomic heterogeneity of strains BL-3, BL-4, and BL-6. Venn diagram showing the shared
and unique gene families of the three isolates, and numbers of coding sequences (CDSs) presenting
the pan-genome and core-genome as well as variable and strain-specific genes. Families refer to the
MicroScope homologous gene families (MICFAM), in which the protein-coding genes share at least
80% amino acid sequence identity and 80% alignment coverage.

3.4. Genomic Diversity of the Reported Chain-Elongating Bacterial Strains

In addition to our newly isolated strains, we included eleven strains that have been experimentally
validated of microbial chain elongation (Table 1). Two metagenome-assembled genomes (MAGs;
Candidatus Pseudoramibacter fermentans and Candidatus Weimeria bifida) were also included in the
comparative genome analysis because their chain elongation traits were evident from metatranscriptome
analyses [46]. These 14 obligate anaerobes isolated from various environments all belong to the phylum
Firmicutes, class Clostridia, and its closest phylogenetic neighbor—Negativicutes (here including species
Megasphaera elsdenii and Megasphaera hexanoica). The genome sizes of the strains range from 2.1 Mbp to
4.7 Mbp, and the GC content varies from 32% to 55% (Table 1).

We constructed a phylogenomic tree to understand the evolutionary relationships between our
isolates and other chain-elongating species (Figure 3a). The two main branches delineate that strain
BL-3 is evolutionary distant from BL-4 and BL-6, as the latter were placed in the other main cluster.
BL-3 belongs to a Clostridiaceae cluster and is closely related to two chain-elongating species of the genus
Clostridium: C. kluyveri and C. luticellarii. The latter has the highest OrthoANIu (average nucleotide
identity by orthology with USEARCH) value of 83.88% to BL-3 (Figure 3b), which suggests BL-3 being
a new species. The closest chain-elongating relatives of BL-4 and BL-6 are Ruminococcaceae bacterium
CPB6 and Caproiciproducens galactitolivorans BS-1, both affiliated to the family Acutalibacteraceae
(according to GTDB taxonomy). BL-6 formed a separate cluster together with Clostridium jeddahense and
Clostridium merdae, for which chain elongation functions have not been described. However, BL-4 and
BL-6 have relatively low OrthoANIu values (≤75%) and low genome coverages (≤25%, referring to
the aligned genome fraction) with their closest relatives (Figure 3b), which indicates their distant
phylogenomic relationship. For all three isolates, the synteny groups on nucleotide level delineate a
low conservation of genome organization when aligned to the closest relative.
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Figure 3. Phylogenomic analysis of the three isolates. (a) Neighbor-joining tree showing the genome
similarity between 14 chain-elongating bacterial strains. The newly isolated strains are highlighted in
pink and all experimentally validated chain-elongating strains are indicated in bold. Additional related
species based on 16S rRNA phylogenetic analysis were included (see the phylogenetic tree in Figure S3).
GTDB taxonomic assignments at the family level are shown in parentheses. The NCBI/ENA accession
numbers of the genomes are shown in brackets. Distances indicated at the branches correlate to the
average nucleotide identity (ANI) according to: D ≈ 1-ANI. (b) USEARCH OrthoANI comparison for
strains BL-3, BL-4, and BL-6 to related genomes. The line plots give an overview of the conservation of
synteny groups on nucleotide level. Strand conservations are depicted in purple and strand inversions
in blue. The synton size was selected with higher than three genes for the analysis.

The number of predicted CDSs in the chain-elongating bacteria ranges from less than 2000 to
more than 4600 (Table 1), which suggests substantial heterogeneity of their genomes. The pan-genome
analysis of the genomes of all 14 strains revealed a total of 20,790 homologous gene families with 40,582
genes identified (Figure 4a). The core-genome presented in all 14 strains consists of only 237 conserved
homologous gene families corresponding to 4775 core CDSs, which were distributed in a range of
9% to 15% for each strain (Figure 4b). Interestingly, the number of pan-CDSs positively correlated
with the genome size, whereas the number of strain-specific CDSs did not correlate with the genome
size. For example, C. kluyveri DSM 555 holds the second largest genome (4.02 Mbp) with a number of
4288 pan-CDSs, but it has the lowest number of strain-specific CDS (287 CDSs). The above-mentioned
patterns also apply to the comparison of the three isolates as shown in Figure 4b.
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Figure 4. Pan-genome analysis of the 14 chain-elongating bacterial strains. (a) Pan-genome and
core-genome sizes and their changes for the increasing genome set. Families refer to the MicroScope
homologous gene families (MICFAM), in which the protein-coding genes share at 80% of amino acid
sequence identity and 80% of alignment coverage. (b) Summary of gene counts for each strain. CDS:
gene coding sequence.
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Table 1. Genomic characteristics of all chain elongation strains included in this study.

Strain GTDB Taxonomy Isolation Source Genome Size (bp) GC Content (%) No. of Predicted CDSs Reference

BL-3 Clostridium_B Anaerobic bioreactor 3,855,691 34.32 3875 [19]
BL-4 Acutalibacteraceae UBA4871 Anaerobic bioreactor 2,335,857 42.75 2323 [19]
BL-6 Clostridium_E sp002397665 Anaerobic bioreactor 3,435,529 54.63 3496 [19]

Megasphaera elsdenii 14-14 Megasphaera elsdenii Human gut 2,504,349 52.75 2359 [47,48]

Ruminococcaceae bacterium CPB6 Acutalibacteraceae UBA4871
sp002119605 Sludge of a caproate-producing reactor 2,069,994 50.58 2116 [15,49]

Megasphaera hexanoica MH Caecibacter massiliensis Cow rumen 2,877,851 49.00 2799 [50]
Pseudoramibacter alactolyticus ATCC 23263 Pseudoramibacter alactolyticus Human oral cavity 2,366,982 51.63 2327 [51,52]
Candidatus Pseudoramibacter fermentans a Pseudoramibacter sp002396065 Anaerobic bioreactor 2,288,358 50.15 2209 [46]

Clostridium kluyveri DSM 555 Clostridium_B kluyveri Canal mud 4,023,800 32.02 4371 [14]
Caproiciproducens galactitolivorans BS-1 Acutalibacteraceae MS4 Anaerobic digester sludge 2,578,839 48.10 2539 [53,54]

Eubacterium limosum KIST612 Eubacterium limosum Sheep rumen 4,740,532 46.86 4605 [51,55]
Eubacterium pyruvativorans i6 Eubacterium_A pyruvativorans Sheep rumen 2,164,212 54.84 1954 [56,57]
Candidatus Weimeria bifida a Lachnospiraceae UBA2727 Anaerobic bioreactor 2,395,883 45.93 2477 [46]

Clostridium luticellarii DSM 29923 Clostridium_B luticellarii Mud cellar 3,771,178 34.97 3874 [58,59]
a metagenome-assembled genome (MAG).
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Table 2. List of enzymes considered for the manual functional annotation.

Predicted Function No. Enzyme
Abbreviation EC Number Enzyme

Acetyl-CoA
formation

1 LacR 5.1.2.1 Lactate racemase
2 LacP 2.A.14 Lactate permease
3 LDH 1.1.1.27 Lactate dehydrogenase
4 PFOR 1.2.7.1 Pyruvate ferredoxin oxidoreductase
5 ADH 1.1.1.1 Alcohol dehydrogenase
6 ADA 1.2.1.10 Acetaldehyde dehydrogenase

Reverse β-oxidation

7 ACAT 2.3.1.9, 2.3.1.16 Acetyl-CoA acetyltransferase
8 HAD 1.1.1.157, 1.1.1.35 3-Hydroxyacyl-CoA dehydrogenase
9 ECH 4.2.1.150, 4.2.1.55 Enoyl-CoA hydratase
10 BCD 1.3.8.1 Butyryl-CoA dehydrogenase
11 EtfAB Electron transfer flavoprotein A,B
12 CoAT 2.8.3.- Butyryl-CoA:acetate CoA-transferase
13 ACT 3.1.2.20 Acyl-CoA thioesterase

Energy conservation 14 RnfABCDEG 7.1.1.1 Energy-converting NADH:ferredoxin
oxidoreductase

15 EchABCDEF Energy-converting hydrogenase

H2 formation 16 H2ase 1.12.7.2 Hydrogen:ferredoxin oxidoreductase

Butyrate formation 17 PTB 2.3.1.19 Phosphate butyryltransferase
18 BUK 2.7.2.7 Butyrate kinase

Others

19 BM 5.4.99.13 Butyryl-CoA:isobutyryl-CoA mutase
20 ACOCT 2.8.3.19 Acetyl-CoA:oxalate CoA-transferase
21 HadABC 4.2.1.157 (R)-2-hydroxyisocaproyl-CoA dehydratase
22 CarC 1.3.1.108 Caffeyl-CoA reductase-Etf complex subunit CarC
23 HypCDEF Hydrogenase maturation factor

Functional distribution of homologous gene families in the core-genome shows that the majority
encode components of well-conserved housekeeping genes for the basic metabolism of bacteria,
including DNA and RNA metabolism, protein processing, folding and secretion, cellular processes,
as well as intermediary and energy metabolism (details in Supplemental file 3) [60]. The chain
elongation-specific core-genome also comprises genes involved in reverse β-oxidation, hydrogen
formation and energy conservation (Table 2 and details in Supplemental file 4). These genes are highly
conserved in all 14 strains and can be considered hallmarks of chain-elongating bacteria.

3.5. Genetic Basis of Lactate Conversion to n-Caproate and iso-Butyrate

To elucidate the genetic background of lactate metabolism and fermentation pathways leading
to the formation of n-caproate, n-butyrate, and iso-butyrate, we manually curated the functional
annotation of genes involved in the following bioprocesses: acetyl-CoA formation from lactate and
ethanol, reverse β-oxidation cycle, energy conservation and hydrogen formation. Besides our newly
isolated strains, we also included the other eleven chain elongators in this analysis. Especially for those
strains reported to use lactate as electron donor, corresponding genes of lactate oxidation were also
considered in the manual curation.

3.5.1. Lactate Oxidation to Acetyl-CoA

Lactate can serve as a carbon and energy source for chain-elongating bacteria. As shown in
Figure 5, first lactate needs to be transported into the cell, which is facilitated by lactate permease (LacP).
Genomes of BL-3 and BL-6 were predicted to harbor the corresponding CDSs, which are located in a
gene cluster encoding lactate racemase (LacR) (Figure 6a,c). The gene cluster encoding LacP and LacR
was also found in all other lactate-based chain elongators (Figure 6d–h). The fermentation starts with the
oxidation of lactate via pyruvate to acetyl-CoA catalyzed by an NAD-dependent lactate dehydrogenase
(LDH) and a pyruvate ferredoxin oxidoreductase (PFOR). All three genomes encode predicted LDH
proteins that are highly similar to each other. Specifically, the BL-3 genome was predicted to have
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four LDH genes, one of which is located in a gene cluster (Figure 6a, CDS labels: 11486–11488)
comprising also genes for the electron transfer flavoprotein (EtfAB). The BL-4 genome harbors four
LDH genes with one located in the gene cluster (Figure 6b, CDS labels: 2199–2205) encoding the
membrane-associated energy-converting NADH:ferredoxin oxidoreductase (RnfABCDEG). The BL-6
genome has three LDH genes with one found in a cluster (Figure 6c, CDS labels: 3216–3223) including
genes for butyryl-CoA dehydrogenase (BCD), EtfAB, LacR, and LacP. A similar gene cluster (Figure 6e,
CDS labels: 01775–01795) containing genes for LacR, LDH, EtfAB, and BCD was found in the genome
of Ruminococcaceae bacterium CPB6. As for the enzyme PFOR or its synonym pyruvate synthase,
all three genomes contain the corresponding genes, enabling the oxidation of pyruvate to acetyl-CoA.
Acetyl-CoA then enters the reverse β-oxidation cycles. CDSs for LDH and PFOR were found in all
other lactate-based chain-elongating species (Figure 6d–h).
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Figure 5. Metabolic pathways involved in lactate-based or ethanol-based chain elongation and
production of acetate, n-butyrate, iso-butyrate, and n-caproate as predicted from the genome annotation
of strains BL-3, BL-4, and BL-6. Enzyme abbreviations (see Table 2 for full names) are provided in
red letters next to the pathways (solid lines). The numbers below the enzyme names indicate the
strains that were predicted to harbor the corresponding CDSs, i.e., “3” refers to strain BL-3, “4” refers
to strain BL-4 and “6” refers to strain BL-6. The dashed line represents multi-enzyme reactions between
the two indicated molecules, and “cycle” refers to the reverse β-oxidation. The conversion of the
terminal acyl-CoA to the corresponding fatty acid can be catalyzed by CoAT or alternatively by ACT as
shown at the example of butyrate. A third way of butyrate formation from butyryl-CoA proceeds via
phosphate butyryltransferase (PTB) and butyrate kinase (BUK). The predicted pathway of iso-butyrate
formation via isomerization of n-butyryl-CoA by butyryl-CoA:isobutyryl-CoA mutase (BM) is shown;
an alternative hypothetical pathway for iso-butyrate formation from lactate is depicted in Figure S4
(Supplemental file 1).
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in or below the arrows denote the corresponding CDS labels. Abbreviations above the arrow refer to
the enzyme names (see Table 2 for full names). Scale bar: 1000 nucleotides (nt).
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3.5.2. Ethanol Oxidation to Acetyl-CoA

The ethanol-based chain elongation pathway is well elucidated in C. kluyveri [14] and of particular
biotechnological importance as shown in several studies [61–63]. Genome data of BL-3 and BL-6
suggest that these strains are capable of utilizing ethanol as additional or alternative substrate. Small,
uncharged molecules like ethanol diffuse through the cytoplasmic membrane and can be oxidized via
acetaldehyde to acetyl-CoA. NAD-dependent alcohol dehydrogenase (ADH) and NAD(P)-dependent
acetaldehyde dehydrogenase (ADA) catalyze this conversion (Figure 5). The corresponding CDSs
were found in the genomes of BL-3 and BL-6, but not in the BL-4 genome.

3.5.3. n-Butyrate and n-Caproate Formation

Transformation of acetyl-CoA to butyryl-CoA includes three intermediates: acetoacetyl-CoA,
3-hydroxybutyryl-CoA and crotonyl-CoA. The involved enzymes are acetyl-CoA acetyltransferase
(ACAT), NAD- and NADP-dependent 3-hydroxyacyl-CoA dehydrogenase (HAD), enoyl-CoA
hydratase (ECH) and NAD-dependent butyryl-CoA dehydrogenase complex (BCD/EtfAB) (Figure 5).
The formation of n-butyrate further requires butyryl-CoA:acetate CoA transferase (CoAT) to catalyze
the reaction of butyryl-CoA and acetate to yield acetyl-CoA and the corresponding fatty acid.
Transformation of butyryl-CoA to caproyl-CoA may happen with the same set of enzymes (ACAT, HAD,
ECH and BCD/EtfAB) and a CoAT to remove the CoA from caproyl-CoA, resulting in the formation of
n-caproate. We came up with the same assumption as described for the ethanol-based chain elongation
mechanism of C. kluyveri [14]—caproyl-CoA can be a further elongated acyl-CoA when a second
analogous cycle proceeds, and CoAT was reported to have a broad substrate specificity [64,65]. All three
genomes contain the genes encoding ACAT, HAD, ECH, BCD, EtfAB, and CoAT (Supplemental file 4
including the summary of all related CDSs). As for BL-3, three sets of ACAT, HAD, ECH, BCD, and EtfAB
genes are present in the genome, with one cluster encoding CoAT, ACAT, ECH, and HAD (Figure 6a,
CDS labels: 13110–13113) as well as one cluster encoding ECH, BCD, EtfAB, and HAD (Figure 6a,
CDS labels: 20308–20313); other CDSs are scattered in the genome. As for BL-4, one gene cluster
encoding all six enzymes is present in the genome (Figure 6b, CDS labels: 1867–1873). Two similar
clusters were found in the genomes of Eubacterium limosum (Figure 6k, CDS labels: 21760–21785) and
Eubacterium pyruvativorans (Figure 6i, CDS labels: 280031–280037). Another set of HAD, ACAT, ECH,
and CoAT genes clusters together with the genes for acetyl-CoA:oxalate CoA-transferase (ACOCT),
and (R)-2-hydroxyisocaproyl-CoA dehydratase (HadABC) (Figure 6b, CDS labels: 1158–1165).

The genome of BL-6 harbors two sets of the ACAT, HAD, ECH, BCD, and EtfAB genes separated
into several sub-clusters, with one comprising genes for HAD, ACAT, ECH, CoAT, and HadABC
(Figure 6c, CDS labels: 0555–0562) and two sub-clusters of genes encoding the BCD/EtfAB complex.
One set of genes encoding the BCD/EtfAB complex is located in the same cluster with genes for
LDH, LacR, and LacP (Figure 6c, CDS labels: 3216–3223) as mentioned above. We found that the
genes encoding BCD are located in close vicinity to the genes of EtfAB in the genomes of all three
isolates (Figure 6a–c), which is commonly conserved as a key feature among all genomes of other
chain-elongating bacteria (Figure 6d–n).

Besides CoAT, the acyl-CoA thioesterase (ACT) may also catalyze the formation of n-butyrate and
n-caproate from the terminal acyl-CoA (Figure 5). Our data suggest that the genome of BL-3 encodes
proteins annotated as thioesterase superfamily proteins. We further compared their protein sequences
in all the databases used (see the results in Supplemental file 5) and concluded that these thioesterases
are not involved in the terminal step of reverse β-oxidation (see CDS labels and final annotations in
Supplemental file 4, sheets BL-3). Genomes of BL-4 and BL-6 both contain CDSs for an ACT (see CDS
labels in Supplemental file 4, sheets BL-4 and BL-6), but presenting low identity (≤ 40%) to proteins in
the databases (see details in Supplemental files 6–7). Further experiments are required to assess the
functionality of these CDSs and if the predicted enzymes play a role as terminal enzymes in reverse
β-oxidation. A recent study on lactate-based chain elongation in mixed cultures using guild-based
metabolic models suggested that butyrate is formed by CoAT, whereas caproate and caprylate are
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formed by ACT [66]. As pointed out by the authors, this might depend on the organisms, and the
affinities of CoAT and ACT enzymes for different chain lengths need to be assessed.

Additionally to CoAT and ACT, a third pathway potentially contributing to n-butyrate formation
from n-butyryl-CoA was identified in the genome of BL-3. As illustrated in Figure 5, a phosphate
butyryltransferase (PTB) forms butyryl phosphate that is further converted to butyrate by a butyrate
kinase (BUK). The latter step leads to the formation of one ATP, in contrast to the CoAT and the ACT
routes. While the CoAT route conserves acetyl-CoA and thus obviates the need for ATP consumption
in other metabolic steps where acetate needs to be activated, one can speculate that the PTB/BUK route
enables higher growth rates than the CoAT route under conditions when acetyl-CoA is not limiting.
Thus, the PTB/BUK route might favor butyrate production at the cost of caproate yield, i.e., butyrate
is not further elongated. In our previous study on a mixed culture growing on xylan and lactate
under constant conditions [18], co-occurrence network analysis predicted a Clostridium sensu stricto
(closely related to C. luticellarii) as key butyrate producer that outcompeted caproate producers as
reflected by higher microbial biomass production and a drop in caproate and caprylate concentrations.
The lack of BUK genes in the genomes of strains BL-4 and BL-6 is consistent with the previously reported
progressive loss of BUK genes found in some clostridial lineages [67]. From the biotechnological
perspective, strains BL-4 and BL-6 seem to be more beneficial than BL-3 as they yield more caproate and
less acetate compared with strain BL-3. However, detailed experiments are required to characterize the
kinetics of lactate conversion and product formation in the strains under different growth conditions
and in pure and mixed culture settings.

3.5.4. Energy Conservation and Hydrogen Formation

As shown in Figure 5, the cytoplasmic BCD/EtfAB complex catalyzes the transformation of
crotonyl-CoA (hexenoyl-CoA) to butyryl-CoA (caproyl-CoA) and simultaneously transfers electrons
from NADH to ferredoxin, a mechanism that has been described as flavin-based electron bifurcation [68].
ATP can be produced by the ATP synthase using the ion motive force that is generated by a
membrane-associated, proton-translocating ferredoxin:NAD+ oxidoreductase (Rnf complex) in the
oxidation of ferredoxin [69]. The genomes of BL-3 and BL-4 contain the operon arranged as rnfCDGEAB
encoding the six subunits of the Rnf complex as shown in Figure 6a,b. This gene organization (shown as
rnfBAEGDC in the other DNA strand) was also found in other genomes of chain-elongating bacteria
(Figure 6d–n). For BL-6, we could only find four genes for subunits of the Rnf complex during the
functional annotation (see CDS labels in the Supplemental file 4, sheet BL-6), but it contains the
CDSs encoding the analogous membrane-associated energy-converting hydrogenase (Ech complex),
which was proposed to generate hydrogen for maintaining the cytoplasmic redox balance caused
by the oxidation of ferredoxin [70,71]. The Ech complex uses reduced ferredoxin as electron donor
and reduces protons, not NAD+ like Rnf. As shown in Figure 6c, CDS labels 2699–2708, a cluster
encoding six subunits of the Ech complex and CDSs for the hydrogenase maturation were found.
The Ech complex was also identified in the MAG of Candidatus Weimeria bifida (Figure 6m). Additional
hydrogenases include hydrogen:ferredoxin oxidoreductase (H2ase), which was found in the genomes
of all three isolates, and the bifurcating [Fe-Fe]-hydrogenase (HydABC) using electrons from NADH
and reduced ferredoxin, of which no homologous genes were detected (see CDS labels in Supplemental
file 4, sheets BL-3, BL-4 and BL-6).

Apart from the BCD/EtfAB complex, the predicted EtfAB-containing complexes for energy
coupling may also include the LDH/EtfAB complex. The redox potential of the pyruvate/lactate pair
(E0’ = −190 mV) is much higher than that of the NAD+/NADH pair (E0’ = −320 mV), which introduces
a thermodynamic bottleneck of the lactate oxidation coupled to NAD+ reduction. Our annotation
results show that strains BL-3, BL-6, and Ruminococcaceae bacterium CPB6 have LDH genes next
to EtfAB genes (Figure 6a, CDS labels: 11486–11488; Figure 6c, CDS labels: 3217–3220; Figure 6e,
CDS labels: 01780–01790). Therefore, similar like the mode of lactate metabolism in the strict anaerobic
acetogen Acetobacterium woodii, we assume that the LDH/EtfAB complex of these species can also use
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flavin-based electron confurcation to solve the energetic enigma: driving electron flow from lactate to
NAD+ at the cost of exergonic electron flow from reduced ferredoxin to NAD+ [69,72].

The manually curated annotation of all above-mentioned CDSs in the genomes of other
lactate-based chain-elongating strains is provided in Supplemental file 8.

3.5.5. iso-Butyrate Formation

The formation of iso-butyrate as a product of lactate-based chain elongation was experimentally
proven in all three isolates. The genome analysis revealed hints on the assumed pathway, i.e., reversible
n-butyrate/iso-butyrate isomerization [73,74]. As described by Matthies and Schink [74], the conversion
of n-butyrate to iso-butyrate first requires activation to n-butyryl-CoA. Next, the isomerization of
n-butyryl-CoA via iso-butyryl-CoA to iso-butyrate is catalyzed by a butyryl-CoA:isobutyryl-CoA
mutase (BM) and an isobutyryl-CoA:acetate CoA transferase (CoAT) as shown in Figure 5. At first
glance, none of the three genomes seems to encode a BM, but we found a BM homologue in the
genome of BL-3 that might have been misannotated as methylmalonyl-CoA mutase. As reported
by Cracan et al. [75], the fusion protein IcmF (isobutyryl-CoA mutase fused) composed of the small
subunit of BM, a GTPase domain and the large subunit of BM has been widely misannotated as
methylmalonyl-CoA mutase in other bacterial genomes. CDSs for a putative IcmF were found in the
genomes of BL-3 and of the iso-butyrate producer C. luticellarii (see the CDS labels in Supplemental file 4).
A CoA transferase gene located next to these CDSs may confirm the predicted function in isomerization.
BMs catalyze the rearrangement of carboxyl groups as migration to the adjacent carbon atom, in which
enzyme activities depend on coenzyme B12 [76]. One possible reason for the conversion of n-butyrate to
iso-butyrate is that bacteria can maintain the pool of iso-butyrate for synthesizing valine during growth
in amino acid-deficient medium [77]. As this isomerization step does not release any free energy,
another possible explanation is that bacteria try to overcome inhibition effects of the accumulated
n-butyrate, because the corresponding fatty acid of the unbranched form is more toxic than the
branched form. As suggested for a methanol-based CE process [3,12], the formation of iso-butyrate
may facilitate bacteria to further obtain energy from chain elongation.

The genomes of BL-4 and BL-6 lack CDSs for BM, but the formation of iso-butyrate from lactate is
also conceivable via methylmalonyl-CoA and methylmalonate-semialdehyde, representing a reverse
process of anaerobic iso-butyrate degradation by Desulfococcus multivorans [78]. This hypothesis was
further investigated for strain BL-4 that produces the highest iso-butyrate concentrations (Figure 1).
At first sight, not all candidate genes predicted for this hypothetical pathway were found in the genomes
of BL-4 (Figure S4,) and other reported iso-butyrate-producing CE species (Supplemental file 4),
thus physiological experiments are needed to elucidate the mechanism of iso-butyrate formation in CE
strains. In order to find indications of the presence of the anticipated methylmalonyl-CoA pathway,
strain BL-4 was cultivated with 50 mM sodium succinate (Figure 7). The culture reached an OD600 of
around 0.2 while concomitantly consuming 39 mM succinate and producing propionate (37 mM) and
minor amounts of acetate (4.2 mM), formate (0.3 mM), iso-butyrate (0.2 mM), n-butyrate (0.1 mM),
and 1-propanol (0.8 mM). Therefore, succinate was decarboxylated to propionate in an almost 1:1
stoichiometric ratio. The latter reaction, to our knowledge, is only catalyzed with the enzymes of
propionic acid fermentation, i.e., via methylmalonyl-CoA as an intermediate. This indicates that
BL-4 has the enzymes necessary for the conversion of organic acids to propionyl-CoA and could
theoretically produce iso-butyrate through a reversal of the iso-butyrate degradation pathway in
Desulfococcus multivorans [78].
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Figure 7. Fermentation kinetics of strain BL-4 during growth on 50 mM succinate and 0.05% yeast
extract. Mean values of triplicates are shown, error bars represent the standard deviation. Some error
bars are smaller than the symbol size. Small amounts (<2 mM) of formate, butyrate, iso-butyrate,
and 1-propanol were also formed but omitted in the figure for clarity.

We hypothesize that pyruvate derived from lactate oxidation is carboxylated to oxaloacetate
with concomitant decarboxylation of methylmalonyl-CoA to propionyl-CoA by a transcarboxylase.
The genes for a transcarboxylase could not be identified at first sight. However, a BLAST-search of the
amino acid sequence of the genes of the respective enzyme complex in Propionibacterium freudenreichii
DSM 20271 against the genome of BL-4 revealed three potential homologs. The three major
methylmalonyl-CoA carboxyltransferase subunits of P. freudenreichii DSM 20271 12S, 5S, and 1.3S
(IMG-locus tags Ga0077868_111809, Ga0077868_111810, and Ga0077868_111807) are similar
to a carboxyltransferase (CLOSBL4_v1_1895, 33% identities), an oxaloacetate decarboxylase
(CLOSBL4_v1_1897, 52% identities) and a glutaconyl-CoA decarboxylase subunit gamma
(CLOSBL4_v1_1896, 39% identities) respectively, and similarly arranged in one gene cluster. These genes
therefore possibly constitute a methylmalonyl-CoA transcarboxylase. Yet, a gene candidate for a
methylmalonyl-CoA mutase could not be identified. As a consequence of the ability to decarboxylate
succinate to propionate, strain BL-4 might also be able to convert lactate to propionyl-CoA, which in
turn could be carboxylated to methylmalonate-semialdehyde (MMS). MMS could then be reduced
to 3-hydroxy-iso-butyrate (3-HIB), which then might be activated to 3-hydroxyisobutyryl-CoA
(3-HIB-CoA) by a CoA-transferase. The pathway could proceed with the dehydration of 3-HIB-CoA
to 3-enoyl-isobutyryl-CoA (a.k.a. methylacrylyl-CoA) and reduction of the latter to iso-butyryl-CoA.
Finally, iso-butyrate could be produced either by another CoA-transferase or by phosphorylation and
dephosphorylation by a phosphotransferase and an iso-butyrate kinase. The genes responsible for
the conversion of propionyl-CoA to iso-butyrate could not be completely identified in the genome of
strain BL-4. However, inferring from the fact that valine is degraded to acetate and iso-butyrate, strain
BL-4 should at least have the biochemical machinery for the conversion of iso-butyrate to 3-HIB and
methylmalonyl-CoA and vice versa (Figure 8) [79]. Otherwise, the production of acetate from valine
cannot be easily explained. Acetate was always produced in media with 0.05% yeast extract (4.2 mM
acetate during growth with succinate, Figure 7) and could therefore result from the degradation of other
organic compounds in yeast extract. However, acetate concentrations in valine-grown cultures were
twice as high (9 mM, Figure 8b). Possibly, valine could also be co-fermented in a Stickland-reaction,
i.e., fermentation of pairs of amino acids such as valine and glycine, yet this would also lead to
accumulation of amounts of iso-butyrate in a 2:1 acetate to iso-butyrate ratio, which was not the case
(15 mM iso-butyrate produced, Figure 8b). It is hence unclear where the reducing equivalents derived
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from valine oxidation to iso-butyrate ended up and possibly, these reducing equivalents were used to
generate the various other side products present in the valine-grown cultures (Figure 8b). Alternatively,
pyruvate, and subsequently acetate, could be produced by the enzymes of the valine biosynthesis
pathway acting in reverse, i.e., acetohydroxy-acid synthase (ilvB, CLOSBL4_v1_0646), acetolactate
synthase (ilvH, CLOSBL4_v1_0647), and acetohydroxy-acid isomeroreductase (ilvC, CLOSBL4_v1_0648).
Yet, it is doubtful whether the thermodynamic equilibrium allows for such a reversal of these
enzyme reactions as the latter pathway usually favors valine production and at least the reaction of
acetohydroxy-acid synthase is irreversible [80].
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Figure 8. Fermentation kinetics of strain BL-4 during growth on 50 mM L-valine and 0.05% yeast
extract. Mean values of triplicates are shown, error bars represent the standard deviation. Some error
bars are smaller than symbol size. (a) optical density at 600 nm (b) difference of fermentation products
identified and quantified by HPLC (tend–t0 values).

A comprehensive metabolic pathway of lactate conversion to iso-butyrate is not available to date
for strain BL-4 and the former might be a combined variation of the known pathways of propionic
acid fermentation and branched-chain amino acid degradation. It appears that iso-butyrate is only
formed in large amounts when butyrate accumulation levels out and might also depend on the pH of
the culture (Figure 1). Moreover, the amount of iso-butyrate formed is too high to be explained by
degradation of branched-chain amino acids alone. The proposed methylmalonyl-CoA pathway could
be a plausible explanation for iso-butyrate production from lactate, yet it remains enigmatic why strain
BL-4 does not convert lactate into propionate as end-product by classical propionic acid fermentation
instead of iso-butyrate, i.e., the question remains what are the advantages of proceeding degradation to
the level of iso-butyrate.

4. Conclusions

Our results suggest three novel Clostridia species, represented by the strains BL-3, BL-4, and BL-6
that are able to convert lactate to n-caproate and iso-butyrate in batch cultivation, with the confirmation
of their genetic background of lactate-based chain elongation and using CoA transferase as the terminal
enzyme. Further research is needed to elucidate the pathways for iso-butyrate formation in these strains.
By comparative genome analysis including further eleven experimentally validated chain-elongating
bacteria, we found a substantial genetic heterogeneity but highly conserved genes related to chain
elongation, hydrogen formation, and energy conservation, which can be considered hallmarks of
chain-elongating bacteria. Based on the genomic features, chain-elongating species may contain two
types of energy conservation systems in the re-oxidation of reduced ferredoxin—proton-translocating
ferredoxin:NAD+ oxidoreductase (Rnf complex) and energy-converting hydrogenase (Ech complex).
Besides the proposed BCD/EtfAB complex for flavin-based electron bifurcation, energy coupling may
also include the LDH/EtfAB complex in the oxidation of lactate and the supply of acetyl-CoA for chain
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elongation. Overall, the genomic and metabolic features of the three novel chain-elongating isolates
might be interesting for further research and biotechnological applications with regard to n-caproate
and iso-butyrate production.
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