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Introduction: Remimazolam is a novel benzodiazepine γ-aminobutyric acid A (GABAa) receptor agonist used for sedation and the
induction as well as maintenance of general anesthesia. Previous research proved that anesthetic agents acting on GABAa receptor,
such as thiopentone, propofol and midazolam, have protective actions for cerebral ischemia/reperfusion (I/R) injury. We here probed
into remimazolam for its protective effect and potential mechanism of action against cerebral I/R injury.
Material and Methods: A rat model of middle cerebral artery occlusion (MCAO) with focal transient cerebral I/R injury was
established and was given tail vein injection of gradient remimazolam (5, 10, 20 mg/kg) after 2 h of ischemia. Following 24 h of
reperfusion, neurological function, brain infarct volume, morphology of cerebral cortical neurons, and expressions of corticocerebral
NLRP3, ASC, caspase-1, GSDMD, IL-1β and IL-18 were evaluated.
Results: The results showed that remimazolam could effectively improve the neurological dysfunction, reduce the infarct volume and
alleviate the damage of cortical neurons after I/R injury. Notably, the expression of NLRP3 inflammasome pathway was down-
regulated, suggesting that remimazolam exerted protective actions on I/R injury by suppressing pyroptosis with decreased expression
and release of inflammatory factors, and the involvement of the NLRP3 inflammasome pathway might be the core during that process.
Overall, our results indicate that NLRP3 inflammation is a promising target.
Conclusion: Based on this mechanism, remimazolam may be one of the ideal anesthetic drugs for patients with ischemic stroke.
Keywords: remimazolam, NLRP3 inflammasome, ischemia/reperfusion injury, I/R, pyroptosis, inflammation

Introduction
Stroke is one of the primary causes of death in human with an annually increasing mortality.1 In most cases, there is
a need of surgery, such as stent implantation and cerebrovascular recanalization.2 General anesthesia can contribute to
lesser stress response and hemodynamics stability during surgery and has become the best choice for critical stroke.
However, such management can be potentially risky for perioperative brain injury,3 and the use of improper
anesthetic agent may cause severe conditions. Given the fact, perioperative brain protection is always been
a challenge in anesthesiologists and neurologists, and the selection of optimal anesthetic agent appears to be much
more prominent.

Archer et al4 reported that general anesthesia by propofol, isoflurane and sevoflurane could alleviate the ischemic
nerve injury in rodents of focal cerebral ischemia, yet the underlying mechanism was not clarified. In studies by Yang
et al,5 Peng et al,6 Shi et al,7 Liu et al8 and Jiang et al9 it was also found that the use of propofol, isoflurane, sevoflurane,
midazolam and dexmedetomidine contributed to improved outcome of stroke with improved cerebral infarction and I/R
injury. Inhaled anesthetics are rarely used for stroke due to the possible risk for increased intracranial pressure. Instead,
intravenous anesthetics, such as propofol, dexmedetomidine and midazolam, are popular while with certain side effects
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which limit their use in clinic, for example, propofol has significant suppressive effect on circulation, dexmedetomidine
is relatively poor in sedation and midazolam leads to a high incidence of delayed awakening from anesthesia.

Remimazolam is a novel benzodiazepine agonist targeting γ-aminobutyric acid A (GABAa) receptor. It can stabilize
hemodynamics while providing rapid anesthesia and awakening, and produce lesser suppressive effect toward breathing.
In the meantime, it allows for prolonged infusions without accumulation and the metabolites have no any pharmacolo-
gical action. Owing to the advantages, remimazolam is promising in clinical applications.10,11 GABAergic signaling
participates in multiple functions of macrophages, but the underlying mechanism has not been clarified yet.12 It was
reported that GABA receptor-associated protein, GABARAP, affected nucleotide-binding oligomerization domain-like
receptors pyrin domain containing 3 (NLRP3) inflammasome-dependent inflammation via mediating the mitochondrial
mass of relevant macrophages.13 In addition, higher GABA receptor expression and functions could be protective for the
acute injury resulting from transient focal cerebral ischemia.14

NLRP3 inflammasome pathway was proven to be vital significant in cerebral I/R and following pyroptosis.15,16

Specifically, NLRP3 is activated in microglial cells in response to I/R injury, subsequently expresses in neuron and
microvascular endothelial cells.17 In that way, blocking NLRP3 activation and expression of related proteins in neuron
and microglial cells was reported to be an effective approach against focal cerebral I/R injury, contributing to improved
neurological function score, decreased infarct volume and lighter cerebral edema.18–20

We here propose a hypothesis that remimazolam can play protective actions on brain with the involvement of NLRP3
inflammasome pathway, which is important in pyroptosis and further inflammatory cascade to reduce the neuronal
damage resulted from I/R. To this end, rat models of MCAO were constructed to study possible effects and correspond-
ing molecular mechanism.

Materials and Methods
Animals
Seventy-five male, SPF, Sprague-Dawley rats (7–8 weeks, 250–300 g) were obtained from laboratory animal center of
Guangxi Medical University. All rats were allowed to acclimate for 1 week before modeling (22–25°C, relative humidity 55–
60%, 12/12 light/dark), with free water and diet. They were fasted and deprived of water, respectively, 12 h and 4 h before
the experiment. The animal experiment was conducted with the approval of the ethics committee of Guangxi Medical
University, strictly following The Guide for Care and Use of Laboratory Animals released by National Institutes of Health.

Materials
Remimazolam tosilate for injection was purchased from HengRui Medicine Co., Ltd. (Jiangsu, China). Antibodies included
anti-NLRP3, anti-ASC, anti-caspase-1, anti-GSDMD, anti-β-actin, anti-IL-1β and anti-IL-18 antibodies (Abcam and Cell
Signaling Technology, USA). Detection kits included SP kit (Zhongshan Golden Bridge Biotechnology, Beijing, China),
BCA protein assay kit and hematoxylin-eosin (HE) staining kit (Solaibao Biotechnology Co., Ltd., Beijing, China).

Model Establishment and Grouping
Rat models of MCAO were constructed following the Longa method.21 The right common carotid artery (CCA),
external carotid artery (ECA) and internal carotid artery (ICA) were isolated by dissection. A intraluminal filament was
placed from ECA to ICA, passing through the bifurcation of CCA. The intraluminal filament reached the intracranial
part of ICA to block the right MCA blood flow, with the strand-forward length as (18±2) mm from the bifurcation
of CCA.

A random method was applied to equally divide the 75 rats into 5 groups: Sham, MCAO, MCAO+RL, MCAO+RM,
and MCAO+RH. Blood flow blocking was managed 2 h in all MCAO rats and reperfusion was performed after that by
removing the strand. Rats from MCAO+RL, MCAO+RM, and MCAO+RH groups were, respectively, assigned to receive
additional gradient remimazolam by tail vein injection instantly after reperfusion (5 mg/kg, 10 mg/kg, 20 mg/kg). All the
rats were sacrificed under anesthesia after 24 h of reperfusion, and the brain was immediately isolated for further
analysis.
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Neurological Function Score
Five-grade (0–4 points) Longa method was applied to confer a neurological deficit score (NDS) at 2 h of ischemia and
24 h of reperfusion, respectively. Grade I (0-point): normal behavior without any neurological deficit; Grade II
(1-point): the left front paw fails to fully extend; Grade III (2-point): turn to the left (paralyzed side) while walking;
Grade IV (3-point): tip to the left (paralyzed side) while walking; Grade V (4-point): unable spontaneous walking with
impairment of consciousness. Models with 2 h of ischemia scored 1–3 points were included, otherwise excluded from
the study.

Triphenyltetrazolium-Chloride (TTC) Staining
Following model establishment, the rats were decapitated under deep anesthesia and the brain tissue excluding
cerebellum, olfactory bulb and lower brain stem was extracted, transferred to PBS solution (0–4°C) for cleaning and
then frozen at −20°C for 20 min. The tissue block was cut to obtain coronal brain slices (2 mm). Being exposed to 2%
TTC solution, the slices were water-bathed at 37°C in the dark for 30 min. Shaking at 5-min intervals was performed to
ensure uniform staining. Subsequently, the stained tissue samples were fixed overnight with 4% paraformaldehyde, and
dried on the following day for photography. Image-ProPlus 6.0 software was run to obtain the infarct area (white) on the
tail side, and the infarct volume was calculated according to the slice thickness.

Hematoxylin-Eosin (HE) Staining
The rats were transcardially perfused with 4% paraformaldehyde after anesthesia. Intact brain tissue was isolated, fixed,
washed, dehydrated, and then processed for transparency and preparation of paraffin-embedded blocks. Coronal sections
(5 μm) at the posterior optic chiasma were obtained. The sections were then deparaffinized through xylene and ethanol to
water, followed by staining with hematoxylin and eosin. Tissue slides were prepared and observed microscopically for
morphology of cortical neurons.

Immunohistochemistry (IHC) Staining
Paraffin tissue sections were prepared and then processed according to the instructions provided by SP kit. In short, the
sections were deparaffinized through gradient xylene and ethanol to water, followed by high-temperature antigen repair
with sodium citrate. 0.3% hydrogen peroxide and goat serum were sequentially added for blocking with each 15 min.
Afterwards, the tissue samples were consecutively exposed to primary antibodies (NLRP3, GSDMD, ASC, caspase-1,
IL-1β and IL-18) for 1 h, biotin-labeled secondary antibody for 15 min, and HRP-conjugated SPTM for 15 min. DAB
was applied to develop color and hematoxylin was supplemented for counterstaining. The results were observed
microscopically. Negative control was free of primary antibody. Image-Pro Plus 6.0 was operated to perform quantitative
analysis. The positive rate was represented by average optical density (AOD=IOD/Area).

Western Blot
Peripheral cortex (0.1 g) of infarct area was collected by cryogenic grinding and lysed on ice with 1 mL lysis (RIPA +
PMSF + phosphatase inhibitor) for half an hour. The lysates were cryogenically centrifuged for 15 min. The products
were cryogenically centrifuged, and the supernatant was then harvested to determine protein concentration with the
BCA method. The protein samples were mixed with 5× sample buffer at 4:1, degenerated by boiling at 100°C for 10
min, and then processed by SDS-PAGE. The obtained proteins were loaded to a PVDF membrane by wet-transfer, and
then exposed to 5% skim milk for 1 h at room temperature to avoid unspecific binding. Primary antibodies, including
anti-NLRP3, anti-GSDMD, anti-ASC, anti-caspase-1, anti-IL-1β and anti-IL-18 were added overnight at 4°C, fol-
lowed by fluorescent dye-coupled secondary antibody for 1 h at room temperature. Images were captured by Odyssey
system (LI-COR Biosciences), and analyzed on Image J to obtain protein expression. β-actin acted as the internal
control.
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Statistical Analysis
Data were presented as mean±SD and processed on SPSS 25.0 and GraphPad Prism 8.0.2. Data normality was assessed
with QQ plots (see the Supplementary Materials). Normally distributed data were analysed with one-way ANOVA
followed by SNK-q. Skewed data were analysed with Kruskal–Wallis test followed by Dunn’s multiple comparisons. P <
0.05 was considered statistically significant.

Results
Neurological Function Score
Sham rats were scored 0, regarded normal without any neurological deficit. MCAO rats were presented with evident
neurological deficits, such as failure to fully extend the left front paw, turning or tipping to the left while walking. In the
meantime, they had higher scores after 2 h of ischemia relative to the Sham group (p<0.001). Moreover, the injection of
remimazolam at 5 and 10 mg/kg after 24 h of reperfusion contributed to significantly lower scores, demonstrating
alleviated neurological disorders (p < 0.05; p < 0.01; Figure 1).

Brain Infarct Volume
Brain tissue of Sham rats was in uniform red without white infarct area. To the contrary, significant white infarct areas
were present in the MCAO group (p<0.001). Following injection of remimazolam, the areas were evidently reduced
(p<0.001), which was much more significant at a medium concentration in the MCAO+RM group (p<0.01 versus the
MCAO+RL, and p<0.001 versus the MCAO+RH; Figure 2A and B).

Morphology of Ischemic Cortical Neuron
In the HE staining results, Sham rats showed well-organized neurons, round or cone-shaped cells with intact structure,
clear nucleoli and boundaries; in the MCAO group, there was evidence of cell death, including significant neuronal
degeneration, loose tissue structure, interstitial edema, swollen neural cells in triangular or irregular shapes, which were

Figure 1 NDS at 2 h of ischemia and 24 h of reperfusion.
Notes: ***p < 0.001, compared to Sham group; #p < 0.05, ##p<0. 01, compared to MCAO group; n = 15.
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disordered, with nuclear pyknosis and fragmentation. Treatment of remimazolam contributed to significantly alleviated
injury (Figure 3).

Brain NLRP3, ASC, Caspase-1, GSDMD, IL-1β and IL-18 Expression
IHC Staining
Expressions of NLRP3, ASC, caspase-1, GSDMD, IL-1β and IL-18 at the border zone of infarcts were measured by IHC
(Figure 4). Relative to the Sham group, higher expressions were present in the MCAO group (p<0.001, Figure 4B–G).
Relative to the MCAO group, significant reductions were found in NLRP3, ASC, caspase-1, GSDMD, IL-18 in MCAO
+RL (p<0.05; p<0.01; p<0.001; Figure 4B–E and G), NLRP3, ASC, caspase-1, GSDMD, IL-1β and IL-18 in MCAO+RM
(p<0.001; Figure 4B–G), and NLRP3, ASC, GSDMD, IL-1β and IL-18 in MACO+RH (p<0.05; p<0.01; p<0.001;
Figure 4B, C, E–G) groups. Relative to the MCAO+RL group, ASC, GSDMD, IL-1β and IL-18 expressions were
significantly decreased in the MCAO+RM group (p<0.05; p<0.01; Figure 4C, E–G). Relative to the MCAO+RM group,
ASC, caspase-1, GSDMD and IL-18 were profoundly elevated in the MCAO+RH group (p<0.05, p<0.01 Figure 4C–E
and G).

Western Blot
Figure 5A shows the protein bands of NLRP3, ASC, caspase-1, GSDMD, IL-1β and IL-18 in each group. Higher protein
expressions were present in the MCAO group versus the Sham group (p<0.05; p<0.001; Figure 5B–G). Relative to the
MCAO group, significant reductions were found in ASC, caspase-1, IL-1β and IL-18 in MCAO+RL (p<0.05; Figure 5C, D,
F and G); NLRP3, ASC, caspase-1, GSDMD, IL-1β and IL-18 in MCAO+RM (p<0.05; p<0.01; p<0.001; Figure 5B–G); and
NLRP3, caspase-1 in MACO+RH (p<0.05, p<0.01, Figure 5B and D) groups. Relative to the MCAO+RL group, NLRP3 and
caspase-1 expressions were highly decreased in the MCAO+RM group (p<0.05; Figure 5B and D). Relative to the MCAO
+RM group, NLRP3 and ASC were profoundly increased in the MCAO+RH group (p<0.05; Figure 5B and C).

Discussion
MCAO models are commonly established to mimic the pathological conditions following the onset of middle cerebral
artery occlusion. It allows the induction of focal I/R injury and provides a subject view toward relevant functions.22 Here,
rat models of right MCAO were established to investigate the effect of remimazolam on cerebral I/R injury. It is known
that focal cerebral I/R injury generally can cause morphological changes and dysfunction of ischemic cortical neurons,

Figure 2 TTC staining for brain infarct volume.
Notes: (A) Representative picture; (B) Infarct volume after 24 h of reperfusion. ***p < 0.001, compared to Sham group; ###p < 0.001, compared to MCAO group; ☆☆p <
0.01, compared to MCAO+RL group;

★★★p < 0.001, compared to MCAO+RM group; n = 5.
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and result in cerebral infarction to the most critical degree after 24 h.23 The rats here suffered from acute neurological
disorders of varying degrees after 24 of reperfusion. TTC and HE staining revealed significant infarct lesions in the MCA
blood supply area, in the meantime, pathologically injured or dead neurons were present. Following reperfusion and
instant remimazolam injection, great improvements were found in neurological function scores, neuronal injury and brain
infarct volume, suggesting the effectiveness of remimazolam in improving the neurological disorders and decreasing the
damage to cortical neurons after I/R injury.

Cerebral I/R injury is a result of a series of complex cascade reactions. Major pathological changes after ischemia
include microvascular injury, blood-brain barrier dysfunction, inflammation, oxidative stress/reactive oxygen species
increase, and reduced neuronal survival.24 During reperfusion process, oxygen radical, cytokine and inflammatory factor
will be largely released. In the meantime, there will be an increase in inflammatory cell infiltration because of the
increased permeability of blood-brain barrier, thus propagating inflammatory response to cause microvascular blocking
and further secondary hypoperfusion.25 Inflammation, one of the pathological factors for cerebral I/R injury, has been
recognized as a vital part in cerebral ischemic stroke. Both the formation and development of local inflammation are
involved in the injury and necrosis of neurons. Consistently, we here found an evident increase in cortical IL-1β and IL-
18 in the ischemic area after MCAO establishment, which also supported the vital role of inflammation in acute cerebral
injury.

Pyroptosis is a type of programmed cell death dependent on cysteinyl aspartate specific proteinase 1 (caspase-1).26,27

It is different from apoptosis and shows a close relationship with inflammation. Typical characteristics of pyroptosis are
cell swelling, cell membrane blebbing, pore-forming resulting in cell death due to rupture, and outflow of intracellular
substances.28 Pyroptosis is majorly present in phagocytic cells such as macrophages and neutrophils, and also can be seen
in endothelial cells and neurons.29

It is established that inflammasome activation is the typical and key part in the regulation of pyroptosis. It can be
triggered by varying stimulatory signals involving two patterns: pathogen-associated molecular patterns (PAMP) and
danger-associated molecular patterns (DAMP). Research revealed that following the onset of stroke there is typical
NLRP3 inflammasome activation triggered by the DAMP pattern.30,31 NLRP3 inflammasome is composed of nucleotide-
binding oligomerization domain protein-like receptors (NLRs), adaptin including apoptosis-associated speck-like protein
containing (ASC) and effector protein such as pro-caspase-1. It participates in regulating inflammatory cascades in
multiple diseases, in the meantime, shows a role in pyroptosis by affecting pore-forming protein gasdermin
D (GSDMD).32,33; The activated NLRP3 will promote pro-caspase-1 to transform into caspase-1 of hydrolysis activity,
in turn activating several proinflammatory cytokines including IL-1β and IL-18.34 GSDMD is a specific effector
molecule involved in pore channel formation and the N-terminal fragment function is the key for the occurrence of
pyroptosis.35 In the context of caspase-1 activation, GSDMD can be lysed as GSDMD-NT, which affects the perme-
ability of cell membrane, and in turn triggers pyroptosis and release of inflammatory cytokines such as IL-1β and IL-
18.36

Fu et al37 reported that neuronal injury was accompanied by activation of NLRP3 inflammasome and strong
inflammatory reactions with vast IL-1β and IL-18 released. In this study, IHC and Western blot assays were devised
to test cortical expressions of NLRP3, ASC, caspase-1, GSDMD, IL-1β and IL-18. Consistent with the previous studies,

Figure 3 HE staining for morphology of peripheral cortical neuron of cerebral ischemic area (Scale: 100 μm).
Notes: Sham group: well-organized neural cells, with intact structure, large and round nuclei, and clear nucleoli (arrow); MCAO group: irregular, disordered neuralcells,
with nuclear pyknosis and fragmentation (arrow); MCAO+RL/MCAO+RM/MACO+RH: better cell morphology (arrow) than the MCAO group, much more significant in the
MCAO+RM group.
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Figure 4 IHC staining for border zone infarcts. (A) Micrographs for NLRP3, ASC, caspase-1, GSDMD, IL-1β and IL-18 at 24 h of reperfusion (Scale: 100 μm).
Notes: Positive areas were in dark brown. The Sham group showed low positive expressions, while the MCAO group displayed abundant expressions, which were reduced
by remimazolam treatment (B–G). Positive expression rate represented by AOD. *p < 0.05, **p < 0.01, ***p < 0.001, compared to Sham group; #p < 0.05, ##p < 0.01, ###p <
0.001, compared to MCAO group; ☆p < 0.05, ☆☆p < 0.01, compared to MCAO+RL group;

★p < 0.05, ★★p < 0.01, compared to MCAO+RM group; n = 5.

Drug Design, Development and Therapy 2022:16 https://doi.org/10.2147/DDDT.S344240

DovePress
419

Dovepress Shi et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


NLRP3 and ASC, vital components of NLRP3 inflammasome, were highly up-regulated following the onset of transient
I/R injury, suggestive of NLRP3 inflammasome activation. The expressions of caspase-1 and GSDMD were also
evidently increased resulting in the incidence of pyroptosis, and strong inflammatory reactions concurrently occurred
with more activated inflammatory factors IL-1β, IL-18. Studies have revealed that inhibition of NLRP3-mediated
pyroptosis might have neuroprotective effect.38–40 Besides, neuronal injury could be alleviated after application of
NLRP3 inhibitor MCC95 and caspase-1 inhibitor Ac-YUAD-CMK.41 NLRP3-mediated pyroptosis and inflammatory
cascade may be crucially potential targets for intervention in ischemic stroke. Notably, expressions of the mentioned

Figure 5 Protein expressions of cortical NLRP3, ASC, caspase-1, GSDMD, IL-1β and IL-18 after remimazolam treatment.
Notes: (A) Representative protein bands; (B–G) Quantitative analysis for protein expression standardized by β-actin. *p < 0.05, **p < 0.01, ***p < 0.001, compared to Sham
group; #p < 0.05, ##p < 0.01, ###p < 0.001, compared to MCAO group; ☆p < 0.05, compared to MCAO+RL group;

★p < 0.05, compared to MCAO+RM group; n = 5.
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factors such as NLRP3, caspase-1, GSDMD IL-1β and IL-18 displayed a significant decreasing trend after remimazolam
application. It demonstrated that remimazolam, to some extent, could suppress NLRP3-mediated pyroptosis and further
inflammatory cascade. The above results were consistent with the morphological and functional changes of neurons in
rats, altogether implied the possible mechanism of action of remimazolam, by which remimazolam suppresses NLRP3
inflammasome-induced pyroptosis to reduce activation and release of inflammatory factors and subsequent inflammatory
cascade, finally alleviating cerebral I/R injury and improving neuronal morphology and function.

Perioperative organ protection is an important topic in Anesthesiology. Remimazolam has a broader application
prospect because of its special advantages compared with existing GABA receptor agonists. The study of the effect of
remimazolam on cerebral I/R injury is in line with the theme of organ protection, and has certain practical significance
for guiding clinical medication in patients with ischemic stroke. Although we found and preliminarily verified the
important role of NLRP3 inflammasome pathway in the protection of remimazolam on cerebral I/R injury in rats,
considering the differences between animal models and clinical practice, as well as the ethical limitations of clinical
studies, it is necessary to evaluate the safety and effectiveness of remimazolam in patients with ischemic stroke through
high-quality, large-sample and multicenter prospective studies. In addition, the concentration gradients of 5 mg/kg,
10 mg/kg and 20 mg/kg were selected according to the ED50 of remimazolam in rats,42 but the protective effect in this
experiment was not dose-dependent. Moreover, this study did not use more methods to activate or block related signal
pathways for further verification. Therefore, the appropriate dose and exact neuroprotective mechanism of remimazolam
still need to be carried out in more in-depth researches in the future.

Conclusion
To sum up, this research identified the role of NLRP3 inflammasome-dependent pyroptosis in occurrence of cerebral I/R
injury, which cooperates with secondary inflammatory cascade to cause morphological changes and dysfunction of
cerebral cortical neurons. Remimazolam was proven to have protective actions for cerebral I/R injury in rats, since it
could reduce neuronal injury and cerebral infarct as well as improve neurological function. The NLRP3 inflammasome-
dependent pyrolysis pathway may play a vital significance regulatory role in the mechanism about neuroprotective of
remimazolam.

Abbreviations
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