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Identifying general patterns of colonization and radiation in island faunas is

often hindered by past human-caused extinctions. The insular Caribbean is

one of the only complex oceanic-type island systems colonized by land

mammals, but has witnessed the globally highest level of mammalian

extinction during the Holocene. Using ancient DNA analysis, we reconstruct

the evolutionary history of one of the Caribbean’s now-extinct major

mammal groups, the insular radiation of oryzomyine rice rats. Despite the

significant problems of recovering DNA from prehistoric tropical archaeolo-

gical material, it was possible to identify two discrete Late Miocene

colonizations of the main Lesser Antillean island chain from mainland

South America by oryzomyine lineages that were only distantly related.

A high level of phylogenetic diversification was observed within oryzo-

myines across the Lesser Antilles, even between allopatric populations on

the same island bank. The timing of oryzomyine colonization is closely simi-

lar to the age of several other Caribbean vertebrate taxa, suggesting that

geomorphological conditions during the Late Miocene facilitated broadly

simultaneous overwater waif dispersal of many South American lineages

to the Lesser Antilles. These data provide an important baseline by which

to further develop the Caribbean as a unique workshop for studying

island evolution.
1. Introduction
Island systems and the unusual endemic faunas that often occur on them rep-

resent important ‘natural laboratories’ that have played a key part in the

development of evolutionary thought since the nineteenth century [1,2]. In par-

ticular, the dynamics of island colonization events, the factors that determine

the pattern and magnitude of adaptive radiations, and the geography of gene

flow in relation to different environmental barriers have all become the subject

of extensive research [3–5]. Island species are also particularly vulnerable to

human-mediated extinction due to factors such as a lack of native mammalian

predators on most oceanic islands, and a substantial proportion of endemic

insular biodiversity (especially vertebrate biodiversity) has been lost following

human arrival in different island systems [6–9].

Central to our capacity to derive general patterns of colonization, radiation

and extinction in island systems is the ability to compare across multiple orga-

nismal groups. The insular Caribbean has excellent potential in this context, as

it is one of the only oceanic-type island systems to have been colonized by non-

volant land mammals. The Caribbean Late Quaternary land mammal fauna

was characterized by major evolutionary radiations of endemic lipotyphlan
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Figure 1. Map showing the distribution of described species of extinct Lesser Antillean oryzomyine rice rats. Starred islands indicate those from which oryzomyine
samples used in this study were collected.
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insectivores, megalonychid sloths, platyrrhine primates and

several families of often large-bodied rodents [9,10]. Sub-

sequently, the region has witnessed the highest level of

mammalian species extinction anywhere in the world

during the prehistoric Holocene and post-1500 AD historical

era [9–12], and from a Late Quaternary fauna containing

more than 100 endemic mammals, only two insectivore

species and eight currently recognized capromyid rodent

species are probably extant [13,14].

However, reconstructing the evolutionary history of the

many island clades that now lack any surviving representa-

tives can be extremely challenging, and this may pose a

major barrier to understanding fundamental evolutionary

patterns and processes in insular systems. Here, we present

the first molecular data from one of the Caribbean region’s

now-extinct major mammal groups: the insular radiation of

oryzomyine rice rats (Cricetidae: Sigmodontinae). These are

the only native non-volant mammals known from across

most of the Lesser Antilles, and are part of an extremely

diverse New World rodent radiation containing 28 extant

genera and roughly 130 currently recognized extant species

[15–17]. Caribbean oryzomyines are now only represented

by highly degraded skeletal material from archaeological
or palaeontological sites, or by museum specimens (more

than 100 years old) of historically live-caught individuals.

Although abundant in the Late Quaternary fossil record

and in Holocene pre-Columbian archaeological sites through-

out the main Windward–Leeward island chain (figure 1),

Caribbean oryzomyine diversity remains unclear. Around

20 separate insular populations, some of which reached the

size of small cats [18], have been recorded from different

islands between Grenada and the Anegada Passage [19,20].

All of these populations are now extinct, probably as a

result of European-era introduction of invasive mammals or

agricultural habitat conversion [18]; this dramatic level of

extinction is equivalent in magnitude to the much more

widely known major historical-era loss of marsupials and

rodents in Australia [9,11]. However, only six oryzomyine

species (including two endemic genera, Megalomys and

Pennatomys, and a representative of the mainland Neotropical

genus Oligoryzomys on the southern island of St Vincent) have

so far been formally described from the Windward–Leeward

island chain [19,20].

Colonization scenarios and intra- and interisland species

groupings proposed by previous authors have suggested

that oryzomyine taxa from the main Windward–Leeward



Table 1. Samples of Lesser Antillean extinct oryzomyines investigated for mtDNA analyses. All samples are from pre-Columbian zooarchaeological sites except
for two historical (nineteenth-century) soft-tissue samples of Megalomys desmarestii (Martinique) and M. luciae (St Lucia). BMHS, Barbados Museum and
Historical Society; LU, Leiden University; MNHN, Muséum National d’Histoire Naturelle (Paris); NHM, Natural History Museum (London; mammalogy collections);
UF, Florida Museum of Natural History, University of Florida (zooarchaeology comparative collections); US, University of Southampton; UW, University of
Washington; YPM, Yale Peabody Museum of Natural History.

taxon island site material no. samples source

undescribed Antigua Indian Creek bone 5 YPM

Megalomys georginae Barbados Silver Sands bone 2 BMHS

undescribed Carriacou Sabazan bone 2 UW

undescribed Guadeloupe Anse à la Gourde bone 5 LU

undescribed Marie Galante Taliseronde bone 5 UF

Megalomys desmarestii Martinique Paquemar bone 3 UF

Megalomys desmarestii Martinique unknown (nineteenth-century wild-caught) dried tissue 1 NHM

Pennatomys nivalis Nevis Hichmans bone 4 US

Pennatomys nivalis St Eustatius Golden Rocks bone 7 UF

Pennatomys nivalis St Kitts Sugar Factory Pier bone 7 UF

Megalomys luciae St Lucia unknown (nineteenth-century wild-caught) dried tissue 1 MNHN
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island chain constitute either a monophyletic clade or separ-

ate evolutionary radiations [19,21,22]. Uncertainty also

remains over whether oryzomyines reached South America

before complete formation of the Isthmus of Panama that

facilitated the Great American Biotic Interchange [23,24],

and whether their Late Holocene distribution was modified

by accidental or deliberate translocation between islands by

Amerindians during recent prehistory, a dispersal mechan-

ism which also played an important role in shaping

historical distributions of other terrestrial vertebrates in the

Lesser Antilles (e.g. iguanas, agoutis, opossums) [25].

Here, we reconstruct oryzomyine colonization of the insu-

lar Caribbean and the dynamics of their subsequent

evolutionary history. Our specific aims are to determine:

(i) whether oryzomyines colonized the main Windward–

Leeward island chain north of St Vincent via either a single

or multiple waif dispersal events; (ii) levels of phylogenetic

diversity, and thus the scale of the subsequent Late Holocene

extinction event, shown by oryzomyines across this complex

island chain; and (iii) the timing of oryzomyine colonization,

diversification and adaptation across the region, particularly in

relation to known geological events and prehistoric arrival of

Amerindian settlers. This study also has the broader goal of

generating new insights into the evolutionary history and

Quaternary diversity of the Caribbean mammal fauna, and the

wider dynamics of mammalian island colonization events.
2. Material and methods
(a) DNA extraction and amplification
We sampled a total of 42 oryzomyine samples from 10 Lesser

Antillean islands (table 1). DNA extractions followed protocols

described in [26] and were carried out in a dedicated ancient

DNA (aDNA) laboratory at Royal Holloway University of

London. Mitochondrial DNA (MtDNA) were amplified in

multiple overlapping fragments, averaging 110 base pairs (bp)

each, using a total of 18 primer pairs (electronic supplementary

material, table S1), targeting a 560 bp region of cytochrome b
(cyt b). All amplifications were repeated (more than two times),

sequenced through Sanger and NGS, and sequence data were
translated to detect potential NUMTs and miscoding legions.

PCR reactions, amplicon purification, Sanger sequencing and

protocols to prevent contamination were performed as described

in [26].

(b) Library construction and NGS sequencing
For each of the eight samples that successfully amplified

mtDNA, the PCR products (four to nine amplicons per

sample) were pooled to an equimolar concentration. Libraries

for these eight multi-amplicon samples were constructed using

a previously described protocol [27] with the following modifi-

cations: the initial DNA fragmentation step was not required;

all clean-up steps used MinElute PCR purification kits; Buffer

Tango and ATP were replaced with 0.1 mg ml BSA and 1 � T4

DNA ligase buffer during the blunt-end repair step; the proceed-

ing clean-up step was replaced by an inactivation step, heating to

758C for 10 min; 0.5 mM ATP replaced the T4 DNA Ligase buffer

during the adapter ligation step. The index PCR step followed a

further protocol using Pfu Turbo Cx and the addition of

0.4 mg ml BSA [28]. The index PCR was set for 20 cycles with

three PCR reactions conducted per library. The eight indexed

libraries were diluted to an equimolar concentration and

pooled. The multiplexed samples were sequenced on an Illumina

MiSeq platform (Natural History Museum, London) using a

single lane on a paired-end flow cell.

(c) Quality control and alignment
Samples were demultiplexed on the MiSeq instrument. FASTQ
files were trimmed and filtered by quality using the web-based

platform GALAXY [29]. PCR primer sequences were removed and

SEQPREP (https://github.com/jstjohn/SeqPrep) was employed to

remove adapter sequences and merge reads. Reads were aligned

to a reference sequence (obtained through our Sanger sequencing)

with BOWTIE2 [30]. Duplicate sequences were removed using

SAMTOOLS [31] and a consensus sequence obtained implementing

SAMTOOLS quality scoring in UGENE [32].

(d) Phylogenetic analyses
Ancient DNA sequences were aligned with modern oryzomyine

mtDNA cyt b sequences available on GenBank (electronic sup-

plementary material, table S2). For extant oryzomyines, we also

https://github.com/jstjohn/SeqPrep
https://github.com/jstjohn/SeqPrep
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retrieved and aligned GenBank sequences for two nuclear genes:

interphotoreceptor retinoid binding protein (IRBP) and alcohol

dehydrogenase (Adh1) intron 2 (electronic supplementary

material, table S2). For each gene, DNA substitution model and

partition fit were selected under Bayesian information criterion

using PARTITIONFINDER 1 [33]. Two partitions were selected for cyt

b: codon positions 1 and 2 (GTR þ G) and codon position 3

(HKY þ G). For IRBP, partitioning was rejected and HKY þ G

was selected for all codon positions. For Adh1, the HKY þ G sub-

stitution model was selected. For the full dataset (three gene

regions), Bayesian trees were constructed using MRBAYES v. 3.2

[34], implementing nucleotide substitution models as selected

through PARTITIONFINDER, using four chains (three heated, one

cold) run for 1 � 107 generations, sampling every 1 � 104 gener-

ations with a burn-in period of 2500 trees. Nodal support was

determined by approximate posterior probabilities performed in

MRBAYES. Divergence estimates and mutation rates were indepen-

dently calculated in BEAST v. 1.7.5 [35] using the cyt b dataset with

data partitioning and substitution models as selected through

PARTITIONFINDER. In all BEAST analyses, the Yule speciation process

was implemented. Divergence dating for Caribbean fauna is pro-

blematic due to an almost complete absence of any Tertiary

mammal fossil record from the insular Caribbean. We therefore

applied a strict clock with a mutation rate of 4% per site per million

years [36,37] in our divergence date estimates. To directly address

the potential significance of known major historical events

(3.75 Ma and 7 ka) without applying a fixed mutation rate, our

second set of analyses fixed the divergence dates to either

3.75 Ma or 7 ka and estimated the mutation rate required. Two

independent runs were conducted for each of the estimated par-

ameters, with chain length set to 1 � 107 generations, data

collected every 1 � 103 generations and a burn-in of 1 � 105 gener-

ations. Outputs from MRBAYES and BEAST runs were examined

with TRACER v. 1.5 [38] to check for stabilization and convergence

between runs. Peromyscus truei was used as the outgroup. For com-

parison with existing oryzomyine data, pairwise sequence

divergence estimates were calculated in MEGA v. 5.1 [39] using

the Kimura-2 parameter (K2P) model.
3. Results and discussion
(a) Oryzomyine colonization of the Lesser Antilles:

single or multiple events?
To determine the colonization dynamics of the extinct Lesser

Antillean oryzomyines, we attempted to sequence a 560 bp

region of mtDNA cyt b from a total of 42 ancient specimens

collected from 10 islands (figure 1 and table 1). Eight specimens

from seven islands (Antigua, Guadeloupe, Martinique, Nevis,

St Eustatius, St Kitts and St Lucia) successfully yielded

mtDNA. This low success rate was an expected outcome due

to the known low preservation potential of ancient biomole-

cules from tropical island systems, which also prohibited

attempts to amplify nuclear DNA.

Bayesian phylogenetic analyses of our aDNA data

combined with modern data from 26 extant sigmodontine

genera from continental Central and South America and

the Galápagos Islands (electronic supplementary material,

table S2) clearly identified two distinct colonization events of

the main Windward–Leeward island chain north of St Vincent

(figure 2). The endemic Antillean taxa Megalomys (Martinique,

St Lucia) and Pennatomys (Nevis, St Eustatius, St Kitts) are

demonstrated to be sister genera, in contrast to the conclu-

sions of previous morphology-only phylogenetic analyses

[19,20]. The monophyletic Megalomys–Pennatomys clade is
distributed widely across the Lesser Antilles, and is most clo-

sely related to a clade containing representatives from both

the mainland Neotropics (Trans-Andean South America and

Central America; Aegialomys, Melanomys, Sigmodontomys)

and the Galápagos Islands (Aegialomys, Nesoryzomys). These

taxa together form part of a wider oryzomyine clade

(‘Clade D’ of [15]), which has undergone extensive radiation

throughout the oceanic and continental shelf islands of the

Neotropical region (also including Curaçao, Fernando de

Noronha, Jamaica and Trinidad [15,19]), and which contains

several taxa that possess semi-aquatic adaptations (e.g. nata-

tory fringes, interdigital membranes) and are associated with

marshes, rivers, streams or coastlines, probably predisposing

them to accidental overwater waif dispersal [19].

By contrast, oryzomyines from Antigua and Guadeloupe,

representing taxonomically undescribed populations, together

constitute a separate monophyletic clade not predicted by

previous published studies, occurring on islands situated

geographically intermediate between the distributions of

Megalomys and Pennatomys along the Windward–Leeward

island chain. This clade appears most closely related to the

mainland South American genus Hylaeamys, and falls within

a different wider oryzomyine clade (‘Clade B’ of [15]). Extant

members of this clade are primarily inhabitants of forest

environments in Central and South America, occurring

across the Amazonian and Orinoco basins [40]. Although not

having the same suite of semi-aquatic adaptations as members

of Clade D, Hylaeamys and closely related genera occur along

riverbanks and so could become associated with natural rafts of

floating vegetation for overwater dispersal. The high posterior

probability value for the placement of the Antigua–Guadeloupe

clade (0.98) and even stronger support for the deep genetic

divergence that separates the Antigua–Guadeloupe and

Megalomys–Pennatomys clades (1.00) demonstrate distinct

evolutionary histories for these taxa, revealing that the main

Windward–Leeward island chain north of St Vincent was colo-

nized separately from South America by at least two

oryzomyine lineages that were only distantly related.
(b) Antillean oryzomyine diversity
A second unexpected result of our aDNA analyses was the

high level of phylogenetic diversification observed within

the recently extinct oryzomyine radiation across the Lesser

Antilles. Although overall endemism is high within the main

Windward–Leeward island chain, Antillean terrestrial ver-

tebrate taxa are typically distributed across all major islands

situated together on shallow submerged banks, which would

have been exposed above water during repeated Quaternary

low sea-level stands, thus periodically removing barriers to

gene flow between neighbouring populations. Many Antillean

vertebrates are therefore interpreted as ‘bank endemics’, with

little differentiation usually observed between allopatric

populations on the same island bank [41]. In particular, the

St Kitts Bank (comprising Nevis, St Eustatius and St Kitts)

displays a particularly low level of bank endemism in its

reptile fauna compared with other Lesser Antillean island

groups, suggesting greater potential for dispersal of terrestrial

vertebrate populations across this part of the Windward–

Leeward island chain [41].

Oryzomyines from Nevis, St Eustatius and St Kitts

were originally interpreted as conspecific and all assigned to

Pennatomys nivalis, as fragmentary craniodental material
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available from Holocene zooarchaeological deposits on the

three islands showed minimal apparent morphological

differentiation [19]. However, our analyses reveal that oryzo-

myines from these islands display considerable genetic

differentiation from each other, suggesting that gene flow

between neighbouring island populations on the St Kitts

Bank was surprisingly limited throughout the Quaternary.

Interisland cyt b sequence divergence in oryzomyine popu-

lations on the St Kitts Bank ranges from 2.16% (Nevis–St

Kitts) to 7.16% (Nevis–St Eustatius; table 2). This level of

sequence divergence is comparable with the range reported

between morphologically distinct species in some living sig-

modontine rodent genera (e.g. Oecomys: 1.23–21% [42]),

although similar levels of sequence divergence are also

observed between allopatric populations of other sigmodon-

tine species (e.g. Hylaeamys megacephalus: 0.13–9.13% [43]).

While the taxonomic status of now-extinct oryzomyine
populations on the St Kitts Bank therefore remains unresolved

in the absence of further genetic or morphological data, these

island populations had clearly experienced significant diversi-

fication and represent a relatively substantial, unexpected

within-bank evolutionary radiation.

Estimates of cyt b sequence divergence between oryzo-

myines on different island banks show even greater

differentiation (table 2), supporting morphology-based genus-

level differentiation between Megalomys and Pennatomys [19],

and also supporting the distinctiveness of the Antigua–Guade-

loupe lineage both from other Antillean oryzomyine genera

(minimum sequence divergence ¼ 11.0%, from Megalomys on

Martinique–St Lucia) and from its mainland sister genus

Hylaeamys (sequence divergence ¼ 14.7%). These high sequence

divergence estimates, and phylogenetic placement of the

Antigua–Guadeloupe lineage far from the monophyletic

Megalomys–Pennatomys clade within the wider oryzomyine



Table 2. Pairwise estimates of cytochrome b sequence divergence (%) between oryzomyine samples from different Lesser Antillean islands.

St Kitts a St Kitts b St Eustatius Nevis St Lucia Martinique Antigua

St Kitts a

St Kitts b 0.85

St Eustatius 5.74 6.68

Nevis 2.16 2.16 7.16

St Lucia 11.1 10.1 12.7 10.6

Martinique 11.1 10.1 12.7 10.6 0

Antigua 16.2 15.1 15.8 16.7 11 11

Guadeloupe 16.2 15.1 15.8 16.7 11 11 0

Table 3. Date estimates (Ma) for the most recent common ancestor between selected oryzomyine taxa based on a moderate estimate (4% per site per million
years) for rodent cyt b mutation rates (cyt b-only data).

taxa

divergence date estimates

mean date 95% HPD lower 95% HPD upper

St Kitts and Nevis 0.343 0.135 0.586

St Kitts, Nevis and St Eustatius 1.209 0.584 1.907

St Lucia and Martinique 0.127 0.009 0.276

St Lucia, Martinique, St Kitts, Nevis and St Eustatius 5.471 3.823 7.288

St Lucia, Martinique, St Kitts, Nevis, St Eustatius, Nesoryzomys and Aegialomys 6.814 5.259 8.474

Antigua and Guadeloupe 0.097 0.001 0.235

Antigua, Guadeloupe and Hylaeamys 6.303 4.243 8.442
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radiation, both support our independent morphological assess-

ment of the distinctiveness of the Antigua–Guadeloupe lineage.

We therefore recognize it as being distinct at the genus level

from other oryzomyines, and describe it here as the new

genus and species Antillomys rayi (electronic supplementary

material, appendix, systematic paleontology and figure S1).
(c) Temporal diversification
In order to examine patterns of temporal diversification in the

two Lesser Antillean oryzomyine clades, we employed

molecular clock analyses and a median (4% per site per

million years) estimate for rodent cyt b mutation rates [36,37]

(table 3; electronic supplementary material, appendix and

figure S2). Both Antillomys and the Megalomys–Pennatomys
clade are estimated to have diverged from the most recent

common ancestor that each lineage shared with mainland

South American oryzomyine sister taxa at very similar

times, probably both during the Messinian Stage of the Late

Miocene; Antillomys is estimated to have diverged at 6.303 Ma

(95% HPD, 4.243–8.442 Ma), whereas the Megalomys–

Pennatomys clade is estimated to have diverged at 6.814 Ma

(95% HPD, 5.259–8.474 Ma). Megalomys and Pennatomys
are also likely to have diverged from each other during

the Messinian, with an estimated divergence date of 5.471 Ma

(95% HPD, 3.823–7.288 Ma). Infrageneric diversification in

Antillomys, Megalomys and Pennatomys is estimated to have

occurred considerably later, during the Middle–Late Pleistocene:

Antillomys¼ 0.097 Ma (95% HPD, 0.001–0.235 Ma),

Megalomys¼ 0.127 Ma (95% HPD, 0.009–0.276 Ma) and
Pennatomys¼ 1.209 Ma (95% HPD, 0.584–1.907 Ma). Notably,

diversification within Pennatomys pre-dates the divergence of

Megalomys populations on Martinique and St Lucia; as these

Megalomys populations are recognized as morphologically dis-

tinct species (M. desmarestii and M. luciae) that vary in body

mass as well as both craniodental and soft-tissue characteristics

[18–20], this provides further support for likely species-level

differentiation between the morphologically more poorly under-

stood Pennatomys populations on the St Kitts Bank. Conversely,

diversification within Antillomys is very recent and post-dates

divergence of other Antillean oryzomyine lineages, consistent

with a lack of morphological differentiation between Antillomys
populations on different islands (electronic supplementary

material, appendix, systematic paleontology).

Additional analyses were used to explore the potential

significance of known major historical events in driving the

evolution and diversification of the Antillean oryzomyine

fauna. The hypothesis that colonization of the insular Carib-

bean from mainland South America by oryzomyines was not

possible before the closing of the Isthmus of Panama and

establishment of a continuous terrestrial colonization route

between North and South America around 3.5–4 Ma [44]

was investigated by fixing the divergence date between

island oryzomyine taxa and their mainland South American

sister taxa to 3.75 Ma (s.d. ¼ 0.5 Myr). The resultant mutation

rate estimates generated under this model (electronic sup-

plementary material, appendix, table S3), while faster than

our initial moderate (4% per site per million years) mutation

rate estimate, are not unfeasible. However, our models suggest

that substantial diversification within the wider Neotropical
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oryzomyine clade probably occurred prior to the closing of

the Isthmus, lending support to previous suggestions that

oryzomyines first reached South America via transient island

chains before the main phase of the Great American Biotic

Interchange [23,24]. As some other terrestrial Caribbean

vertebrates (e.g. Spondylurus skinks) may have speciated as

recently as the mid-Holocene in response to post-glacial

geographical isolation [45], further analysis was also con-

ducted to investigate the possibility that interisland

oryzomyine diversification may have been driven by suppo-

sed prehistoric Holocene Amerindian translocation [25].

However, even when the most recent oryzomyine inter-

island divergence dates were fixed to the oldest suggested

date for Amerindian occupation of the Lesser Antilles

(approx. 7 ka, s.d. ¼ 0.1 kyr [10,25]), the estimated mean

mutation rates required (87–212%) are absurdly fast

(electronic supplementary material, appendix, table S3).

(d) Comparative dynamics of island colonization
and evolution

The unexpected and complex evolutionary history of the

recently extinct Lesser Antillean oryzomyine radiation revealed

by our aDNA analyses has wider implications for under-

standing the biological history of the insular Caribbean and

other island systems. Different non-volant vertebrate lineages,

including multiple mammal lineages, appear to have reached

the Greater Antilles at various times throughout the Neogene,

Palaeogene and Mesozoic via a complex series of overwater

dispersals, transient land bridges and vicariance events

[2,10,45–51]. By contrast, although the Lesser Antillean volca-

nic arcs have been active since the Eocene [46,52], the region’s

modern non-volant vertebrate fauna is considerably younger

in age. Whereas some non-volant vertebrate taxa (e.g. eleuther-

odactyline frogs [50], West Indian racers [51]) reached the main

Lesser Antillean island chain from the Greater Antilles, other

groups colonized directly from mainland South America, pre-

sumably through similar dispersal events to those that

probably mediated the arrival of oryzomyines. Interestingly,

other recent molecular studies indicate that numerous different

amphibian and reptile taxa (frogs Allobates chalcopis and

Leptodactylus fallax; pit-vipers Bothrops spp.; mabuyine skinks

Capitellum spp., Mabuya spp. and Spondylurus spp.) reached

the Lesser Antilles from South America during the Late

Miocene, sharing a closely similar age to both the Antillomys
and the Megalomys–Pennatomys lineages [45,53]. The Late

Miocene was an interval of low eustatic sea level during

which a northward riverine connection between Amazonia

and the Caribbean may have existed [54], therefore poten-

tially providing favourable geomorphological conditions that

facilitated broadly simultaneous overwater waif dispersal of
many South American mainland vertebrate lineages to the

Lesser Antilles.

Infrageneric diversification in each of the Lesser Antillean

oryzomyine genera took place during the Middle–Late

Pleistocene, an interval when glacial cycles were driving

major changes in sea level, island area and climate, and there-

fore facilitating isolation and speciation in many Caribbean

island lineages [45,51]. However, oryzomyine populations

from islands on the shallow St Kitts Bank, which were regularly

reconnected during glacial cycles, retained an unexpectedly

high degree of genetic structuring throughout the Pleistocene

despite the potential for periodic gene flow between neigh-

bouring populations. Comparable patterns of substantial

phylogenetic differentiation maintained across periodic sea-

ways are considered uncommon among insular vertebrates.

However, other recent molecular studies have also demon-

strated evidence for within-bank differentiation in groups

such as West Indian racers (Alsophis) on some Lesser Antillean

islands [51], as well as in some other mammal taxa occurring

on continental shelf islands that have been regularly recon-

nected to neighbouring mainland populations of sister taxa

(e.g. Hainan gibbon Nomascus hainanus [55]), suggesting that

such insular phylogeographic structuring may be more

common than previously supposed. The increasing use of

molecular approaches for reconstructing phylogenetic relation-

ships between different Caribbean vertebrate populations is

likely to yield further substantial insights into the evolutionary

dynamics of island lineages, and we encourage new investi-

gation of other recently extinct Caribbean mammal lineages

using aDNA techniques. We also highlight the unexpected

diversity of the Lesser Antillean oryzomyine radiation, which

is not predicted by previous morphology- or biogeography-

based hypotheses of regional mammal evolution, and which

emphasizes the severity of the recent Caribbean mammal

extinction event.
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