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Transfer learning efficiently maps bone marrow cell
types from mouse to human using single-cell
RNA sequencing
Patrick S. Stumpf 1,2✉, Xin Du3, Haruka Imanishi4, Yuya Kunisaki5, Yuichiro Semba6, Timothy Noble1,

Rosanna C. G. Smith 7, Matthew Rose-Zerili7, Jonathan J. West 7,8, Richard O. C. Oreffo 1,8,

Katayoun Farrahi 3, Mahesan Niranjan3, Koichi Akashi6, Fumio Arai 4✉ & Ben D. MacArthur1,8,9,10✉

Biomedical research often involves conducting experiments on model organisms in the

anticipation that the biology learnt will transfer to humans. Previous comparative studies of

mouse and human tissues were limited by the use of bulk-cell material. Here we show that

transfer learning—the branch of machine learning that concerns passing information from

one domain to another—can be used to efficiently map bone marrow biology between

species, using data obtained from single-cell RNA sequencing. We first trained a multiclass

logistic regression model to recognize different cell types in mouse bone marrow achieving

equivalent performance to more complex artificial neural networks. Furthermore, it was able

to identify individual human bone marrow cells with 83% overall accuracy. However, some

human cell types were not easily identified, indicating important differences in biology. When

re-training the mouse classifier using data from human, less than 10 human cells of a given

type were needed to accurately learn its representation. In some cases, human cell identities

could be inferred directly from the mouse classifier via zero-shot learning. These results show

how simple machine learning models can be used to reconstruct complex biology from

limited data, with broad implications for biomedical research.
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The translational biomedical research pipeline typically
consists of a sequence of phases that starts with a discovery
phase, which usually involves experiments on cell lines

cultured in vitro as well as in vivo studies in model organisms,
and ends with carefully controlled clinical, review, and mon-
itoring phases1. The eventual success of this pipeline depends
upon effective transfer of information from one phase of the
process to the next. Despite the tremendous cost associated with
translational research failure2, this information-transfer process is
poorly understood.

Transfer learning is the branch of machine learning that takes
information derived from one setting and applies it to improve
generalization in another area3. The basic idea of transfer learning
is to mimic the human ability to learn new concepts from limited
examples by associating new information with prior under-
standing. In the transfer learning process, information gained
from solving a problem in a source domain is passed to another
related problem in a target domain, thereby improving target
domain performance. The gain from such knowledge transfer is
particularly apparent whenever data are abundant in the source
domain but scarce in the target domain. In this case, new con-
cepts can be effectively learnt in the target domain from very few
training samples, via leveraging of prior knowledge.

Here, we show how transfer learning can be used to map bone
marrow biology from mouse to humans. A number of previous
studies have conducted inter-species comparison of gene expression
profiles at the tissue level4–7. The novelty of our approach includes
the use of single-cell data, thereby achieving a substantial
improvement in resolution over previous studies. The problem of
passing information from a model organism (the source domain,
here the mouse) to the humans (the target domain) was chosen
because it is central to successful translational research. Bone
marrow was chosen because it is a complex tissue, consisting of
numerous different cell types, present in differing proportions, with
a well-established physiology in mouse that is broadly conserved,
and yet only partially understood, in humans. We demonstrate how
using a machine learning model to encode cell-type information in
mouse enables cell-type comparison with humans, providing new
insight into the effective transfer of information between species
and the amount of domain-specific information that is required to
train a machine learning model using single-cell data.

Results
Mapping mouse bone marrow. To begin, we collected gene
expression signatures using droplet-based scRNA-Seq (Drop-
Seq8) from unfractionated total bone marrow (TBM) samples as
well as from weakly lineage-depleted bone marrow (DBM) Cd45/
Ter119 dual-negative subsets in order to enrich for rarer cell
types, from three different mice (Fig. 1a). Overall, 6800 single-cell
transcriptomes were sequenced, yielding greater than 9 × 104

reads per cell on average. Following pre-processing and filtering, a
total of 5504 cells were retained, expressing on average 2684
transcripts per cell.

We then performed unsupervised clustering using the Louvain9

method (see “Methods”) to identify the various hematopoietic and
niche-cell types present. Despite the sparsity (93.3 ± 0.6%; mean ± s.d.
in mouse; Supplementary Fig. 1a) and substantial technical variability
that is typically encountered in scRNA-seq data10, we found that cells
clustered according to their type, rather than the mouse from which
they were obtained (Fig. 1b), suggesting the presence of a common
and robust “map” of the mouse bone marrow (Fig. 1b–d and
Supplementary Figs. 1b, d, and 2)

Assignment of cell identities to clusters was performed by
examining the localization of established lineage markers to
distinct clusters (see Fig. 1f, Supplementary Fig. 2 and

“Methods”). Our cluster annotation was in accordance with
other recent publications11,12. In total, we identified 19 cell
populations, covering the erythroid, myeloid, and lymphoid
branches of hematopoietic lineage tree, as well as separate
populations of non-hematopoietic supporting cell types including
endothelial cells and pericytes (Fig. 1c–f).

Four features of this clustering are notable. Firstly, the
proportion of cells in each cluster varied considerably, reflecting
the balance of different cell types present in the mouse bone
marrow (Fig. 1e). Clusters associated with rare cell types, such as
hematopoietic stem and progenitor cells (HSPCs), contained very
few cells. In contrast, clusters associated with abundant cell types,
such as erythroid cells, contained large numbers of cells. To gain
resolution on rare/immature cell types the depletion protocol we
used reduced the relative abundance of various mature cell types
—including monocytes (−8.1 ± 3.2% relative to TBM; mean ± s.d.
from n= 3 biological replicates), myelocytes (−11.4 ± 5.6%
relative to TBM), pro-B lymphocytes (−9.4 ± 3.8% relative to
TBM), while neutrophils, pre-B-lymphocytes, and T-lymphocytes
were completely ablated—and enriched for immature cells
including HSPCs (+4.0 ± 0.9% relative to TBM), myeloblasts
(+7.5 ± 3.7% relative to TBM), monoblasts (+2.8 ± 1.7% relative
to TBM), erythroblasts (+5.4 ± 1.9% relative to TBM), pericytes
(+0.9 ± 0.3% relative to TBM), and endothelial cells (+2.1 ± 0.5%
relative to TBM).

Secondly, while some clusters represent distinct cell identities,
others are associated with the discretization of continuous
maturation processes. For example, the erythroblast cluster
(shown in red in Fig. 1c) consists of a heterogeneous mixture
of cells at different stages in the erythrocyte maturation process,
representing a gradual transition from immature pro-normoblast
to late normoblast (see Supplementary Fig. 2a).

Thirdly, it is well-established that cell types in the hemato-
poietic cell lineages of the bone marrow are arranged according to
a hierarchical structure13–15. By considering adjacency relation-
ships between clusters, we were able to broadly recapitulate the
known structure of this hierarchy, indicating that the clustering
structure that we observed captures salient features of the mouse
bone marrow biology (Fig. 1d).

Fourthly, identified clusters are visually separable in two-
dimensional embeddings of the data generated using nonlinear
methods such as t-distributed stochastic neighbor embedding
(tSNE, Fig. 1c) and uniform manifold approximation and
projection (Supplementary Fig. 1b), yet they are not easily
separable in using linear methods such as principal component
analysis (Supplementary Fig. 1d), suggesting that genomic
features combine in a nonlinear way to define cell identities.

Collectively these clusters, and the spatial relationships
between them, constitute a reference map of the mouse bone
marrow. However, this map is not in a form directly amenable to
comparison with human bone marrow. To allow comparison we
trained a multinomial logistic regression (MLR) model to classify
individual cells from their gene expression profiles (using the
unscaled, binarized data, see “Methods”). MLR, a multiclass
generalization of logistic regression, was chosen since it is a
simple generalized linear method (i.e. it makes predictions based
on linear combinations of inputs via a nonlinear output function)
that has been shown to be as powerful as more complex machine
learning methods in other biomedical contexts16 while maintain-
ing superior interpretability. Since we ultimately wanted to
compare this map with a similar map of human bone marrow, we
restricted our analysis to those genes with a human orthologue
(specifically we included genes that had a unique human homolog
and exhibited high expression variability in mouse or human
bone marrow samples, see “Methods”). Because cell identities
were determined from unsupervised clustering of the data, this is
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an easy learning problem readily solved by the MLR (Fig. 1g–i).
The resulting model performed well, achieving average balanced
classification accuracy of 97.0 ± 0.4% (mean ± standard deviation
over fivefold cross-validation), and was able to reliably identify
cells of every type (Fig. 1h).

Notably, misclassification was largely constrained to cells in
proximity to cluster boundaries imposed along continuous
developmental trajectories (Fig. 1i). To dissect this observation
further we systematically investigated misclassification by taking
advantage of the fact that the classes in the mouse training data are
arranged according to a biologically meaningful hierarchy that
encodes the bone marrow lineage tree (see Fig. 1d). Whenever
misclassification of a cell occurred, we determined the relationship
between its true class and its (falsely) predicted class. We denoted a
misclassification to be proximal if the predicted class is immediately
adjacent to the true class in the lineage tree and distal otherwise.
Overall, a low incidence of proximal misclassification was observed
(3.1 ± 0.26%; mean ± s.d., n= 5), while distal misclassification
occurred even more rarely (0.9 ± 0.35%; mean ± s.d., n= 5).

Moreover, patterns of misclassification were not uniform. For
example, cells in the HSPC cluster were most likely to be
misclassified (proximal: 8.9 ± 2.5%; distal: 0.7 ± 0.9%; mean ± s.d.,
n= 5). This is likely partly due to the limited number of HSPC
training samples available. It also occurs because HSPCs are a
heterogeneous population with expression patterns that partially
intersect with several other cell types. This observation agrees
with recent studies in mouse, humans, and zebra fish, which have
shown that the HSPC pool is a particularly variable cell
population12–14,17,18, and highlights the fact that classification
accuracy will depend upon both the amount of data available for
training and the heterogeneity intrinsic to the cell population
being considered.

The MLR classifier assigns cellular identities by passing linear
combinations of gene expression patterns through a softmax
output function. The input weights to the softmax function
therefore constitute a simple way to identify subsets of genes that
are most strongly associated with each cell identity (see
“Methods”). This analysis recapitulated well-established
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Fig. 1 Dissecting the cellular heterogeneity of the mouse bone marrow. a Experiment schematic. Single-cell RNA sequencing was performed on total and
depleted (CD45−/Ter119−) bone marrow cells. b Projection of data onto two dimensions using t-distributed stochastic neighbor embedding (tSNE63)
indicates that bone marrow population structure is preserved in biological replicates (n= 3, shown in purple, blue, and green). c Cell types were identified
using unsupervised clustering9 followed by annotation of clusters according to localization of known markers for different cell types. d Clusters naturally
arrange in accordance with the known bone marrow lineage tree. The lineage tree shown is taken from ref. 13. HSPCs hematopoietic stem and progenitor
cells. e Relative abundance of cell types in total and depleted bone marrow samples. Bar height indicates the mean over the biological replicates (n= 3).
f Key markers of the main branches of the hematopoietic lineage tree and niche cells localize to distinct clusters in the data. The following representative
markers are shown: stem and progenitor cells: Cd34; niche cells: Kitl; myeloid lineage: Spi1; erythroid lineage: Gata1; lymphoid lineage: Pax5. See
Supplementary Fig. 2 for localization patterns of a range of other markers. g Schematic of the multinomial logistic regression (MLR) model used to identify
cell types from gene expression profiles obtained from mouse bone marrow cell samples. The MLR consists of an input layer with 4372 units (corresponding
to the set of high variability genes that have unique human homologs; see Methods), and a 14-class SoftMax output layer. h Confusion matrix of validation
data, showing accurate classification of cell identities by the ANN. Data displayed are the average over a fivefold cross-validation. i Distribution of
misclassified cells in the training data. Color represents the distance d between the true and predicted label in the cell lineage tree in panel d.
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molecular markers of bone marrow cell-type identities (see
Supplementary Data 1).

For instance, among the top-ranking features associated with
the HSPC identity are Angpt1 and Myct1, both known regulators
of stem cell proliferation19–21; Irf8, a monocyte lineage determi-
nant22, was most strongly associated with the monoblast identity;
Ccr2 and Ctss, which are known to play a central role in
chemotaxis and antigen presentation of monocytes23,24, were
influential for monocyte classification. Assignment of the
myeloblast identity was highly sensitive to Prtn3 (also known as
Myeloblastin), while transcripts encoding components of secre-
tory vesicles that are sequentially produced during myelopoi-
esis25, and define the morphologically distinct stages of
myeloblasts (primary granules; Elane), myelocytes (secondary
granules; Ltf), and neutrophils (tertiary granules containing the
neutrophil-collagenase Mmp8) also strongly influenced these
class assignments. Similarly, various different immature lympho-
cytes were discriminated based on the expression of Vpreb3 (pro-
B-cells), Cd74 (pre-B-cells), and Cd3d (T-lymphocytes), while
(peri-)vascular cells were determined based on Gpx8 (pericytes)
and Kdr (endothelial cells) expression among other genes.
Supplementary Data 1 contains a list of all the top-ranking genes
associated by the MLR with each cell type.

Collectively, these results indicate that a simple machine
learning model is able to reconstruct cellular identities from
patterns of gene expression based upon easily interpretable and
biologically plausible mechanisms. In order to understand
whether classifier performance could be improved we also
compared performance of the MLR model to a feedforward
artificial neural network (ANN) classifier (Supplementary Fig. 3a).
We chose a feedforward ANN because it can be considered as a
generalization of an MLR in which the input signal is passed
through hidden layers, which potentially allows it to identify
more complex relationships26 involving nonlinear interactions
between genes. We found that optimal ANN performance was
achieved by introducing a single hidden layer of 16 neurons.
Overall, the resulting ANN has 70,206 parameters, compared to
61,222 for the MLR and so does not constitute a substantial
increase in model complexity.

As expected, the ANN (Supplementary Fig. 3a–c) performed as
well as the MLR, achieving balanced accuracy (BA) of 96.7 ± 0.9%
(mean ± s.d. from fivefold cross-validation). However, while the
MLR decision-making process can be easily reconstructed based
upon a single set of weights, that of the ANN cannot. To dissect
the biological basis of the ANN performance we therefore
conducted a sensitivity analysis designed to determine subsets of
genes that are most strongly associated by the ANN with each cell
identity (see “Methods” for details and Supplementary Data 2 for
a list of top-ranking ANN features). We found a strong overlap in
the sets of important genes identified by the ANN and MLR (see
Supplementary Fig. 3d), indicating that the two models classify
cells on the basis of similar biological criteria.

To investigate the functional significance of these gene sets we
also performed Gene Ontology (GO) term analysis (see
“Methods”). We found that significantly enriched GO terms
associated with these gene lists summarized the biological
function of their associated cell type. For the ANN key GO
associations included hemopoiesis for HSPCs (p= 8.5e−5;
modified Fisher’s exact test), blood coagulation for megakaryo-
cytes (p= 1e−8), B cell receptor signaling for pro-B- and pre-B-
cells (p= 1.2e−8; p= 3.9e−10); T-cell receptor signaling for T-
lymphocytes (p= 1.6e−10); cell adhesion and osteoblast differ-
entiation for pericytes (p= 7.6e−10; p= 9.5e−9); cellular
response to VEGF for endothelial cells (p= 8.4e−8); positive
regulation of mast cell degranulation for basophils (p= 1.2e−6);
and innate immune response and related terms for monocyte- and

granulocyte lineages. Supplementary Data 3 contains a complete
list of GO terms associated with each cell type by the ANN (see
also Supplementary Data 4 for similar GO term analysis of MLR
weights).

Collectively, these results indicate that both the MLR and ANN
models capture the essential biology of the mouse bone marrow
and can accurately discriminate between mouse bone marrow cell
types based upon differences in biologically significant gene
expression patterns.

Mapping human bone marrow. We next sought to determine
the extent to which the biology learnt in the mouse “source”
domain could be transferred to the human “target” domain of
true interest. To do this, we sequenced bone marrow samples
from three patients undergoing routine hip replacement surgery
at Southampton General Hospital. In total, ~25,000 single-cell
transcriptomes from three patients were sequenced yielding on
average 5 × 104 reads per cell. As with the mouse, we sequenced
unfractionated bone marrow as well as depleted populations in
order to enrich for rarer cell types. Following pre-processing and
filtering of low-quality cells (see “Methods”) we obtained data for
9394 cells expressing on average 3070 transcripts per cell, cor-
responding to a data sparsity of 95.5 ± 0.95% mean ± s.d. (Sup-
plementary Fig. 1a). As with the mouse data we then performed
unsupervised clustering to identify the various hematopoietic and
niche-cell types present and assigned cell identities based upon
localization of established lineage markers (see Supplementary
Fig. 4 and “Methods: Human bone marrow cell characteriza-
tion”). As with the mouse data this analysis resulted in a set of
single-cell transcriptomes in which each cell is annotated with a
unique identity determined by unsupervised clustering.

We subsequently assessed the extent to which our mouse MLR
and ANN classifiers, which were trained exclusively on mouse
data, were able to predict human cell identities (Fig. 2a). We
found that the mouse-trained MLR predicted human cell
identities remarkably well, achieving an average BA of 82.7%.
The ANN model performed negligibly better at 83.3% average
BA, see Supplementary Fig. 3f. Notably, this overall accuracy was
not consistent across all cell classes: rather, accuracy ranged from
63.0 to 99.9% for individual cell classes (Fig. 2b). The ANN model
had a very similar range of accuracy (60.0–98.0%, Supplementary
Fig. 3f). Thus, while some human cell types were identified
remarkably well by the mouse classifier, indicating strongly
shared biology, others cell types were much more poorly aligned,
indicating systematic differences in underlying biology between
the species. For example, human erythroblasts and T-
lymphocytes were rarely misclassified by the mouse model
(which achieved 97.4% and 99.3% BA in identifying these classes,
respectively; the corresponding values of the ANN are 97.5% and
98.0%), while other cell types were frequently misclassified
(Fig. 2b).

As with the mouse data, we found that misclassification of
human cells was commonly proximal in nature (15.7% versus
12.0% for distal misclassification; the corresponding values of the
ANN are 13.9% proximal and 8% distal), suggesting that the
mouse classifiers had partially learnt human cellular identities,
and misclassification was not entirely artefactual (Fig. 2b–d). For
instance, human HSPCs were systematically misclassified as one
of their proximal descendent classes (18.4% proximal misclassi-
fication; 14.0% in case of the ANN), but less frequently distally
misclassified (2.5% distal misclassification; 5.4% in case of the
ANN) (Fig. 2b–d and Supplementary Fig. 3f–h). A similar pattern
of misclassification of mouse HSPCs was also seen (Fig. 1i).
Likewise, myelocytes were systematically misclassified as their
progenitors, myeloblasts, or their descendants, neutrophils (MLR:
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39.8% proximal versus 4.7% distal misclassification; ANN: 29.6%
proximal versus 8.7% distal misclassification) (Fig. 2b–d and
Supplementary Fig. 3f–h). However, this pattern was not
universal.

For example, while human immature B lymphocytes were
commonly misclassified as their progenitors, pro-B and pre-B
lymphocytes, they were also systematically misclassified as a
range of other types of progenitors (MLR: 10.4% proximal versus
67% distal misclassification; ANN: 14.1% proximal misclassifica-
tion versus 33.8% distal misclassification; see Fig. 2b–d and
Supplementary Fig. 3f–h), indicating that neither of the mouse
classifiers was able to fully resolve the human immature B cell
identity. Notably, the mouse data did not contain a comparable
immature B cell cluster, and so the mouse model was never
explicitly trained to recognize the expression signatures of B
lymphocytes. Nevertheless, the mouse ANN, but not the MLR,
assigned the majority of immature B lymphocytes to adjacent
clusters and hence to the correct branch of B cell development.

Taken together, these results indicate that while much biology
is conserved between the mouse and human bone marrow, there
are systematic differences in expression patterns. These differ-
ences are important because they indicate the circumstances in
which the mouse is likely to be a good model of human biology
and when it will likely not, and they highlight instances where a
comparison is not immediately possible.

To investigate these differences further, we assessed the
similarity of mouse and human cell types directly from their

transcriptional profiles. To do so, we first established a single
characteristic gene expression pattern for each cell type by
calculating the mediancentre27 (a multivariate generalization of
the median) of all cells associated with that type. Mouse cell
annotations were obtained from unsupervised clustering of the
mouse data (as described above, see Fig. 1c and Supplementary
Fig. 2). Human cell annotations were either (1) predicted from
the mouse MLR/ANN model or (2) obtained from unsupervised
clustering of the human data (as described above, see Supple-
mentary Fig. 4). We then calculated distances between pairs of
mediancentres (see “Methods” for further details) to determine
similarities of cell types. In accordance with our machine learning
results, this analysis revealed a high degree of similarity between
equivalent mouse and human cell types (Fig. 2e, f). Furthermore,
the annotation provided by the machine learning models was able
to resolve some populations that were not apparent using
unsupervised clustering. For instance, labeling of human Pre-B
cells and Pericytes using the MLR identified populations of
cells that were substantially more similar to their mouse
counterparts than labeling by unsupervised clustering (Fig. 2f),
indicating that the MLR was able to resolve more defined
populations of cells than naïve clustering alone.

Discovery of hidden cell identities using zero-shot learning.
While the mouse and human datasets contain data from many of
the same cell types, some cell types were not resolvable in the
human samples with accuracy comparable to the mouse. In
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Fig. 2 Bone marrow biology maps partially from mouse to humans. a Schematic of the naïve transfer process. The MLR trained in the source domain
(mouse) is used to classify test data from the target domain (humans). b Confusion matrix of classification consensus from fivefold cross-validation. The
dashed box highlights cell types identified in the mouse but not the human data. c, d Projection of human data onto two dimensions using tSNE63. Points
represent cells colored by c predicted cell identity or dmisclassification. Cells for which the five classifiers did not agree are shown in turquoise. e Heatmap
of similarity between mouse and MLR predicted human cell types. Similarities were calculated between cell-type mediancentres27 using cosine similarity
(see “Methods”). Clustering using single linkage reveals high similarity between equivalent mouse and human cell types. f Similarity of mouse and human
cell types using annotations obtained from unsupervised Louvain clustering (x-axis) and MLR model predictions (y-axis). Pericytes (pink) and Pre-B-
lymphocytes (brown) contain a mixture of cell types that are not resolved by unsupervised clustering but are identified by the MLR model. The black
diagonal marks y= x.
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particular, we could not identify distinguishable clusters asso-
ciated with endothelial cells or megakaryocytes, yet both of these
cell populations were clearly apparent in the mouse data. Because
many aspects of bone marrow are conserved between mouse and
humans, we next sought to determine if the mouse model could
be used to help resolve the biology of such hard-to-identify
human cell types.

Notably, a substantial subset of human HSPCs were identified
as megakaryocytes by the mouse classifiers (MLR: 10.8%; ANN:
19.4%, see Fig. 2b, c and Supplementary Fig. 3f, g). This high
overlap is notable because HSPCs and megakaryocytes are
proximal in the mouse hematopoietic cell lineage map (Fig. 1d),
reflecting the fact that megakaryocytes emerge directly via
differentiation from HSPCs13,28,29. This result suggested to us
that the mouse classifiers might be revealing aspects of human
HSPC/megakaryocyte biology that are not apparent from
unsupervised clustering of the human dataset alone. To
investigate these differences further, we conducted sensitivity
analysis (see “Methods”) to identify the genes that carry the most
discriminatory information in distinguishing between megakar-
yocytes and HSPCs in the mouse ANN classifier (the ANN was
chosen for this analysis since it classified a larger percentage of
HSPCs as megakaryocytes than the MLR; a similar pattern was
also seen on classification of pericytes/endothelial cells, see
below). Examination of co-expression patterns of these genes in
human and mouse cells confirmed that megakaryocytes are
characterized by broadly similar expression signatures in both
mouse and humans and are distinguishable from HPSCs based on
these expression patterns (Supplementary Fig. 3i).

Notably, both mouse and human megakaryocytes expressed
high levels of transcripts involved in platelet biogenesis such as
Rab27b30, Ppbp31, and in platelet function (hemostasis) such as
Itga2 (ref. 32) (encoding collagen receptor CD49b) and F2rl2
(ref. 33) (encoding coagulation factor 2) (Supplementary Fig. 3i).
Similarly, HSPCs in both species shared expression of key
transcription factors such as Zfp36l2 and Sox4 (Supplementary
Fig. 3i) that are known to control stem cell self-renewal19,34.

Likewise, a substantial subset of human pericytes were
identified as endothelial cells by the mouse classifiers (MLR:
17.2%; ANN: 20.3%, see Fig. 2b, c and Supplementary Fig. 3f, g).
When we examined the clustering structure of the mixed
population of mouse and human pericytes/endothelial cells, we
observed that a subset of human pericytes clustered with mouse
endothelial cells (Supplementary Fig. 3j). While the ontogeny of
pericytes and endothelial cells in the adult bone marrow is
currently unclear35, both cell types are constituents of the
vasculature, and are in close spatial proximity in the bone
marrow. Taken together these results suggest that the mouse
classifier might be revealing aspects of human biology that are not
apparent from unsupervised analysis of the human dataset alone.

To investigate these differences further we again conducted
sensitivity analysis (see “Methods”) to identify the genes that
carry the most discriminatory information in distinguishing
between endothelial cells and pericytes in the mouse ANN model.
Among the genes that were identified were a number of
important endocrine modulators and sensors of energy home-
ostasis such as Igfbp5 and Lepr36,37; paracrine signaling
molecules such as Cxcl12 (ref. 38); and components of the iron
cycle such as Cp. Examination of co-expression patterns of these
genes revealed a substantial overlap between mouse and human
pericyte expression patterns, indicating that much of the central
molecular machinery of these cells is evolutionarily conserved
(Supplementary Fig. 3j). Similarly, both human and mouse
endothelial cells shared expression of known angiogenic-signal
receptors such as Kdr39 and the Vegf target gene Fabp440

(Supplementary Fig. 3j), again highlighting shared biology.

Collectively these results indicate that once encoded in a
machine learning model, mouse data can be used to contextualize
human data, identify evolutionarily conserved gene expression
patterns, and thereby provide insight into poorly resolved cell
populations. In the machine learning literature, the process of
object identification without training examples is known as zero-
shot learning, and typically relies on importing prior knowledge
from a related source domain41. Here, because the mouse
classifier encodes evolutionary conserved information, it can be
used, in conjunction with prior knowledge of the bone marrow
lineage tree, to infer poorly resolved human cell populations via a
process of biologically-guided zero-shot learning.

Transferring biology from mouse to humans. Since the mouse
classifiers were not able to accurately identify all human cell
identities, yet appeared to be capturing aspects of evolutionarily
conserved biology we next sought to determine if they could be
used to train a more accurate model of the human bone marrow.
To achieve this objective, we re-trained the mouse classifiers using
a limited set of human bone marrow cell gene expression sig-
natures as additional training data (Fig. 3a).

We produced a series of revised classifiers by re-training the
mouse classifiers using increasing numbers of additional human
training examples (see Fig. 3a for a schematic of the MLR re-
training and Supplementary Fig. 5a for a schematic of the ANN
re-training). In both cases, classification performance sharply
increased on re-training, even when only a very small number of
representative human training examples were used (Fig. 3c and
Supplementary Fig. 5c). Notably, classifier performance began to
saturate when re-training using 4–8 additional human training
examples for each class (44–88 cells in total). At this point re-
trained models achieved over 90% BA (up from 82.7% in the naïve
mouse MLR; 83.3% in the naïve mouse ANN) and a significantly
improved F1 score (MLR: 81.6 ± 0.6% up from 64.0 ± 1.0%; ANN:
83.2 ± 0.8% up from 63.1 ± 0.6%; mean ± s.d., n= 5), indicating
that human cell identities can be reliably encoded upon re-training
of the mouse models with very few training examples (Fig. 3c and
Supplementary Fig. 5c).

In order to assess the extent to which pre-learning in the
mouse source domain improved classification performance in the
human target domain, an equivalent set of models were trained
without transfer from the mouse (i.e. from randomized initial
conditions, referred to as naïve models; Fig. 3a–c and Supple-
mentary Fig. 5a–c, g, h). Since they benchmark the efficiency with
which human bone marrow biology can be learnt from low
volumes of data without pre-training in the mouse, these naïve
models act as controls for the transfer learning process.

To determine the efficiency of the information-transfer process
we plotted classifier performance (here, the F1 score, which
accounts for both the precision and recall of the classifiers) of
transferred and naïve models against each other as the number of
human training examples varied, to produce characteristic
learning curves (Fig. 3d, e for the MLR and Supplementary
Fig. 5d, e for the ANN). This analysis quantifies the extent to
which the biology of each cell type is shared between species (see
Fig. 3d and Supplementary Fig. 5d and further explanation in
Fig. 3e). Four distinct groups of cell types can be distinguished
based on their different characteristic learning curves (Fig. 3d and
Supplementary Fig. 5d).

The first group contains cell types with highly conserved
phenotypes, which display high classification performance
initially (i.e. the mouse classifier is able to identify human cells
without additional training using human data) that does not
improve considerably upon re-training in the target domain (i.e.
using additional human data; Fig. 3d–f and Supplementary
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Fig. 5d–f). This group includes erythroblasts and T-lymphocytes.
These cell types: (1) are highly homogeneous in their expression
patterns in humans and thus are consistently classified; and (2)
have a biology that is highly conserved between mouse and
humans. These cell types can be reliably identified from the
mouse classifier and do not require any human training data to
learn their representation. The mouse is a good model of human
biology for these cell types with respect to their gene expression
signatures.

The second group contains cell types that display good (but not
excellent) classification performance initially, which does not
improve considerably upon re-training with human data
(Fig. 3d–f and Supplementary Fig. 5d–f). The second group
includes pericytes, myeloblasts, myelocytes, neutrophils and
monocytes. These cell types: (1) are more heterogeneous in their
expression patterns in human and thus are less consistently
classified than group 1 and (2) have a biology that is highly
conserved between mouse and humans. This group of cell types
requires a moderate amount of human training data to learn their
representations.

The third group contains cell types that display initially low
classification performance that improves rapidly upon re-training
with human data (Fig. 3d–f and Supplementary Fig. 5d–f). This
group contains pro-B/pre-B lymphocytes and immature B
lymphocytes. These cell types: (1) are homogeneous in their
expression patterns in humans; yet (2) have a biology that is
distinct between species. The biological differences between
species for these cell types are likely in part due to differences
in cluster definition in mouse and human data. Specifically, while
the mouse classifiers were trained to distinguish pro-B and pre-B
cells, these cells are part of the same cluster in the human data.
Hence, re-training involves separating the joint cluster of pro-B
and pre-B lymphocytes from previously unseen immature B

lymphocytes. This group of cell types requires a moderate amount
of human training data to learn their representations.

Finally, the fourth group contains cell types that display low
classification performance initially that does not improve
considerably upon re-training with human data (Fig. 3d–f and
Supplementary Fig. 5d–f). This group contains monoblasts and
HSPCs. These cell types: (1) are heterogeneous in their expression
patterns in humans and (2) have a biology that is distinct between
species. This group of cell types requires a larger amount of
human training data to learn their representations.

Collectively, this analysis shows how tools from transfer
learning can be used to dissect those aspects of biology that
effectively transfer between the species and those aspects that
do not.

Discussion
Successful biomedical research is dependent on the effective
transfer of information between different stages of the research
pipeline. A critical step in this process is the transfer of biology
from model organisms to the humans. Here, we have shown how
methods from transfer learning can be used to pass biological
information between species, using the bone marrow as an
example. As increasingly detailed single-cell maps of whole
organism biology become more available, we anticipate that
transfer learning approaches will provide essential tools for
comparative physiology.

We find that the mapping from gene expression patterns to cell
types can be learnt using a simple generalized linear model (here,
MLR) that is easily interpretable. This learning is only marginally
improved by more complex artificial neural networks, which
suffer from poor interpretability. Our results therefore highlight
the importance of considering both performance and inter-
pretation when constructing machine learning models and warn
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Fig. 3 Mapping biology from mouse to human using transfer learning. a Schematic of the transfer learning process. Abundant data from source domain
(here the mouse) are used to train a source MLR. Sparse data from the target domain (here the humans) is used to fine-tune the parameters of the source
MLR, thereby transferring knowledge from source to target domain. b Schematic of naïve learning as a control for transfer learning. Rather than updating
the pre-trained mouse model, a series of separate MLRs are trained from random initial conditions on sparse data from the human target domain. c Both
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against the use of unnecessarily complex methods. However,
while source domain (i.e. mouse) performance was comparable
for MLR and ANN models, we did find that ANN learning
transferred slightly better than the MLR to the target domain (i.e.
humans), as indicated by generally lower overall misclassification
rates and higher proximal misclassification rates. This is likely
because the additional hidden layer in the ANN facilitates gen-
eralization, as has been observed in other contexts42. In this
instance the modest benefit is not justified. We anticipate that
investigation of learning strategies that can improve general-
ization by systematically encoding shared and species-
independent biological features in different aspects of network
architecture—for example, by leveraging prior knowledge, such as
known differences in molecular regulatory network architectures
—may be a fruitful avenue for future research, although care
should be taken to avoid overfitting. In this instance the marginal
gains afforded by the ANN do not outweigh the increased model
complexity or interpretability.

It is important to note that our approach has some limitations.
Firstly, similarity of gene expression patterns only partially
explain similarity in biology: epigenetic factors, not directly
encoded in transcriptional patterns, are also likely to have an
important role. Furthermore, here we have used orthologous
genes, i.e., the genes that are shared between species (and have
not multiplied) to compare biology. However, numerous aspects
of biology are regulated by non-orthologous genes and so are not
considered in our results. Moreover, the discretization process we
have employed may not capture important differences in
expression dynamics. During speciation, homologs may evolve in
subtle ways, such that the resulting protein displays species-
specific affinity or reaction rates or binding partners, which
determine subtle differences in gene function. Such considera-
tions have not been addressed here, although they could also be
approached using similar transfer learning methods.

Previous studies have investigated the conservation of tran-
scriptome signatures in tissues from multiple species using bulk
mRNA sequencing4–7. The main limitation of these data is that
mRNA derived from tissues consists of a mixture of cell types of
unknown proportions. The single-cell approach described here
overcomes this limitation, enabling analysis of tissue similarity at
the level of cell types via a combination of unsupervised and
supervised machine learning. Moreover, previous studies have
relied on principal component analysis (PCA) to compare the
localization of tissue samples in the first principal components,
excluding higher principal components from analysis. However,
since substantial variability typically is contained in more than
two principal components, this led to conflicting results, with
some studies reporting dominant species-specific differences7,
and other studies dominant tissue-specific differences4–6. Indeed,
a meta-analysis of data from these data, using consistent pre-
processing and a range of pairwise sample distance metrics
instead of PCA, concluded that differences between tissues are
greater than between species43. Here, using single-cell data, we
observe that the largest source of variation in combined mouse
and human data is related to cell type and not species (Fig. 2e).
While this study focusses on a comparison of mouse and human
bone marrow biology, recently, other studies have conducted
comparisons of pancreas44 and lung cancer45. These studies also
demonstrated that the variability between cell types exceeds
variability between species, confirming our results. However, in
contrast to our approach, these studies44,45 focussed on identi-
fying commonalities in a subset of genes using conventional
unsupervised clustering and statistical hypothesis testing. This is
different from the approach taken here, which uses transfer
learning to obtain a systems-level perspective of cell-type simi-
larities between species. Extending our analysis beyond bone

marrow to data from these recent studies is of significant interest
but goes beyond the scope of this study.

Given the vast amount of single-cell data available today,
integration of data from different sources is an important area of
active research. A number of studies have attempted to address
this issue, enabling the comparison of cells from different
experiments, tissues, and species46–48. These methods aim to
combine data via an embedding in latent space, followed by
conventional analysis of cell-cell differences. Here, we follow a
simplified approach, and compare similarity of cell types based on
the information required to learn their representation via transfer
learning, opening potential new avenues for machine learning in
cell biology.

Methods
Mouse tissue origin. Bone marrow from female 8-week-old C57BL/6 mice was
used in this study. All experimental work including mice was approved by the
Kyushu University animal experiment committee.

Human tissue origin. Excess marrow was collected from patients undergoing
routine hip replacement surgery, with informed consent, and use of human tissue
was approved by the regional ethics committee (reference 18/NW/0231).

Bone marrow cell isolation. Mouse bone marrow mononuclear cells (BM-MNCs)
were prepared as described previously37. Bone marrow was flushed from tibiae and
femurs and digested with 1 mg/ml collagenase IV (Thermo Fisher, 17104019) and
2 mg/ml dispase (Gibco, 17105041) in Hank’s balanced salt solution (HBSS; Gibco,
14025092) for 30 min at 37 °C. Dissociated cells were treated with ammonium
chloride solution to remove erythrocytes (155 mM NH4Cl, 12 mM NaHCO3 and
0.1 mM EDTA) for 5 min at room temperature, following 3× washes in HBSS.

Human BM-MNCs were prepared as described previously49, with the additional
removal of erythrocytes following density centrifugation through lysis in
ammonium chloride solution (155 mM NH4Cl, 12 mM NaHCO3 and 0.1 mM
EDTA) for 5 min at room temperature, following 3× washes in plain α-MEM.

Magnetic cell sorting. Cells were immuno-labeled with magnetic microbeads for
cell separation according to the manufacturer’s instructions. Up to 1 × 108 BM-
MNCs were used for each separation. Human cells expressing CD45 (Miltenyi
Biotec, 130-045-801) or CD235a (Miltenyi Biotec, 130-050-501) and mouse cells
expressing CD45 (Miltenyi Biotec, 130-052-301) or TER119 (Miltenyi Biotec, 130-
049-901) were depleted using LS columns (Miltenyi Biotec, 130-042-401) according
to the manufacturer’s instructions.

Collagenase release of bone lining cells from human bone marrow. Trabecular
bone fragments obtained after the first step of cell isolation were incubated in
20 U/ml Collagenase IV (Thermo Fisher, 17104019) for 3 h at 37 °C under con-
tinuous rotation. Bone fragments were washed with plain α-MEM (Thermo Fisher,
12000-014) and cells released from extracellular matrix were filtered using a 40 µm
cell strainer.

Single-cell RNA sequencing. Single-cell sequencing was performed as described
in detail elsewhere8 and alterations of the original protocol are reported below.
Hydrophobic surface treatment of polydimethylsiloxane (PDMS) microfluidic
devices was performed by incubating channels with 1% Trichloro(1H,1H,2H,2H-
perfluoro-octyl)silane (Sigma-Aldrich, 448931) in Fluorinert FC-40 (Sigma-
Aldrich, F9755) for 5–10 min at RT. Syringe pumps to drive both aqueous and
non-aqueous phases were made in-house according to published, open source
protocols50. Protocols for NGS library preparation described in Macosko et al.
(2015) were closely followed and pre-amplification was conducted using 4+ 12
PCR cycles (95 °C 3 min—4 cycles of: 98 °C 20 s; 65 °C 45 s; 72 °C 3min—12 cycles
of: 98 °C 20 s; 67 °C 20 s; 72 °C 3min—72 °C 5min; 4 °C hold). Processed libraries
were sequenced using a NextSeq 500 system (Illumina) and NextSeq 500/550 High
Output Kit v2 (Illumina, TG-160-2005).

Sequence alignment. Sequence alignment was performed as detailed in Macosko
et al. (2015) using the mm10 (GSE63472) and hg19 (GSM1629193) reference
genomes and STAR (version 2.5.2b) for sequence alignment. Raw reads were
demuliplexed and condensed into the digital gene expression matrix (DGE) using
DropSeq tools (v1.0; Macosko et al., 2015), using a modified alignment score to
reduce the number of reads discarded due to multiple alignment (see “Methods:
Mapping genes with multiple alignments”).

Mapping genes with multiple alignments. The Drop-Seq pipeline implemented
here utilizes the alignment output of STAR51. STAR provides several possible
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alignment outputs for a single read (if they exist) and indicates the number of
alignments for the read in the MAPQ column of the SAM/BAM alignment file. The
possible Star MAPQ values are: 255—one mapping location (alignment), 3—two
mapping locations, 1—three or four mapping locations, 0—five or more mapping
locations. The standard Drop-Seq pipeline (as in Macosko et al., 2015) only uses
unique alignments (i.e. alignments with MAPQ= 255).

The conservative viewpoint of only using unique alignments discards a large
number of reads in general, but also causes gene-specific issues when the read
aligns to its actual source but also to other locations. Complete rejection of these
alignments is a source of gene-specific bias.

The challenge is to determine reasonable criteria for inclusion of the “correct”
alignments, which we consider to be the actual source of the read. We consider that
that there are conditions in which it is reasonable to retain reads that have other
mappings, depending on their alignment characteristics.

Alignment characteristics (for STAR aligner):

● Reads have an AS (alignment) score from the aligner, which is the number of
matching basepairs.

● The alignment that maps with the highest AS score is designated the
“primary” read.

● All other alignments for the same read are “secondary” reads.
● If AS scores are the same, then the “primary” read is designated pseudo-

randomly.

Every alignment from the Star aligner is tagged in the Drop-Seq pipeline by XC
and XM tags (cell and molecular barcodes), an XF tag (CODING, UTR,
INTRONIC, INTERGENIC), and GE tag (name of gene) if it aligns to a single gene
exon in the correct orientation.

We compare the alignments for each read and flag allowed alignments
according to the criteria summarized below, and set out in detail in the logic tables
beneath:

● Alignments are allowed if they are exonic, have the maximum/co-maximum
alignment score from the set of alignments, AND, the other alignments (with
lower/equal alignment scores) are intronic/intergenic/exonic for the
same gene.

● This criterion is based on the assumption that we are sequencing from mRNA
and expect to align to exonic regions. However, this may not be the case, and if
an intronic/intergenic alignment has a higher alignment score then we do not
include an exonic alignment from the same read.

● We disallow any sets of alignments that contain mappings to different genes
(as given by the GE tag).

● We do consider sets of alignments which containing more than one alignment
to the same gene (if the maximum/co-maximum AS score alignment is exonic
and there are no alignments to different genes). This means that a read with
mappings to multiple regions on the same gene will be included in the digital
gene expression output. This criterion particularly affects genes with
repeat units.

● It should be noted that the same-gene criterion is suitable for digital gene
expression analysis, where we are concerned with overall mRNA counts from
a gene. However, the altered bam files from this pipeline should not be used in
analyses for which the specific mRNA variants are import (and which use
multimapping alignments). This is because the flag alterations may introduce
variant specific bias.

When the multimapping criteria are met then the set of alignments is altered so
that the allowed alignment is flagged as “primary” and the other alignments are
flagged as “secondary”. If the criteria are not met, then all alignments are flagged as
“secondary”.

Allowed multi-mapped reads will be included in the digital gene expression
output as the DigitalExpression DropSeq program only uses “primary” alignments.

There is also a specifiable MAPQ (READMQ) threshold for inclusion in the
digital gene expression output. This is set to 1 in order to allow “primary” dual,
triple, and quadruple alignments. The standard dropseq pipeline uses READMQ=
10, which only allows unique mappers (which are all “primary”).

Inclusion criteria logic table for dual-, triple-, and quadruple- mapped reads.
XF tag determines whether an alignment is coding or non-coding:

● Coding if CODING/UTR
● Non-coding if INTRONIC/INTERGENIC.

If any of the XF read tags for a set of alignments is CODING/UTR but without a
GE tag, then that set of mappers (dual, triple, quadruple) is not considered (all
alignments set to “secondary”).

Dual mapped reads: see Supplementary Fig. 6.
Triple mapped reads: see Supplementary Fig. 7.
Quadruple mapped reads: see Supplementary Fig. 8.

Data pre-processing. Data were analyzed using the software R (version 3.5.0) and
the Seurat package (version 2.3.1). A gene mapping between mouse and humans
was created using the orthologue annotation provided by Ensembl52. Unscaled data

were discretized (threshold > 0) and the union of genes from both species pre-
viously identified as variable (genes with mean between 0.0125 and 4; and log of
dispersion >0.5) in Seurat were selected for machine learning if they were unam-
biguous orthologues.

Cluster analysis. Clustering was performed in Seurat using the Louvain algo-
rithm9 with resolution parameter set to 1.1.

Cluster annotation. To assign meaningful labels to the clusters proposed by the
Louvain algorithm, differentially expressed genes were identified using the
likelihood-ratio test53 in Seurat (with settings: prevalence > 25%; fold-change > 2;
p value < 0.001). Obtained cluster markers were screened for previously described
biomarkers for given bone marrow cell populations.

Cell lineage tree. A qualitative description of the cell lineage tree was obtained
from the literature13.

Machine learning. Machine learning models were trained using the keras for R
package (v2.2.4; https://keras.rstudio.com/) and the TensorFlow backend (v1.8.0;
https://www.tensorflow.org/) on a GeForce GTX 1050 GPU (NVIDIA, Santa Clara,
CA, USA). To ensure robustness and protect against overfitting fivefold cross-
validation was used throughout. Data were split by classes into five equal parts and
five models were trained using an 80/20% training/validation split.

Because we were interested in the shared logic between the species, rather than
gene expression kinetics, expression levels were binarized (1 if the gene was
expressed at any level and zero otherwise) prior to learning. ANNs consisted of an
input layer with 4374 units (i.e. the number of input genes), a 16-unit hidden layer
with ReLU activation and a 14-unit softmax output layer with 50% dropout to the
hidden layer and L1 regularization (l= 0.001). MLR classifiers had the same
architecture, excluding the 16-unit hidden layer.

Training of all models was performed for 21 epochs with a step size of 42, and a
sample generator to re-sample five training examples per class per step. Loss was
calculated using cross-entropy and gradient descent optimization was conducted
using RMSprop with default parameters. For training in the target domain, the step
size was set to be proportional to the number of training examples up to a maximum
of 30 steps per epoch. Each model from the source domain was re-trained on 1, 2,…,
10, 15, 20, 25, 30 examples per class (excluding unrepresented classes in the target
domain) using fivefold cross-validation.

Evaluation of classification performance. To account for the extreme class
imbalance, BA54 was adapted from the binary setting described in Brodersen et al.
(2010) to the multiclass setting. BA was calculated as the arithmetic mean of
sensitivity (true positive rate) and specificity (true negative rate) for a given class
against all other classes. Overall performance across all classes was calculated as the
average BA. Further, the F1 score was calculated from the harmonic mean of
sensitivity and precision (predicted positive rate). Performance metrics were
reported as the average from fivefold cross-validation. For analyses related to Fig. 2
and Supplementary Fig. 3, classification performance of the source model in target
domain was calculated from an ensemble of all five models via plurality vote.
Performance in the target domain was independently assessed using a test set
containing all cell not used in training (~95% of human data; range: 17.2–98.7% of
human cells per class).

Topology of misclassification. The relationship between classes is specified by a
directed acyclic graph G, the cell lineage tree (see Fig. 1d for reference), which is a
hierarchical representation of the developmental history of cell types that was derived
elsewhere (see for instance ref. 13). In this graph, cell types are nodes and edges are
direct developmental trajectories. We consider cells to be correctly classified, if the
distance between the true label and the predicted label along the edges in G is d= 0.
Misclassification events are categorized as proximal if the distance between true and
predicted labels d= 1; and distal if the distance between labels d > 1. The proximal
(and distal) misclassification rates are calculated as the number of proximal (or distal)
misclassified cells divided by the number of known positive examples (from unsu-
pervised clustering). These numbers are therefore not directly comparable to the BA,
described above, which also accounts for class imbalances.

Sensitivity analysis (MLR). Since the MLR model consists of only an input and
an output layer, and because the input features are discretized to the same range of
expression values (0 or 1), for any given cell type the vector of weights of the input
layer to an output class can be interpreted directly as a feature’s importance to
that class.

Sensitivity analysis (ANN). Let Xij be the N ×M matrix of discretized gene
expression values in the training dataset, where i= 1,2,3,…,N indexes cells and j= 1,
2, 3,…, M indexes genes, and each entry of Xij ∈ {0,1}. Let Yik be the N ×K
matrix of posterior probabilities for class assignments of the training samples from the
ANN, where k= 1, 2, 3,…, K indexes classifier classes. To enable more robust
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calculation we discretized these posterior probabilities into three equal bins using the
intervals [0, 1/3], (1/3, 2/3], and (2/3, 1], so that each entry Yik∈ {1,2,3}.

Now fix j= g and and k= c (i.e. consider the vector Xig of expression patterns of
the gth gene in the training data and the vector Yic of posterior probabilities of
assignment of training data to the cth class by the ANN). The mutual information55

(MI) Igc between these two vectors may be used to assess the extent to which
knowledge of expression of the gth gene informs assignment to the cth class. In
particular, a high value of the MI indicates that expression patterns of the gth gene are
strongly associated with assignment to the cth class, and therefore that this gene is
strongly associated with the cth class identity, while low value of MI (i.e. near to zero)
indicates that the gth gene does not have a strong association with the cth class. For
each gene j= 1, 2, 3, …, M and each class k= 1, 2, 3, …, K we calculated the Ijk to
obtain an M ×K matrix of MI values. For each class we then ranked genes in
descending order according to MI (i.e. fixing k= c we ordered genes in descending
order according to entries of the column vector Ijc) to obtain a list of genes ordered by
the extent to which they contribute to class assignments.

Gene set analysis. To obtain a functional annotation of the ranked gene lists
obtained from the sensitivity analyses above), gene set analysis was performed, using
the 100 highest ranking genes for each class as an input to the functional annotation
tool in DAVID56 (v6.8; https://david.ncifcrf.gov/) and reference gene sets defined in
the biological process gene ontology (GO).

Similarity of human and mouse cell types. To compare cell-type similarity
between mouse and humans, data were normalized using the sctransform package in
Seurat (v.3.1.3), accounting for differences in sequencing depth. Using the residuals
obtained from sctransform, all principal components in the source domain (mouse
bone marrow) were calculated and the first 16 principal components were selected as
informative, using the inflection point of the scree plot as a cutoff for the dissipation
of information in higher principal components. Data from the target domain
(human) were projected onto the principal components of the source domain
(mouse) using the loadings obtained from PCA in the source domain.

To assess similarity between cell types we first calculated the mediancentre27 (the
multidimensional equivalent of the median) of the set of expression profiles associated
with each cell type, in order to establish a single expression profile that was
characteristic of that cell type. Each mediancentre was calculated in the first 16
principal components (as above). To the ith cell in the kth cell type we associate a
gene expression vector Gk,i= (gk,i,1, gk,i,2, …, gg,i,16) ∈ ℝ16, which records its status
with respect to the 16 principal components we considered. Assuming that there are n
cells in cell population k, the mediancentre is that pointMk= (mk,1, mk,2,…, mk,16) ∈
ℝ16 such that Dk ¼

Pn
i¼1 dðGk;i;MÞ is minimum, where dk x; yð Þ ¼ P16

j¼1 jxj � yjj is
the L1-distance.

For the mouse data, this yielded one characteristic expression pattern per cell type,
as determined by the Louvain clustering. For the human data, this yielded one
characteristic expression pattern per cell type k, where the membership in k was
determined either by (1) the Louvain clustering performed on human data or (2) by
as determined by the MLR model (i.e. predicted cell identity using the mouse model).

To investigate relationship between mouse and human cell types, the cosine
similarity between mediancentres was calculated for all possible pairs of human and
mouse cell types.

Human bone marrow cell characterization. To enrich the progenitor and niche-cell
subsets contained in BM-MNCs, magnetic cell sorting was employed to deplete cells
expressing pan-leukocyte marker CD45 [PTPRC] or erythrocyte marker CD235a
[GYPA] as well as to enrich skeletal stem cell marker STRO-1 [HSPA8]57. To dis-
criminate broad classes of cells among the BM-MNCs, unsupervised clustering was
employed at low resolution in Seurat (resolution parameter= 1.1; see Supplementary
Fig. 4i). This revealed the presence of 16 distinct cell types (including 5 erythroblast
clusters and 2 myelocyte clusters that were each summarized as one cluster each, due to
the apparent homogeneity analogous to mouse erythroblasts, compare Supplementary
Fig. 1c). At this deliberately low resolution, individual genes possessed sufficient dis-
criminative power for their identification (see Supplementary Fig. 4a–g). For instance,
specific stages of neutrophil development can be identified based on the enzyme content
of the secretory vesicles58, such as primary azurophilic granules (AZU1), secondary
specific granules (LTF), and tertiary gelatinase granules (MMP9), while mature neu-
trophils are identified based on the characteristic expression of CD16 (FCGR3B; Sup-
plementary Fig. 4b). Moreover, CD14-positive monocytes and CD1C-positive dendritic
cells59 can be identified among monoblasts expressing versican (VCAN; Supplementary
Fig. 4c). Additionally, the BM-MNC population contains a number of HSPCs, marked
by the surface antigen CD34, KIT, and ANGPT1 (Supplementary Fig. 4d). Notably, a
small but distinct subset of cells is marked by high levels of CXCL12 (Supplementary
Fig. 4g), an important hematopoietic niche factor that, in mouse, is secreted by both
osteoblasts at the endosteal surface38 and by pericytes at the endothelial interface60, and
expression of Leptin receptor (LEPR), another marker of pericytes and adipocytes36. As
another example, lymphocytes such as Pro-B- and Pre-B lymphocytes characterized by
CD19 and CD20 (MS4A1), respectively, can be distinguished from more mature B
lymphocytes marked by IgG heavy chain (IGHG2) and MZB1 (a co-chaperone
important for immunoglobulin-folding61), respectively (Supplementary Fig. 4e, f).

Statistics and reproducibility. For statistical analysis and reproducibility, three
biological replicates were used. This includes the use of three mice and three
human bone marrow samples from separate donors. Statistical hypothesis tests
were conducted using three replicates.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data reported in this work are available from ArrayExpress under accession E-MTAB-
8629 and E-MTAB-8630.

Code availability
Computer code and machine learning models used in this study is available online from
https://github.com/passt/miceandmen62.
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