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Abstract

The repurposing of biomedical data is inhibited by its fragmented and multi-formatted nature

that requires redundant investment of time and resources by data scientists. This is particu-

larly true for Type 1 Diabetes (T1D), one of the most intensely studied common childhood

diseases. Intense investigation of the contribution of pancreatic β-islet and T-lymphocytes in

T1D has been made. However, genetic contributions from B-lymphocytes, which are known

to play a role in a subset of T1D patients, remain relatively understudied. We have

addressed this issue through the creation of Biomedical Data Commons (BMDC), a knowl-

edge graph that integrates data from multiple sources into a single queryable format. This

increases the speed of analysis by multiple orders of magnitude. We develop a pipeline

using B-lymphocyte multi-dimensional epigenome and connectome data and deploy BMDC

to assess genetic variants in the context of Type 1 Diabetes (T1D). Pipeline-identified vari-

ants are primarily common, non-coding, poorly conserved, and are of unknown clinical sig-

nificance. While variants and their chromatin connectivity are cell-type specific, they are

associated with well-studied disease genes in T-lymphocytes. Candidates include estab-

lished variants in the HLA-DQB1 and HLA-DRB1 and IL2RA loci that have previously been

demonstrated to protect against T1D in humans and mice providing validation for this

method. Others are included in the well-established T1D GRS2 genetic risk scoring method.

More intriguingly, other prioritized variants are completely novel and form the basis for future

mechanistic and clinical validation studies The BMDC community-based platform can be

expanded and repurposed to increase the accessibility, reproducibility, and productivity of

biomedical information for diverse applications including the prioritization of cell type-spe-

cific disease alleles from complex phenotypes.

Author summary

The fragmentation of datasets prevents repurposing due to time-intensive data cleaning

and joining. This is especially true for Type 1 Diabetes for which the genetic contributions
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from B-lymphocytes, a specific type of white blood cells, remain understudied. Here, we

create Biomedical Data Commons (BMDC), a knowledge graph, which maps datasets to

common entities making them easy to search using queries. We also built a genetic variant

prioritization pipeline that uses multi-dimensional ‘omics data including three-dimen-

sional connectome data. Using B-lymphocyte cell-type specific data as input, we priori-

tized variants associated with Type 1 Diabetes. The candidate variants identified are

primarily of unknown clinical significance and in the non-coding genome. They are also

connected with genes previously implicated in Type 1 Diabetes, suggesting that they affect

cell type-specific gene regulation. Some variants in the HLA and IL2RA locus, which are

important genomic regions for regulation of immune function, have previously been vali-

dated in humans and mice. Other variants have been included in a well-established Type

1 Diabetes genetic risk scoring method. This validates our approach and highlights the

novel variants identified that should be prioritized for future clinical and experimental

validation. BMDC is a community-based platform that increases the accessibility, repro-

ducibility, and productivity of biomedical information for diverse applications, and our

approach is widely applicable for prioritizing variants from other complex diseases.

Introduction

The explosion over the past decade of high-throughput biomedical genomics data and the uni-

versal transition to electronic medical records promises unparalleled disease insights.[1–3]

However, this promise has been hampered by problems in data-sharing and integration limit-

ing the productivity and impact any individual biomedical dataset can generate. Currently, no

publicly available, queryable central biomedical database exists, highlighting the inefficiency of

the current data structure that forces investigators to spend ~80% of their time individually

downloading and cleaning data.[4,5].

In addition, big data can have limitations in study design that impact interpretation. For

example, genome-wide association studies (GWAS) seek to understand disease pathogenesis

by correlating human sequence variation with disease phenotypes,[6,7] however, multiple

hypothesis testing, linkage disequilibrium, and limited or heterogeneous disease populations

limit the resolution of these studies. These issues lead to an overemphasis on variations with

relatively rare minor allele frequencies in diseases. GWAS studies also fail to address the issues

of polymorphism or polygenetic nature of complex diseases. Moreover, there are limited tools

to assess the relative importance of the non-coding genome despite it composing 98.5% of the

genome. Prioritization methods have traditionally used evolutionary conservation, which

focuses on the 1.5% of the genome consisting of highly conserved protein coding regions.[8,9]

Sequence conservation is ill-equipped to assess non-coding sequences, which are under

increased evolutionary pressure.[10] and fails to account for the affected set of gene targets

given the non-linear three-dimensional nature of the genome. Merging multidimensional

omics data with disease sequence variation would allow improved functional insights into

associative data.

To address these problems, we collaborated with Google Data Commons to develop Bio-

medical Data Commons (BMDC), a queryable biomedical knowledge graph that integrates

publicly available biomedical data. This solves the problem of data cleaning and integration

across multiple datasets and domains. It also allows users to easily explore and analyze the data

using BMDC’s application programming interface (API). Here, we apply BMDC to quickly

provide publicly available information on candidate Type 1 Diabetes (T1D) genetic variants
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that were prioritized using a pipeline that uses private multi-dimensional cell type-specific

data as input. The data extracted using BMDC aiding in data interpretation of candidate T1D

variants.

T1D is a common chronic autoimmune disease with an incidence of 25 per 100,000 in

Europe and the US. The underlying pathogenesis of T1D involves tolerance-breaking and

immune-mediated destruction of pancreatic β-cells resulting in poor blood glucose homeosta-

sis.[11] Genetic and environmental studies indicate considerable genetic heterogeneity, lead-

ing to the development of subsets or endotypes to better classify patient risk.[12–14] More

recently a genetic risk score (GRS2) of 67 single nucleotide polymorphisms (SNPs) predicted

77% of those who would develop T1D, with increased ability to determine early-onset diabe-

tes.[15] This reinforced the genetic basis of T1D and highlighted the need for better insights

into pathogenesis.

Intense investigation into the T1D pathogenesis has identified central roles for islet β-cells

and T-lymphocyte subsets in establishing and maintaining the autoimmune state.[11,14] The

majority of all research on T1D focuses on T-lymphocytes despite contributions from other

cell types known to play a role in T1D, including B-lymphocytes[14,16]. These additional cell

types have been largely overlooked and their precise role and pathogenesis remain perplexing.

This is especially true for B-lymphocytes, which appears to play a role in a subset of T1D

patients.

Patients with agammaglobulinemia or hereditary B-lymphocyte deficiency can still develop

T1D [7,17] and T1D-associated antibodies are not pathogenic, arguing against humoral

immunity. By contrast, B-lymphocytes are essential for diabetes development in non-obese

diabetic mice.[18] Moreover, children developing the condition before the age of 7 years dem-

onstrate a CD20hi B-lymphocyte infiltration phenotype (CD20hi phenotype; T1DE1)[19,20],

implicating B-lymphocytes in disease acceleration. Consistent with this role, anti-CD20 treat-

ment in mice reverses disease onset,[21] and anti-CD20/anti-CD3 prevents disease,[22] while

1-month anti-CD20 treatment in humans delays ß-cell loss as measured at 1 year.[23] These

studies support a role for B-lymphocyte-dependent antigen presentation and T-activation that

contributes to an early disease onset, but the mechanistic insights into B-lymphocyte dysfunc-

tion remains poorly understood. We therefore focused on B-lymphocytes rather than the well-

studied T-lymphocytes when we applied BMDC to investigate the role of genetics in B-lym-

phocyte dysfunction in T1D.

To accomplish this, we developed a pipeline to prioritize genetic variants that leverages the

hypothesis that enhancers are cis-acting regulatory regions that modulate gene expression.

The enhancer landscape is cell type-specific, therefore a genetic variant that modifies an

enhancer’s function is a potential mechanism by which genetic variants only impact gene

expression in a subset of cells. This has previously been demonstrated in the context of Alzhei-

mer’s Disease.[24] Deletion of a non-coding enhancer containing Alzheimer’s Disease variants

impacted expression of a distal target gene in microglia, but not neurons or astrocytes. This

demonstrates how a genetic variant can act in a cell type-specific manner. We apply the same

concept here in the context of T1D and expect to find genetic variants in non-coding enhanc-

ers that are cell type specific. This approach can provide insight into the role of genetic variants

in gene misregulation of specific cell types like B-lymphocytes distinct from other involved cell

types including T-lymphocytes.

First, we demonstrate that BMDC can be leveraged to address these myriad analytical short-

falls of big data. Then, we expand upon previous efforts using three-dimensional chromatin

data to understand the role of the non-coding genome.[25] Our approach is prioritizing non-

coding genetic variants based on the biology of a specific cell type of interest in contrast to the

current standard of evolutionary conservation. It also assigns non-coding variants to both a
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regulatory element and their distal gene targets based on the unique three-dimensional chro-

matin conformation of that cell type. This provides a potential mechanism of action for how a

genetic variant impacts gene expression. This pipeline is deployed to prioritize T1D-associated

genetic variants in B-lymphocytes. Then we interrogate the publicly available knowledge on

these variants using BMDC. We confirm previously identified regions associated with early

onset T1D associated with high B-lymphocyte infiltration. We also demonstrate their associa-

tion with functional transcriptional regulation suggesting an underlying activation state of B-

lymphocytes in T1D pathogenesis. This approach can be applied to other phenotypes, and the

BMDC community-based platform can be expanded upon leading to an increase in the acces-

sibility, reproducibility, and productivity of biomedical data.

Results

Biomedical Data Commons integrates multiple data types into a single

graph

Genomic, epigenomic, and transcriptomic data from eight databases have been integrated into

a queryable knowledge graph (Figs 1A and 1B and S1, and S1 and S2 Tables). Raw data was

converted into Meta Content Format (http://www.guha.com/mcf/mcf_spec.html)—mapping

to ~50.7 billion unique entities and ~50.0 billion triples (node-edge-node)—and ingested into

the Biomedical Data Commons. Existing schema from schema.org (https://schema.org/),

which powers ~40% of all websites, was expanded to accommodate this biomedical data [26].

This data can be accessed using one of Google Data Commons APIs (https://docs.

datacommons.org/api/), which are powered by BigQuery;[27] https://cloud.google.com/

bigquery). The graph is accessible via the Data Commons browser (https://datacommons.org/)

and documentation can be found on the browser (https://docs.datacommons.org/) and github

(https://github.com/datacommonsorg).

A major advantage of the Biomedical Data Commons is that it integrates data into a search-

able format that can then be used to extract information on a subset of the graph at scale. For

example, using the python API and SPARQL we were able to search a subset of the graph that

we were interested in—Gene, GeneticVariant, and GeneGeneticVariantAssociation nodes and

edges (Fig 1C, top panel)—and extract only Gene and Genetic Variants that were associated

with each other in whole blood by GTEx (Fig 1C, bottom panel). Extracting data using the

Data Commons python API is faster by one to four orders of magnitude depending on the

query and requires code of lower cyclomatic complexity than the standard data scientist

approach of cleaning and preparing the raw data to answer basic biomedical questions (Figs

1D and S2A).[28]

SNP Prioritization Pipeline integrates multidimensional ‘omics data

to form gene regulatory networks and prioritize biological validation

targets

We developed a pipeline that takes multiple data types—regulatory elements, genetic variants,

genes, and three-dimensional chromatin structure—to build gene regulatory networks and

prioritize genetic variants and genes for biological validation experiments (Fig 2). This pipeline

is deployed using input genetic variants from a disease of interest and epigenomic data from a

cell type of interest. The regulatory elements that contain genetic variants that are in close

physical proximity to a linearly distal gene target based on the three-dimensional chromatin

structure are associated with one another to form regulatory elements—genetic variant—gene

trios following the first step of the pipeline. These are then used as input into the second step,
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which results in the output of gene regulatory network visualizations and a ranked list of

genetic variants and genes that are prioritized by their level of connectivity in their local regu-

latory network. The output gene and genetic variant list generated by this pipeline can be used

as input into BMDC to obtain additional information on these candidates and provide the

user with a more comprehensive picture into their biomedical function.

Fig 1. Biomedical Data Commons is a knowledge graph that integrates multiple data types. A: Workflow for

cleaning, formatting, ingesting, and accessing data in the Google Biomedical Data Commons knowledge graph. B:

Current state of the Google Biomedical Data Commons graph. The size of the node indicates the number of unique

entities of that type in the graph. Solid edges depict explicit relationships between two entity types with edge width

corresponding to the number of unique links between the entity types. Dashed line edges denote implicit relationships

in the graph. C: A depiction of the subgraph of Biomedical Data Commons displaying the Gene, GeneticVariant, and

GeneGeneticVariantAssociation nodes and edges in total (top panel) and the subset of which are reported as

significantly associated in Whole Blood by GTEx (bottom panel). Node size and edge width correspond to the number

of unique entities of that type and relationships between two entity types respectively. This represents how a user can

use the Data Commons API to search and retrieve information contained in a subset of the graph in which they are

interested.

https://doi.org/10.1371/journal.pcbi.1009382.g001
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Fig 2. Schematic of the SNP Prioritization Pipeline. Genomic coordinates of genetic variants, regulatory elements, 3D connectome, genes are input

into step one of the SNP Prioritization Pipeline. The output from Step 1 are associated genetic variants—regulatory elements—genes, which together

formed trios. List of the unique genetic variants, regulatory elements, and genes that participate in these trios are also outputted. The gene list from step

1 of the SNP Prioritization Pipeline can be used as input for Biomedical Data Commons queries. The trios generated in step 1 are used as input into

step 2 of the SNP Prioritization Pipeline along with optional input cell type-specific gene expression data. The output is visualizations of gene

regulatory networks and a ranked list of genetic variants and genes. Input and output data at each step of the pipeline is color coded by type of data:

genetic variants (green), regulatory elements (blue), genes (gold), 3D connectome (black), gene expression data (magenta), gene regulatory networks

(turquoise), and ranked list of genetic variants and genes (orange). Optional input data is denoted by grey text, grey outline of the input box, and grey

input arrow. �denotes input data that is cell type-specific and needs to belong to the same cell type of interest throughout the pipeline.

https://doi.org/10.1371/journal.pcbi.1009382.g002
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SNP Prioritization Pipeline identifies non-coding and tissue-specific

variants

A list of 267 previously published significant T1D GWAS variants and an additional 12,707

variants in linkage disequilibrium with these significant variants was compiled (S3 Fig).[29]

Genetic variants in regulatory elements—open chromatin regions or transcription factor bind-

ing sites—in GM12878 B-lymphocyte cells were associated with gene targets using three-

dimensional chromatin conformation data defined by H3K27ac HiChIP (Fig 3A). This identified

602 unique genetic variants participating in 8,682 unique genetic variant—regulatory element—

gene trios with 473 unique gene targets (S3 Fig). The vast majority of these output candidate vari-

ants are of unknown clinical significance as recorded by ClinVar (Fig 3B). The output candidate

variants are also enriched for non-coding regions compared to the input genetic variants as

defined by the genomic location recorded in dbGAP (Fig 3C). This is as expected because the

pipeline filters for variants in defined regulatory elements. ~18% of output candidate variants

have previously been significantly associated by GTEx with at least one of their assigned gene tar-

gets in pancreas, thyroid, or whole blood (S2B Fig). Information on the clinical significance,

genome location, and known significant gene associations of genetic variants was identified

using the BMDC python and SPARQL API (Figs 3B and 3C, and S2A and S2B).

The pipeline was also run using cell type-specific regulatory elements and three-dimensional

connectome data from 1˚ Naive T, Th17, and Treg cells. Comparison of the output genetic vari-

ants from each of these cell types reveals that the candidate variants identified were cell-type

specific (Fig 3E, left panel). However, the gene targets identified by the pipeline were largely the

same between the GM12878, and 1˚ Naive T, Th17, and Treg cells (Fig 3E, right panel).

Kegg pathways and gene ontology terms were used to provide further insight into the bio-

logical role of the pipeline identified gene targets of the output candidate variants using

GM12878 cell type-specific input data. One of the top KEGG pathways is T1D and other top

KEGG pathways are other autoimmune diseases (Fig 3F). The top gene ontology biological

processes involve regulation of cytokine signaling and T cells (S4C Fig).

Output candidate variants are common and not evolutionarily conserved

Using the BMDC python API, we observed the majority of output candidate variants identified

by the pipeline (S3 Fig) to be common with a minor allele frequency (MAF) greater than 2%

(Fig 3G). The providence for this data extracted from BMDC is dbGAP. The distribution of

the minor allele frequency of output candidate variants was distinct for each ethnicity (S2D–

S2H Fig). Of note, East Asians had a larger proportion of output candidate variants with a rare

minor allele frequency of less than 2% compared to other ethnicities (S2G Fig). The vast

majority of output candidate variants have low CADD scores, which are calculated largely

using evolutionary conservation data alongside additional metrics (Fig 3H). This is suggestive

that the variants are not evolutionarily conserved. The top transcription factor binding motifs

in pipeline-identified regulatory elements are CTCF/Boris and NFkB (Fig 3I). Compared to

the original input list of T1D-associated variants based on GWAS and linkage disequilibrium,

there is an enrichment of output candidate variants in chr6 (Fig 3J). Chr6 contains the HLA

locus that accounts for ~50% of the genetic contribution involved in early-onset T1D.[30]

Using cohesin HiChIP data as input identifies a subset of the trios found

using H3K27ac HiChIP input data

92.1% of trios identified using cohesin HiChIP three-dimensional chromatin conformation

data were also identified using H3K27ac HiChIP data in GM12878 cells (S4A Fig). However,
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Fig 3. Pipeline prioritizes common non-coding genetic variants that are cell type specific. A: Overview of the pipeline that identifies genetic

variants in regulatory elements of interest distally connected to genes via the three-dimensional chromatin conformation. B: Clinical significance

of pipeline output genetic variants. C: Functional category of input and output genetic variants. D: The amount of time to run clinical

significance, functional category, and significant gene association analyses using local data scientist approach involving data download (blue) or

Data Commons (gold). ���� p< 0.0001. E: Venn diagram of the overlap in genetic variants (left panel) and genes (right panel) identified by the

pipeline using H3K27ac HiChIP and ATAC-seq datasets from GM12878 cells (green) and primary Naïve T (green), Th17 (gold), and Treg

(burgundy) cells as input. F: KEGG pathways associated with the target genes of pipeline genetic variants. G: Histogram of the minor allele

frequency of the pipeline genetic variants. Red line at 0.02 indicates common cutoff for uncommon genetic variants. H: Histogram of pipeline

genetic variants CADD score with red line at a score of 15 indicating a common cutoff for deleterious variants. I: Scatter plot of the top binding

motifs of pipeline identified regulatory elements. J: The chromosomal location of input and output genetic variants. Input SNPs refers to the

original candidate list of 12,974 genetic variants that were reported significantly associated with T1D in the GWAS catalog or are in linkage

disequilibrium. The Output SNPs refers to the 602 genetic variants that were identified as candidates by the pipeline.

https://doi.org/10.1371/journal.pcbi.1009382.g003
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cohesin HiChIP data identifies only a fraction (~8.4%) of the trios found using H3K27ac data.

Gene Ontology Biological Processes and KEGG Pathways associated with output candidate

variants identified using GM12878 cohesin HiChIP data are immune system-specific (S4B and

S4C Fig). The top binding motifs in pipeline-identified regulatory elements with GM12878

cohesin HiChIP data are CTCF/Boris and NFkB—the same as in the pipeline-identified regu-

latory elements with GM12878 H3K27ac HiChIP data as input (S4D Fig). The proportion of

output candidate variants that are a T1D GWAS significant variant versus a variant in linkage

disequilibrium is slightly higher using cohesin HiChIP data (7.9%) compared to H3K27ac

HiChIP data (3.5%; S4E Fig).

Comparison to existing genetic risk score method

The T1D GRS2 genetic risk score method uses 67 genetic variants and was developed on

patient data.[15] It has performed well particularly in the context of early-onset T1D. Our ini-

tial input list of T1D GWAS significant variants and those in linkage disequilibrium included

34/67 of the Sharp et al. variants. Of these 7 (~20.1%) were identified as significant using our

prioritization pipeline with GM12878 input data. An additional 3 unique genetic variants were

identified using 1˚ Naive or Th17 input data. Of note, rs3024505, whose gene target is IL19

and other nearby genes, was identified using input data from all three of these cell types.

Numerous previous GWAS studies of autoimmune diseases have identified rs3024505 as sig-

nificantly associated with multiple autoimmune diseases including T1D, inflammatory bowel

disease, Behçet’s disease, and others.[31–33] Furthermore, a number of the genetic variants

identified in this study were nearby Sharp et al. variants and regulated the same gene targets

including in the IL27 and UBASH3A loci (S5 Fig).[15] In addition, 24/40 Sharp et al. gene tar-

gets were identified using our pipeline with GM12878 input data.

There are four clusters of gene regulatory network structures

The pipeline produced genetic variants—gene regulatory networks. This was done by repre-

senting genetic variants and their gene targets identified by the first part of the pipeline as a

bipartite graph. This results in a graph composed of multiple components, each representing

the gene regulatory networks at distinct loci. These graph components were converted to a

matrix representation to enable machine learning on the gene regulatory networks. To identify

if there were common network structures, K-means clustering was performed on the principal

component analysis (PCA) of the gene regulatory networks. This identified four clusters repre-

senting distinct gene regulatory network structures (S6B and S6C Fig). The one that separated

the most was a dense cluster populated only by the Major Histocompatibility Class II

(MHC-II) locus (Dense; n = 1). Another cluster contained components in which each node

only had a few connections to other nodes in the graph and did not contain an obvious focal

point (Chain; n = 2). A third cluster had multiple obvious focal points (Multi-Focus; n = 9).

The final cluster contained gene regulatory networks with simple structures that tended to

have a single focal point (Simple; n = 27).

Centrality analysis identifies HLA-DQB1 and HLA-DRB1 as top

candidates

Centrality, a measure of the important nodes of the graph, was used to identify key nodes in

the gene regulatory networks to recommend for further biological investigation. Closeness

centrality, a calculation of the sum length of the shortest path between that node and all nodes

in the graph, created the best distribution of centrality scores compared to alternative central-

ity measures degree and betweenness centrality (S6A Fig). The top candidate gene regulatory
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network was the 2.2 Mbp MHC-II locus (Fig 4A). This was selected because it contained the

first ranked genetic variant by closeness centrality score of the pipeline output list of ranked

genetic variants and genes (S3 Table). Furthermore, it was the most dense gene regulatory net-

work and contained the most connected genes (HLA-DQB1 and HLA-DRB1) as well based on

centrality score.

The top candidates within the HLA locus were HLA-DQB1 and HLA-DRB1, which

together form the haplotype DR4—one of two haplotypes with the strongest association with

T1D (Figs 4B and S7A).[34] These genes are strongly connected by chromatin folding associ-

ated with all types of investigated regulatory elements containing one or more T1D-associated

genetic variants (Figs 4C and S7B). The top genetic variant is novel rs14004 and it serves as a

major connection point between the highly connected 1 Mbp HLA locus and the region 1.2

Mbp upstream (Figs 4B and S7A).

Chromatin connectivity in HLA locus is B-lymphocyte-specific

The chromatin connectivity in the HLA locus between pipeline-identified candidate genetic

variants and their gene targets is cell-type specific (Fig 4D and 4E). Only a limited number of

these connections were observed in 1˚ Treg cells. The HLA-DQB1 transcription start site

(TSS), HLA-DRB1 TSS, and rs14004 are all strongly connected with each other as well as

rs9986640 (Fig 5A and 5B). rs14004 and rs9986640 are both located in BCL11A, RAD21, and

STAT5 ChIP-seq binding sites (Fig 5A). rs14004 is additionally in a TCF3 binding site, and

rs9986640 is additionally in a CTCF, PAX5, SMC3, and SPI1 binding sites. HLA-DQB1 and

HLA-DRB1 are associated with 98 genetic variants by the pipeline (S4 Table). rs14004 is a

common allele whereas rs9986640 is a rare alle (Fig 5C).

IL2RA is identified as the top candidate for within its locus

To provide insight into how the pipeline performed at another well studied locus in the context

of Type 1 Diabetes, we focused on the IL2RA locus. The pipeline identified the IL2RA as the

top candidate within the locus by closeness centrality of its gene regulatory network (Fig 6A

and 6B). IL2RA is strongly connected via chromatin folding to multiple types of regulatory ele-

ments containing T1D-associated genetic variants (Fig 6C). The connectivity within the

IL2RA locus of between pipeline-identified genetic variants and gene targets is distinct

between GM12878 and 1˚ Treg Cells (Fig 6D and 6E). The top genetic variant candidate in the

IL2RA locus is rs61839660, which is located in a BCL11A, EBF1, IKZF1, MYB, PAX5, SPI1,

and STAT5 ChIP-seq binding site (Figs 6B and 6C, and 7A). rs61839660 and IL2RA TSS are

both connected with the novel variant rs198390 (Fig 7A and 7B). Both variants and the IL2RA

TSS are also connected to the IL15RA TSS. rs61839660 is a rare allele, whereas rs198390 is a

common allele (Fig 7C).

Ikaros family identified as candidates

Finally, we performed a deeper dive into IKZF3 and IKZF1 to provide additional example

gene regulatory networks produced by the SNP Prioritization Pipeline. These loci were chosen

because they belong to the same transcription factor family and are known to be important in

B-lymphocyte development with IKZF1 a critical transcription factor.[35] They are also impli-

cated in early-onset Type 1 Diabetes, but their mechanism of action remains unclear.[36,37]

Here, we use the gene regulatory networks produced by the SNP Prioritization Pipeline to gen-

erate hypotheses regarding the mechanism by which genetic variance may disrupt gene expres-

sion in these loci and contribute to Type 1 Diabetes (S8A–S8C and S9A–S9C Figs). IKZF3 is in

a much more dense and complex gene regulatory region than IKZF1 (S8B, S8C, S9B and S9C
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Fig 4. HLA-DRB1 and HLA-DRQ1 are top pipeline identified candidates for T1D-associated genes in the HLA locus. A: Visualization of the HLA

component of interconnected pipeline genetic variant–regulatory element–gene trios (chr6: 30,000,000–33,220,000). B: Bipartite graph of the HLA

component with gene and genetic variants as nodes and chromatin connections as edges. Node color indicates closeness centrality score with gold being

most connected and purple being least connected nodes in the graph. Gene nodes are labeled, and genetic variant nodes are unlabeled. C: Bipartite graph

of HLA component with gene and regulatory elements as nodes and chromatin connects as edges. Gene nodes are labeled and white. Regulatory element

nodes are colored by type and labeled by the number of unique genetic variants contained in the regulatory element. The width of edges indicates

connectivity strength as indicated by the number of unique HiChIP reads. D: Circos plot of the chromatin connectivity at 5 kb resolution in the HLA

locus. The nodes are sections of the genome and the edges are the chromatin connectivity with the width indicating connectivity strength. An asterisk

labels the starting (chr6: 30,000,000; green) and terminating (chr6: 33,220,000; gold) nodes of the plot. GM12878 (left panel) and Treg (right panel)

pipeline trio contacts are visualized.

https://doi.org/10.1371/journal.pcbi.1009382.g004
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Figs). The chromatin connectivity between pipeline-identified genetic variants and their gene

targets in both of these loci are B-lymphocyte specific with no such connectivity observed in 1˚

Treg cells, which is to be expected because IKZF1/3 are known to specifically function in B-

lymphocytes (S8D, S8E, S9D and S9E Figs).

Discussion

The lack of a publicly available, queryable central biomedical database hobbles biomedical

research by increasing the time, resources, and level of expertise needed to evaluate publicly

available biomedical data. We address this by developing BMDC, a knowledge graph that inte-

grates data from multiple sources into a single queryable format. To demonstrate its useful-

ness, we applied it to aid our understanding of the role of B-lymphocytes in T1D. Currently,

there are limited methods for identifying the role of non-coding genetic variants in specific

cell types and disambiguating polymorphism. To address this, we created a pipeline that lever-

ages the cell type-specific enhancer and three-dimensional chromatin structure in a cell to pri-

oritize genetic variants for biological validation. It prioritized non-coding genetic variants that

are cell type-specific enhancers providing insight into the role of genetic variance and B-lym-

phocytes in T1D. We used BMDC to extract publicly available information on pipeline-identi-

fied variants to increase interpretation of their function. Together, this leverages publicly

available big data and data integration to provide insight into the role of non-coding variants

and polymorphism in complex disease.

BMDC removes inefficiencies in data cleaning and democratizes biomedical data by serving

as a central database accessible from datacommons.org. Data Commons is open—any user can

contribute datasets or build applications powered by the graph using our API. The biomedical

data is organized in an open-source knowledge graph in accordance with the Findability,

Accessibility, Interoperability, and Reusability (FAIR) data principles.[38] As BMDC is com-

posed of cleaned data integrated from multiple data sources into a single format this dramati-

cally reduces the time that users spend on cleaning data. This democratizes the data by

increasing the ease of data sharing and reducing the programming ability needed to evaluate

the data thereby decreasing the barrier to entry for conducting biomedical analyses.

BMDC is the first large scale, publicly available, and community-based platform knowledge

graph in the biomedical space. Another major effort in this space is The Biomedical Data

Translator Consortium.[39] This consortium is building a platform that supports the creation

of knowledge graphs that are focused on a defined area of biomedicine like a given disease. It

is a federated system that requires application to have access to specific graphs built by the

group. It remains primarily in use by consortium members, and it’s unclear when the platform

will be made broadly available to the biomedical community. Another biomedical knowledge

graph that has been built is the Scalable Precision Medicine Oriented Knowledge Engine

(SPOKE), an effort out of University of California, San Francisco.[40] The biggest difference

between BMDC and SPOKE is accessibility and size. SPOKE remains a private graph and

Fig 5. Novel genetic variant rs14004 is a candidate for gene expression regulation of HLA-DRB1 and HLA-DQB1.

A: Visualization of the portion of the genome that interacts with HLA-DRB1 and HLA-DQB1 (chr6: 32,100,000–

33,100,000). ATAC-seq and CTCF, RAD21, STAT5, and TCF3 ChIP-seq raw read visualization (top panel). Cohesin

(black) and H3K27ac (blue) HiChIP raw reads virtual 4C plots centered on the Notch 3’ UTR, rs14004, HLA-DRB1

TSS, HLA-DQB1 TSS, and rs9986640 (bottom panel). B: Schematic of the chromatin connectivity between the genetic

variants and the genes as represented by the raw data for chr6: 32,100,000–33,100,000. C: Major (green) and minor

(blue) allele frequencies from 1000 Genome Project for rs14004 and rs9986640. D: Primary whole blood RPKM values

for NOTCH4, HLA-DRB1, and HLA-DQB1 of healthy and Type 1 Diabetes patients.

https://doi.org/10.1371/journal.pcbi.1009382.g005
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Fig 6. IL2RA is a top pipeline identified candidate. A: Visualization of the IL2RA component of interconnected pipeline genetic variant–regulatory element–

gene trios (chr10: 5,765,000–6,355,000). B: Bipartite graph of the IL2RA component with gene and genetic variants as nodes and chromatin connections as

edges. Node color indicates closeness centrality score with gold being most connected and purple being least connected nodes in the graph. Gene nodes are

labeled, and genetic variant nodes are unlabeled. C: Bipartite graph of IL2RA component with gene and regulatory elements as nodes and chromatin connects

as edges. Gene nodes are labeled and white. Regulatory element nodes are colored by type and labeled by the number of unique genetic variants contained in

the regulatory element. The width of edges indicates connectivity strength as indicated by the number of unique HiChIP reads. D: Circos plot of the chromatin

connectivity at 5 kb resolution in the IL2RA locus. The nodes are sections of the genome and the edges are the chromatin connectivity with the width

indicating connectivity strength. An asterisk labels the starting (chr10: 5,765,000; green) and terminating (chr10: 6,355,000; gold) nodes of the plot. GM12878

(left panel) and Treg (right panel) pipeline trio contacts are visualized.

https://doi.org/10.1371/journal.pcbi.1009382.g006

PLOS COMPUTATIONAL BIOLOGY Biomedical data commons prioritizes B-cell variants in Type 1 diabetes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009382 September 20, 2021 14 / 29

https://doi.org/10.1371/journal.pcbi.1009382.g006
https://doi.org/10.1371/journal.pcbi.1009382


Fig 7. rs61839660 identified as a candidate for gene expression regulation of IL2RA and IL15RA. A: Visualization

of the portion of the IL2RA gene regulatory network (chr10: 5,765,000–6,355,000). ATAC-seq and BCL11A, IKZF1,

and STAT5 ChIP-seq raw read visualization (top panel). Cohesin (black) and H3K27ac (blue) HiChIP raw reads

virtual 4C plots centered on the IL15RA TSS, IL2RA 3’ UTR, IL2RA TSS, rs61839660, and rs198390 (bottom panel). B:

Schematic of the chromatin connectivity between the genetic variants and the genes as represented by the raw data for
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contains only 47,000 nodes and 2.25 million edges making it four orders of magnitude smaller

than the current BMDC graph.

Here, we demonstrate a use case of how BMDC can be applied to aid in the prioritization of

genetic variants associated with complex phenotypes. Our method prioritizes non-coding vari-

ants in a cell type-specific manner by using the epigenomic state of the cell. It provides insight

into potential mechanisms of action via the regulatory element with which the genetic variant

is located. It also builds gene regulatory networks which provide insight into potential poly-

morphic and/or polygenetic effects. Furthermore, it creates a locus-specific score to prioritize

alleles in complex loci.

We applied our pipeline to prioritize genetic variants involved with regulation of B-lym-

phocyte function in T1D, one of most-studied childhood diseases. B-lymphocytes appear to

play a role in early-onset diabetes and their involvement in the pathogenesis is associated with

more aggressive disease progression.[41,42] In addition, immortalized B-lymphocyte cell line

GM12878 has been extensively characterized and has a wealth of publicly available epigenetic

datasets available making it an excellent model for testing our method. Our method identified

a substantial fraction of the variants identified by Sharp et al. GRS2 method and the majority

of the same gene targets.[15] In the case of rs5763779, Sharp et al. assigned it to the nearest

gene HORMAD2, whereas our method associated it with oncostatin M. Albiero et al. previ-

ously showed that excess levels of oncostatin M inhibit mobilization of stem cells into the

peripheral blood in T1D patients thus offering a potential mechanism by which rs5763779

contributes to the manifestation of T1D.[43] This showcases the value that our method offers

by providing a way to assign non-coding regions to distal gene targets by chromatin looping.

The densest loci identified by our pipeline was the MHC-II locus which accounts for ~50%

of the genetic contribution involved in early-onset T1D.[30] The most connected entities in

the locus were HLA-DQB1 and HLA-DRB1, which together can form the haplotype DR4, one

of two haplotypes which conveys the highest risk for T1D.[34] In addition, Inshaw et al.

recently reported HLA-DQB1 and HLA-DRB1 haplotypes DR15-DQ6

(DRB1�15:01-DQB1�06:02) and DR7-DQ3 (DRB1�07:01-DQB1�03:03) were least common in

children that were under the age of 7 at the time of diagnosis with T1D.[36]

The top genetic variant identified by our analyses rs14004, which is in a RAD21 binding

site, interacts with the rare allele rs9986640, which is in a strong CTCF binding site that colocalizes

with cohesin. Interaction of this CTCF site has been shown by 3C to connect HLA-DQB1 and

HLA-DRB1 promoters in an interferon-gamma-dependent manner in Burkett’s lymphoma B-cell

line Raji.[44] Although, no individual knockdown or knockout of this cite has been made, siRNA

knockdown of CTCF leads to reduced expression of the entire MHC-II locus and interferon-

gamma leads to increased CTCF-dependent looping and is associated with increased HLA-DQB1

and HLA-DRB1 expression. The regulatory elements that contain rs14004 or rs9986640 both

interact with the two superenhancers in the intergenic region of HLA-DQB1 and HLA-DRB1.

Loss of these superenhancers leads to decreased connectivity in the MHC-II locus and lower

expression levels of HLA-DQB1 and HLA-DRB1.[45] Together this suggests an important role of

chromatin connectivity in the HLA-locus for regulation of gene expression and suggests a mecha-

nism of action by which genetic variance disrupts looping of regulatory elements containing

rs14004 or rs998860 leading to misregulation of HLA-DQB1 and HLA-DRB1.

IL2RA was another locus that was identified by our pipeline with rs61839660 in the CaRE4

IL2RA enhancer identified as the locus’s top genetic variant candidate. Previously, Simenov

chr10: 5,765,000–6,355,000. C: Major (green) and minor (blue) allele frequencies from 1000 Genome Project for

rs61839660, and rs1983900.

https://doi.org/10.1371/journal.pcbi.1009382.g007
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et al. demonstrated that the presence of the minor allele led to decreased enhancer activity and

IL2RA expression in Jurkat CD4+ T cells.[46] Deletion of the CaRE4 enhancer in mice leads

to protection against development of T1D even when the mice are treated with an immunosti-

mulating anti-PD1 checkpoint inhibitor.[47] This provides validation in mice and humans

with how the pipeline-identified rs61839660 trio works. rs61839660 affects the function of the

CaRE4 enhancer in which it resides, which in turn leads to decreased IL2RA expression and

subsequently protects against T1D. This provides confidence in using this method to prioritize

genetic variants for biological validation in complex diseases.

This study contains limitations that are worth addressing in future research. Our analyses

in this study are limited to B and T-lymphocytes. It is possible that genetic variants identified

in this study are also involved in gene regulation in other cell types involved in Type 1 Diabetes

manifestation and disease progression including dendrites and B-islet cells. We recommend

that the pipeline be run with cell type-specific input data for all cell types involved in a given

disease to provide a more complete picture as to which genetic variants may be involved in

regulating which genes in which cells. This would provide the most insight into how genetic

variants may be impacting the function of multiple cell types. In addition, most of this study

was focused on the immortal B lymphocyte cell line GM12878. We chose this cell line because

we wanted to validate our approach in a well-studied cell line that had all the needed multidi-

mensional ‘omics data readily available. A limitation of this is that there may be some aspects

of the epigenome that are unique to B-lymphocytes that are not present in 1˚ B-lymphocytes.

It would be interesting to compare the results from 1˚ B-lymphocyte data.

The multiple candidates generated by the pipeline have already been identified and biologi-

cally validated in the literature in both mice and humans. In particular, the CaRE4 enhancer

mechanism of action for regulation of IL2RA expression is exactly what is expected based on

the insight provided by the IL2RA regulatory network produced by the pipeline.[45,46] This

provides confidence that our pipeline is identifying candidate genetic variants and regulatory

elements that are worth investigating their function in vivo. The pipeline also identified many

loci that are associated with Type 1 Diabetes and B-lymphocyte development but are much

less studied. We suggest that follow-up studies should be conducted into the role of the highly

connected pipeline-identified regulatory regions in regulating their gene targets.

Here, we demonstrate a single use case of BMDC to understand the role of non-coding

genetic variants in complex diseases. However, BMDC can be used to address a wide range of

biomedical questions dependent on big data analyses. The open-source nature of BMDC

allows for organic community growth and flexibility in use and scope of BMDC to advance

biomedical research.

Conclusions

We have built BMDC, a platform that facilitates easy wide-spread sharing and analysis of biomed-

ical data. We demonstrate how BMDC can be leveraged in the use case of prioritization of cell

type specific disease alleles associated with complex phenotypes. The SNP prioritization pipeline

provides insight into the potential polymorphic effects and mechanism of action by which non-

coding genetic variants regulate gene expression. The function of top genetic variant candidates

identified by this method have been validated in the literature in both mice and humans.

Methods

Processing of ChIP-seq and ATAC-seq data

Sequence alignment to hg38 was performed using bowtie.[48] for ATAC-seq (parameters: -p

24 -S -m 1 -X 2000). The following was completed for both ATAC-seq and ChIP-seq datasets.
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Samtools was used to remove PCR duplicates and mitochondrial DNA (for ATAC-seq data-

sets) from aligned reads.[49] Peak calling was carried out with MACS2.[50] using default set-

tings with a p-value cutoff of 0.05. To filter out non-reproducible peaks, called peaks from

biological replicates were processed through the Irreproducible Discovery Rate (IDR) frame-

work implemented in R with a p-value cutoff of 0.01.[51]

Processing of HiChIP Data

HiChIP paired end reads were aligned to hg38 using HiC-Pro.[52] Duplicate reads were

removed, assigned to MboI restriction fragments, filtered for valid interactions, and then used

to generate binned interaction matrices of both 5 kb resolution. High confidence contacts

(defined as counts� 10, FDR < 0.01) using the contact caller FitHiChIP with default settings.

[53] These high confidence contacts were used in the subsequent analyses including visualizing

contacts by using interaction matrices created by HiC-Pro to create Virtual 4C profiles

through a custom python script deploying the matplotlib library.

Biomedical Data Commons schema development

Biomedical Data Commons is built on top of schema.org. The data model for both schema.org

and Data Commons covers entities and the relationships between entities. This is organized as

a set of entities that are arranged in a multiple inheritance hierarchy allowing each type to

potentially be the subclass of multiple entities. Each entity has a set of properties. These prop-

erties can have one or more domains meaning that they can be instances for any of these enti-

ties. They can also have one or more ranges, and the values of each property should be one of

those specified types. Any property that has a limited set of values is converted to schema.org

class Enumeration. In addition, any observations or statistical variables of a population are

represented as schema.org classes StatisticalPopulation and Observation and/or Data Com-

mons class StatisticalVariable. An example of which would be the observed allele frequency of

a given genetic variant in a given study such as the 1000 Genomes Project. In this case the Sta-

tisticalPopulation would be defined as the specific allele for which the frequency observation is

being observed and the Observation would contain the frequency recorded in that study along

with additional information on the observation including the source and date observed.

Similarly, to schema.org, Data Commons is a collaborative platform that is open for com-

munity development. Schema is extended as needed to represent a dataset, preserving the orig-

inal encodings from the data source as much as possible, while maintaining consistency with

the existing Data Commons schema. In these cases, any acronyms in property names that are

domain specific are expanded to increase user accessibility. The current schema unique to Bio-

medical Data Commons is available in github repository https://github.com/

datacommonsorg/schema/tree/main/biomedical_schema or viewed on the datacommons.org

browser. The Biomedical Data Commons specific schema as of 4/9/21 can also be viewed in

S6–S8 Tables. More on the Data Commons data model can be found in our documentation

https://docs.datacommons.org/data_model.html.

Ingesting data into Biomedical Data Commons

Documentation on Data Commons can be viewed at https://docs.datacommons.org/. Data

was downloaded directly from the original database and parsed into single property–value

pairs that are associated with a single entity. The data was then represented in MCFs (http://

www.guha.com/mcf/mcf_spec.html), which were then ingested into the Biomedical Data

Commons knowledge graph (Figs 1A and S1). The providence for each property—value pairs

is maintained and can be queried upon.
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To enable joins across datasets, shared entities need to be reconciled. This was achieved

through careful generation of dcid, a global Data Commons ID for each entity. The dcid was

systematically crafted for each entity type by creating it from the most comprehensive and spe-

cific identifier or classification system for that type of entity. In cases that this identifier was

not provided in the imported data, then the data was mapped to the appropriate identifier

upon MCF conversion. This enables resolution of data from multiple databases into a single

entity in the knowledge graph. Custom scripts for converting the original datasets to MCF can

be found in github repositiory https://github.com/datacommonsorg/data/tree/master/scripts/

biomedical.

Biomedical Data Commons knowledge graph data storage and access

The generated MCF files are imported using the flow described in Fig 1A. They are stored in

Google Cloud Bigtable and BigQuery. The data is accessible at datacommons.org and using

the Google Data Commons API. Instructions for setting up the Google Data Commons API

can be found at http://docs.datacommons.org/api/setup.html. Entities and triples of each type

were quantified by performing SQL queries on the knowledge graph stored in BigQuery (S1

and S2 Tables).

Generating input Type 1 Diabetes genetic variant list

Normalized significant genetic variants associated with Type 1 Diabetes were obtained from

GWAS Catalog trait Type 1 Diabetes Mellitus: EFO_0001359.[29] The genetic variants in link-

age disequilibrium with these significant genetic variants for Africans, Americans, East Asians,

Europeans, and South Asians were obtained using SNiPA.[54] The linkage disequilibrium

analysis was done in genome assembly GRCh37, variant set 1000 Genomes Phase 3 version 5,

genome annotation Ensembl 87, and linkage disequilibrium threshold 0.7. The union of signif-

icant genetic variants and genetic variants in linkage disequilibrium with them in one or more

populations to create the input genetic variant list. The genomic coordinates of these genetic

variants were converted into genome assembly hg38 using the UCSC Genome Browser liftover

tool.[55] This generated the Type 1 Diabetes-associated genetic variants list was used as input

into the SNP Prioritization Pipeline in all analyses, regardless of cell type.

Pipeline for prioritizing non-coding genetic variants

The pipeline requires the following input files: file path of the file containing chromatin con-

tacts within a given cell, file path of the bed file of the regulatory element of interest, file path

of the bed file of the genetic variants of interest, file path of the bed 5+ file of genes, and file

path of the output file. There is an optional argument of the setting the wing-size—the number

of base-pairs upstream and downstream considered extensions of the gene–with the default

parameter set to 5,000 base pairs. Here we used H3K27ac HiChIP and Smc1a HiChIP datasets

as input for the chromatin contacts and ATAC-seq and ChIP-seq datasets as input for the reg-

ulatory elements. Only one type of regulatory element dataset can be used as input into the

algorithm for any given run.

The algorithm involves two steps. The first step is to define the associated regulatory ele-

ments—genetic variants—gene “trios”. The second step uses these trios as input to build bipar-

tite graphs of the gene regulatory networks defined by these trios. These are then used to

perform centrality to produce a ranked list of genetic variant candidates for biological

validation.

First, the algorithm filters regulatory elements for those that are participating in chromatin

looping. Second, it filters for regulatory elements containing one or more genetic variants
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thereby associating the regulatory elements with the genetic variants due to colocalization.

Finally, it associates the paired regulatory element and genetic variant to distal gene targets by

chromatin looping (i.e. it filters for pairs in which the other bin of the chromatin loop contains

a gene). This forms an output trio composed of an associated regulatory element—genetic var-

iant—gene. These are written to an output file in which each line is the genetic position and

name of the unique regulatory element, genetic variant, and gene trio along with the chroma-

tin contact. The chromatin contact recorded is the one that associates the regulatory element

and genetic variant with the gene target due to the three-dimensional configuration of the

DNA bringing them into close physical proximity with each other.

If the SNP Prioritization Pipeline algorithm is performed with multiple different types of

regulatory elements as input, then the output files are combined to create one file containing

all unique trios and their associated chromatin contacts. This is then used as input into the

next step of the algorithm. First the genetic variants and their gene targets were filtered for the

pairs for which the gene is known to be expressed in the cell type of interest. This filtering step

is optional. Gene regulatory networks were then built by representing genetic variants and

their gene targets identified in the first part of the pipeline as a bipartite graph. This graph is

composed of multiple components, each of which represent the gene regulatory networks of

individual loci. Each component is then analyzed using closeness centrality and the visualiza-

tion is outputted. In addition, a ranked list based on closeness centrality score for genes and

genetic variants.

The higher the closeness centrality score the more connected that node in the graph and

the more likely that it plays a critical role in that regulatory network. Use of degree, between-

ness, page rank and eigenvector centrality as the method by which to rank targets were also

considered (S6A Fig). Closeness centrality was selected because it provided the most dynamic

range in values for nodes in the gene regulatory networks.

Pipeline deployment for cell type-specific analysis

The SNP Prioritization Pipeline was run using immortal B-lymphocyte cell line GM12878

H3K27ac HiChIP data along with ATAC-seq and ChIP-seq (BCL11A, CTCF, EBF1, IKZF1,

MYB, PAX5, RAD21, SMC3, SPI1, STAT5, TCF3).[56–58] These are the data used for all the

analyses in the paper unless otherwise specified. We also ran the algorithm substituting GM12878

cohesin HiChIP data as input for the chromatin data to compare the results of the analysis using

H3K27ac versus cohesin HiChIP.[59] The pipeline was also run using primary cell Naïve T, Th17,

and Treg Cells H3K27ac HiChIP and ATAC-seq data.[58] Along with the GM12878 H3K27ac

HiChIP and ATAC-seq output, the resulting output genetic variant and target genes identified by

the pipeline for each cell type were compared using a 4-way venn diagram.

Motif discovery, KEGG Pathway, gene ontology, and CADD score

De novo motif discovery was performed using Homer findMotifsGenome.pl command with–

size 200 as a parameter (version 4.8). Results were visualized in a scatter plot using GraphPad.

KEGG Pathway and gene ontology biological process terms analysis was performed using

Enrichr and results were visualized in bar charts.[60] CADD scores were obtained using

https://cadd.gs.washington.edu/ and were visualized in a histogram.[9]

Genetic variant clinical significance, functional category, minor allele

frequency, and significant gene associations

For an input list of genetic variants, data on the clinical significance and functional category

were obtained by querying Google Data Commons using the python API and the original
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providence of the data is ClinVar and dbSNP respectively.[61,62] Data was visualized using a

donut plot and waffle chart respectively. Google Data Commons was also queried using the

python API for the minor allele frequency from dbGAP or the 1000 Genome Project when no

dbGAP minor allele frequency was recorded. This data originally came from dbSNP and was

visualized in a histogram.[62] The population specific minor allele frequency was obtained as

part of output from SNiPA and were visualized in histograms using custom script.[54] The sig-

nificant gene associations in whole blood, pancreas, and thyroid of an input list of genetic vari-

ants were also obtained by Google Data Commons using the python API. The original

providence for this data is GTEx.

Visualization of chromosomal location and GWAS significance

The chromosome location of the input and output genetic variant lists were visualized using a

waffle chart generated from custom script. The proportion of output candidate genetic variants

that were called significant by Type 1 Diabetes GWAS studies versus those that are in linkage

disequilibrium with a significant variant were visualized in a donut plot using a custom script.

Visualization of gene regulatory networks

Regulatory networks are also visualized by building bipartite graphs of regulatory element–

gene pairs. The label of regulatory elements is the number of unique genetic variants contained

within that regulatory element. The node color is determined by the type of regulatory ele-

ment. The edge width is specified by the number of unique reads composing the chromatin

contact call associating a regulatory element with the gene in close physical proximity. The

visualization of each component in the graph is outputted. These provide insight into the

structure and composition of regulatory networks in which genetic variants participate.

Representation learning of the genetic variant–gene regulatory networks

The nodes of the bipartite graph of genetic variant–gene associations resulting from the SNP

Prioritization Pipeline were converted to a matrix representation using node2vec.[63] Matrices

of nodes belonging to the same component were combined to form a matrix that represented

the components for all components composed�5 nodes. PCA was performed on the compo-

nent matrices with n = 6 PCA components—only two of which were visualized (S6B Fig). The

number of components was set as the minimum number of components needed to account

for 80% of the variance in the data (n = 9). K-means clustering was performed on the PCA. K

was optimized using the elbow plot method (k = 4). We named each cluster of gene regulatory

networks based on the similarity in structure shared between the networks belonging to a

given cluster.

Selection of loci of interest

To validate the genetic variants, regulatory regions, and loci prioritized by the pipeline, we per-

formed a deeper dive on a select number of loci (HLA, IL2RA, IKZF3, and IKZF1). HLA was

selected due to having the most connected genetic variant and gene as well as being the most

dense gene regulatory network (i.e. contained the most genetic variants and genes). It is also

extensively studied thereby providing the opportunity to validate if the results of the pipeline

were consistent with the literature. To further validate the pipeline we explored the IL2RA,

IKZF3, and IKZF1 loci, which are all known to play a role in B-lymphocyte development and

Type 1 Diabetes. These were additionally selected to provide examples of how to interpret the

output of the pipeline at gene regulatory networks that had different structures.
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Visualization of chromatin connectivity

The chromatin connectivity at 5 kb resolution in a connected component of genetic variant–

regulatory element–gene trios were visualized via a circus plot using a custom python script.

Each node was a 5 kb section of the genome and the edges are distal connections between seg-

ments of the genome. The width of the edge correlates to the strength of the connectivity as

represented by the number of unique reads.

The raw data of the chromatin connectivity at a given locus was visualized in virtual 4C

plots using custom script.

Supporting information

S1 Fig. Schematic of data workflow. Biomedical Data Commons was built by converting pub-

licly available datasets into MCFs, which were then ingested into the knowledge graph. This

makes the data searchable using the Data Commons API. Private multidimensional ‘omics

data was used as input into the SNP Prioritization Pipeline. This resulted in a list of candidate

genetic variants, which were then used to generate queries to extract publicly available infor-

mation on these variants from Biomedical Data Commons. Data and data processes relating to

Biomedical Data Commons are in green and those related to the private data used in this study

along with the developed SNP Prioritization Pipeline are in yellow. �denotes input data that is

cell type-specific and needs to belong to the same cell type of interest.

(TIF)

S2 Fig. SNP genetic variants are common, and their gene targets are associated with B-lym-

phocyte activity. A: The code cyclomatic complexity score for the custom scripts used to iden-

tify the clinical significance, functional category, and significant gene association analyses

using local data scientist approach involving data download (blue) or Data Commons (gold).

B: Donut plot of genetic variants in which at least one gene target was verified by GTEx signifi-

cant genetic variant—gene association in Whole Blood (burgandy), Thyroid (blue), Pancreas

(gold) or a combination of tissues–Thyroid + Whole Blood (purple), Pancreas + Whole Blood

(orange), or Pancreas + Thyroid + Whole Blood (turquoise). Genetic variants for which none

of its gene targets were a GTEx significant genetic variant–gene association are in silver. C:

Gene Ontology (GO) terms for genetic variants SNP pipeline identified gene targets. D-H:

Minor allele frequency of pipeline genetic variants in specific subpopulations: African (D;

green), Americans (E; blue), European (F; gold), East Asian (G; plum), and South Asian (H;

turquoise). The red line is at minor allele frequency 0.02.

(TIF)

S3 Fig. Workflow schematic of applying the SNP Prioritization Pipeline to B-lymphocyte

data. The original input list of genetic variants was generated by retrieving the Type 1 Diabetes

significantly associated variants from GWAS Catalog (267) and then finding the genetic vari-

ants in linkage disequilibrium with those significant variants (12,707). Together these 12,974

variants were used as input into the SNP Prioritization Pipeline along with cell type-specific

data on regulatory elements and 3D connectome as well as protein-coding genes genomic

positions. The pipeline outputted associated genetic variants—regulatory elements—genes,

which together formed trios. The number of unique genetic variants, regulatory elements, and

genes that participate in these trio conformations in GM12878 cells using H3K27ac HiChIP

input data are represented. The gene list from step 1 of the SNP Prioritization Pipeline is then

used as input for Biomedical Data Commons queries. In addition, the trios generated in step 1

are used as input into step 2 of the SNP Prioritization Pipeline along with cell type-specific

gene expression data. The output is visualizations of gene regulatory networks and a ranked
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list of genetic variants and genes. Input and output data at each step of the pipeline is color

coded by type of data: genetic variants (green), regulatory elements (blue), genes (gold), 3D

connectome (black), gene expression data (magenta), gene regulatory networks (turquoise),

and ranked list of genetic variants and genes (orange).

(TIF)

S4 Fig. SNP Pipeline output with cohesin HiChIP input is a subset of the H3K27ac HiChIP

output. A: Venn diagram of trios generated with cohesin HiChIP (green) vs H3K27ac HiChIP

(blue) with trios common to both datasets in green. B: Gene Ontology (GO) terms for genetic

variants SNP pipeline identified gene targets with cohesin HiChIP as input. C: Kegg pathways

for genetic variants SNP pipeline identified gene targets with cohesin HiChIP as input. D: Scat-

ter plot of the top binding motifs of pipeline identified regulatory elements with cohesin

HiChIP as input. E: Donut plot of the number of pipeline genetic variants that are significant

in a Type 1 Diabetes GWAS study (green) or are in linkage disequilibrium with a significant

genetic variant (silver) with cohesin HiChIP (left panel) or H3K27ac HiChIP (right panel) as

input.

(TIF)

S5 Fig. SNP Prioritization Pipeline produces similar results to the Sharp et al. GRS2 study

(2019). In addition to identical calls as the Sharp et al. GRS2 study, the SNP pipeline identifies

variants (green) nearby GRS2 variants (blue) that have the same gene targets (2019). These var-

iants in close physical proximity include those in IL27, IL2RA, UBASH3A<RASGRP1,

CLEC16A, and RNLS loci. The difference between these two studies is that this connectome

study (blue) restricts SNPs to regulatory elements and uses cell-type specific biological data as

input whereas the GRS2 study (green) performs a statistical analysis of UK BioBank records to

identify variants.

(TIF)

S6 Fig. Four types of genetic variant–gene regulatory network component structures. A:

Heatmap of the closeness, degree, and betweenness centrality of the nodes in the genetic vari-

ant–gene regulatory networks. B: PCA of the matrix representation of the components of the

genetic variant–gene regulatory network. K-means clustering (k = 4) was performed on the

PCA and the boundaries are represented by the colors. Each black dot is a component and the

white X’s mark the centroid of a cluster. C: Components of the genetic variant (blue)–gene

(gold) network that represent each cluster of components.

(TIF)

S7 Fig. The HLA locus is the top candidate region identified by the SNP prioritization

pipeline. A: Zoomed in bipartite graph of the 1 Mbp HLA component containing top candi-

dates HLA-DQB1, HLA-DRB1, and rs14004 with gene and genetic variants as nodes and chro-

matin connections as edges. Node color indicates closeness centrality score with gold being

most connected and purple being least connected nodes in the graph. Gene nodes are labeled,

and genetic variant nodes are unlabeled. B: Zoomed in bipartite graph of the 1 Mbp HLA com-

ponent HLA component containing top candidates HLA-DQB1, HLA-DRB1, and rs14004

with gene and regulatory elements as nodes and chromatin connects as edges. Gene nodes are

labeled and white. Regulatory element nodes are colored by type and labeled by the number of

unique genetic variants contained in the regulatory element. The width of edges indicates con-

nectivity strength as indicated by the number of unique HiChIP reads.

(TIF)
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S8 Fig. IKZF3 is a top pipeline identified candidate for T1D-associated genes. A: Visualiza-

tion of the IKZF3 component of interconnected pipeline genetic variant–regulatory element–

gene trios (chr17: 39,635,000–40,835,000). B: Bipartite graph of the IKZF3 component with

gene and genetic variants as nodes and chromatin connections as edges. Node color indicates

closeness centrality score with gold being most connected and purple being least connected

nodes in the graph. Gene nodes are labeled, and genetic variant nodes are unlabeled. C: Bipar-

tite graph of IKZF3 component with gene and regulatory elements as nodes and chromatin

connects as edges. Gene nodes are labeled and white. Regulatory element nodes are colored by

type and labeled by the number of unique genetic variants contained in the regulatory element.

The width of edges indicates connectivity strength as indicated by the number of unique

HiChIP reads. D: Circos plot of the chromatin connectivity at 5 kb resolution in the IKZF3

locus. The nodes are sections of the genome and the edges are the chromatin connectivity with

the width indicating connectivity strength. An asterisk labels the starting (chr17: 39,635,000;

green) and terminating (chr17: 40,835,000; gold) nodes of the plot. GM12878 (left panel) and

Treg (right panel) pipeline trio contacts are visualized.

(TIF)

S9 Fig. IKZF1 identified as a candidate for T1D-associated genes by the pipeline. A: Visual-

ization of the IKZF1 component of interconnected pipeline genetic variant–regulatory ele-

ment–gene trios (chr7: 50,300,000–50,545,000). B: Bipartite graph of the IKZF1 component

with gene and genetic variants as nodes and chromatin connections as edges. Node color indi-

cates closeness centrality score with gold being most connected and purple being least con-

nected nodes in the graph. Gene nodes are labeled, and genetic variant nodes are unlabeled. C:

Bipartite graph of IKZF1 component with gene and regulatory elements as nodes and chroma-

tin connects as edges. Gene nodes are labeled and white. Regulatory element nodes are colored

by type and labeled by the number of unique genetic variants contained in the regulatory ele-

ment. The width of edges indicates connectivity strength as indicated by the number of unique

HiChIP reads. D: Circos plot of the chromatin connectivity at 5 kb resolution in the IKZF1

locus. The nodes are sections of the genome and the edges are the chromatin connectivity with

the width indicating connectivity strength. An asterisk labels the starting (chr7: 50,300,000;

green) and terminating (chr7: 50,545,000; gold) nodes of the plot. GM12878 (left panel) and

Treg (right panel) pipeline trio contacts are visualized.

(TIF)

S1 Table. Main Biomedical Data Commons entity types. The number of entities of each type

and the databases contributing their underlying data. The number of entities in parentheses

represent the number of additional nodes stored in a biomedical specific knowledge graph, but

not the main knowledge graph. The databases contributing to each entity type are also

reported.

(XLSX)

S2 Table. Main Biomedical Data Commons edges. Edges are defined as links between two

nodes in the graph and the number edge present in the current graph is stated. Here edges are

grouped into categories and the number of edges of each category are reported. The number

of edges in parentheses represent the number of additional edges stored in a biomedical spe-

cific knowledge graph, but not the main knowledge graph. The number of types of nodes

whose edges compose each edge category are also reported.

(XLSX)

S3 Table. Ranked list of genetic variant and genes ordered by closeness centrality score cal-

culated from their gene regulatory networks for GM12878 cells with H3K27ac HiChIP
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connectome data.

(XLSX)

S4 Table. Genetic variants in close proximity to HLA-DQB1 or HLA-DRB1. Genetic vari-

ants and their distance to the TSS of HLA-DQB1 and HLA-DRB1 if they are distally connected

to either gene as identified by the SNP Pipeline. Their minor allele frequency according to the

1000 Genome Project and the GM12878 regulatory elements in which they reside.

(XLSX)

S5 Table. ENCODE ChIP-seq datasets GEO accession numbers. List of the ENCODE ChIP-

seq datasets and their GEO accession numbers used in this study.

(XLSX)

S6 Table. The entities along with their subclass and description that are uniquely defined

by Biomedical Data Commons schema to represent the data in the knowledge graph. This

list was generated 4/9/21. For an up-to-date representation of the schema query the Biomedical

Data Commons graph or browser or check the github repository.

(XLSX)

S7 Table. The properties along with their domain, range, and description that are uniquely

defined by Biomedical Data Commons schema to represent the data in the knowledge

graph. This list was generated 4/9/21. For an up-to-date representation of the schema query

the Biomedical Data Commons graph or browser or check the github repository.

(XLSX)

S8 Table. The enumeration subclass along with their description and their subclass types

of plus associated descriptions that are uniquely defined by Biomedical Data Commons

schema to represent the data in the knowledge graph. This list was generated 4/9/21. For an

up-to-date representation of the schema query the Biomedical Data Commons graph or

browser or check the github repository.

(XLSX)
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