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Abstract: Monoclonal antibodies (mAbs) constitute a rapidly growing biopharmaceutical sector.
However, their growth is impeded by high failure rates originating from failed clinical trials and
developability issues in process development. There is, therefore, a growing need for better in silico
tools to aid in risk assessment of mAb candidates to promote early-stage screening of potentially
problematic mAb candidates. In this study, a quantitative structure–activity relationship (QSAR)
modelling workflow was designed for the prediction of hydrophobic interaction chromatography
(HIC) retention times of mAbs. Three novel descriptor sets derived from primary sequence,
homology modelling, and atomistic molecular dynamics (MD) simulations were developed and
assessed to determine the necessary level of structural resolution needed to accurately capture the
relationship between mAb structures and HIC retention times. The results showed that descriptors
derived from 3D structures obtained after MD simulations were the most suitable for HIC retention time
prediction with a R2 = 0.63 in an external test set. It was found that when using homology modelling,
the resulting 3D structures became biased towards the used structural template. Performing an MD
simulation therefore proved to be a necessary post-processing step for the mAb structures in order
to relax the structures and allow them to attain a more natural conformation. Based on the results,
the proposed workflow in this paper could therefore potentially contribute to aid in risk assessment
of mAb candidates in early development.

Keywords: monoclonal antibodies; quantitative structure–activity relationship; hydrophobic interaction
chromatography; process development; manufacturability; protein dynamics analysis

1. Introduction

Monoclonal antibodies (mAbs) have gained increasing popularity over the last three decades in
terms of both sales and research investments due to their high specificity and clinical safety. Since the
launch of the first therapeutic antibody in 1986, 79 antibodies have been approved by the European
Medicine Agency (EMA) and 89 antibodies by the US Food and Drug Administration (FDA) [1–3].
In addition, over 550 antibody candidates are currently being reviewed in early clinical trials (Stage I
and Stage II) as well as 79 candidates in late-stage development which makes the antibody therapeutics
one of the fastest growing segments in the pharmaceutical market [4].

Due to their popularity, biopharmaceutical companies invest several billions of dollars in
development for every new mAb candidate, which was estimated to be $2.558 billion on average from
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start to finish in 2016 [5]. However, more than 90% of all new mAb candidates fail due to undesired
effects in clinical trials or being unfeasible for manufacturing. Selection criteria of lead candidates in
the preclinical phase are today mainly based on drug specificity, affinity, and potency towards a target
antigen, whereas properties related to clinical safety and product quality are generally not thoroughly
explored. Consequently, this leads to the selection of candidates with suboptimal properties that might
not be feasible for treatment or manufacturing. As Zurdo et al. stated [6], the developability of a mAb
candidate can be divided into three subcategories which correspond to pharmacology, clinical safety,
and manufacturability, where the selection criteria today are mainly focused on the pharmacology
of the candidate. Considering the large investments in the pre-clinical phase alone, which were
estimated to $1.098 billion, a robust assessment of an antibodies developability is sorely needed to
further characterise antibody properties related to clinical safety and manufacturability in order to
decrease failure rates and attrition in biopharma [5,7].

During recent years, multiple high-throughput experimental assays have been designed in order
to increase the product knowledge and identify potential problems with the antibody candidates
in early development phases [8,9]. A few common experimental assays for characterisation of
biophysical properties are hydrophobic interaction chromatography (HIC) which correlates with
aggregation propensity [10], cross-interaction chromatography (CIC) which correlates with solubility
and poly-specificity [11,12], and affinity-capture self-interaction nanoparticle spectroscopy (AC-SINS)
which correlates with viscosity and solubility [13,14]. Though the amount of necessary material
needed for high-throughput screening is decreasing with current technologies, accurate developability
assessment requires the combination of several screening assays since no single assay appears to be
fully predictive. This leads to numerous experiments to be performed which can become cumbersome
and time-consuming if many potential candidates need to be assessed in the pre-clinical phase.

It has been suggested that developability assessment should be performed using in silico tools first
to assess potential problems with the structure, followed by extended experimental characterisation on
promising candidates [15]. Many in silico tools for structural assessment of the mAbs candidates have
been developed for evaluation of post translation modifications (PTMs) and degradation pathways
based on the candidate sequence that can potentially impact the stability or immunogenicity of the mAb
candidate. Examples of such tools include prediction of deamidation or isomerisation of asparagine or
glutamine [16], and oxidation of tryptophan and methionine [17], to mention a few. More recently,
implementation of quantitative structure–activity relationship (QSAR) for more complex prediction of
biophysical properties has become more common. QSAR models are powerful in silico tools which
link a measured activity or behaviour (response) to structural properties (descriptors) of a protein,
using multivariate data analysis or machine learning approaches [18,19]. The QSAR framework has
been extensively applied to develop predictive models to numerous chromatographic applications at
different developmental stages such as HIC [20–23], CIC [24], ion exchange chromatography [25,26],
multimodal chromatography [27], and protein A chromatography [28]. The flexibility and the wide
applicability of in silico tools for the assessment of mAb developability could therefore be used
to highlight potential problems with individual candidates in early development and aid in better
selection of lead candidates prior to entering process development [6,29]. This is especially valuable in
pre-clinical and early development where little information about the candidate is available.

In this research, a QSAR model was developed for the prediction of HIC retention times (RT),
using 81 IgG1-Kappa mAbs from a dataset published by Jain et al. [8]. HIC was explored due to its
importance in the assessment of mAb aggregation, solubility, and viscosity, where mAbs with higher
HIC RT have been shown to have a negative impact on both clinical safety and manufacturing due to
non-specific interactions [10]. Furthermore, an in-depth analysis of the required level of structural
resolution for accurate prediction of HIC RT was performed. For this purpose, three unique descriptor
sets were developed from three different input sources with increasing structural resolution and fidelity
according to:

1. The primary sequence (sequence).
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2. Homology model generated from the primary sequence.
3. 3D structure obtained after a 50 ns molecular dynamics (MD) simulation using a homology model

as a starting point.

The three descriptor sets were named Seq2D, Hom3D, and MD3D, corresponding to the structural
representations as listed above. Primary sequence derived descriptors were explored as they allow
for fast predictive model development due to ease of implementation where a myriad of different
descriptors exists to describe different structural properties. However, due to column binding in
HIC being highly dependent on hydrophobic patches on the protein surface [30], it was not possible
for descriptors generated from the primary sequence to accurately capture the relationship between
structures and HIC RT due to being too simplistic. Meaning that surface properties could not be
readily represented when using sequence derived descriptors. Using 3D structures, on the contrary,
allowed for more accurate assessment of surface properties and protein stability. Homology modelling
and MD simulation were therefore used to generate 3D structures of the antibodies from which
structural descriptors were then calculated and linked to the HIC RT. MD simulation was included to
alleviate any structural bias that might be present in the generated homology models.

In each structural representation, descriptors were generated from smaller structural components
(substructures) of the mAbs corresponding to the complementarity-determining region (CDR) loops and
framework regions (FRs) of the variable domains (VH and VL), as well as the individual strands of the
constant domains in the heavy chain (CH1) and light chain (CL). Substructures were identified using the
international ImMunoGeneTics information system (IMGT) numbering scheme [31,32]. In all structural
representations, descriptors were generated using ProtDCal and EMBOSS Pepstat software which are
freely available with a friendly graphical user interface and the capacity to generate a high number of
molecular descriptors for proteins from FASTA (primary sequence) or PDB (3D structure) files [33,34].
For the primary sequence representation, additional descriptors were generated using amino acid
scales. The three resulting descriptor sets were designed to encompass physiochemical, hydrophobic,
hydrophilic, topological, and thermodynamic properties of the mAb structures. The relationship
between descriptors and HIC RT were captured with ε-SVM for regression and evaluated using the
root mean square error (RMSE) and coefficient of determination the (R2). Descriptor selection was
performed on each descriptor set using genetic algorithm with partial least square as a base learner
(GA-PLS). Furthermore, the computer aided design of experiment (CADEX) algorithm was used to
create an external test set for each descriptor set on which each model’s ability to generalise towards
future samples were evaluated.

2. Results

2.1. HIC RT Prediction from Primary Sequences

When generating the descriptors from the primary amino acid sequences, only the VH and VL

domains were considered due to the sequence of the constant domains, CH1 and CL being identical
between samples. This was an intended modification by Jain et al. who used allele sequences
IGHG1*01 and IGLK1*01 for the heavy chain and light chain respectively when expressing all
IgG1-Kappa antibodies in their study [8]. Thus, no sequence variability is present in the CH1 and CL

domains and resulting descriptors would be static in the Seq2D descriptor set. A predictive model was
developed on the resulting Seq2D descriptor set following the outlined model development presented
in the Materials and Methods section. For a list of descriptors that were calculated for each CDR and
FR substructure, please refer to Tables S2 and S3 in the supporting information.

The resulting predictive model after descriptor selection with GA-PLS showed signs of high model
bias (underfitting) where the R2 values for the internal cross-validation (model training) were fairly low
with a value of 0.56 [35]. This indicated that the model had some difficulty in capturing the correlation
between descriptors and the HIC RT responses. In addition, poor generalisation performance in the test
set was observed with R2 = 0.25. The model predictions using the Seq2D descriptor set are illustrated
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in Figure 1A where calibration samples (used for model training) and the external test set samples
(used for model validation) are depicted in grey and red, respectively.

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW  4 of 22 

 

descriptor set are illustrated in Figure 1A where calibration samples (used for model training) and 
the external test set samples (used for model validation) are depicted in grey and red, respectively. 

 

Figure 1. Performance diagnostics of Seq2D based model. (A) Measured versus predicted values of 
calibration (grey) and test set (red) samples. (B) Model learning curve showing the change of root 
mean square error (RMSE) for calibration (grey circle), cross-validation (blue triangle) and test set 
(red cross). Optimised ϵ-SVM model parameters from the original calibration model were used. 

The high model bias was further assessed by examining the model learning curve (see Figure 
1B). The model learning curve (or experience curve) allows for the model performance to be assessed 
by incrementally increasing the number of samples (experience) and then evaluating the change in 
RMSE of the calibration, cross-validation, and test set. Fewer samples will yield a lower RMSE in the 
calibration due to ease of accomplishing a better fit between used samples. However, this will, in 
turn, result in higher RMSE values in cross-validation due to overfitting and the model will not be 
able to perform accurate prediction except for the fitted calibration samples. As more samples get 
added, the RMSE of the calibration will gradually increase due to higher difficulty in fitting a linear 
line between the increasing number of samples. On the contrary, the RMSE of the cross-validation 
will decrease with an increased number of samples where the model starts to capture the underlying 
correlation between descriptors and the HIC RT response. As can be observed, the RMSE of the 
calibration and the cross-validation approaches plateau values of approximately 0.4 and 0.7, 
respectively, with an increasing number of samples. Therefore, further addition of samples to 
increase structural variability in the dataset is unlikely to improve model performance in any 
significant way [36]. Thus, critical information in the selected descriptors that are correlated to the 
HIC RT is either missing or confounded by uninformative information. The latter was explored by 
examining the impact of the mAb species on both the HIC RT and descriptors. 

2.2. Impact of Species on Primary Sequence Descriptors 

A statistical test was performed to evaluate if any difference between species (chimeric, human, 
and humanised) could be observed in the HIC RT. The non-parametric Kruskal–Wallis test was used 
instead of one-way ANOVA due to the requirement of normality in the latter method not being 
fulfilled. Normality was assessed using the Anderson–Darling test where the null hypothesis was 
rejected in the human and humanised sample groups with p = 0.0007 < 0.05 and p = 0.005 < 0.05, 
respectively. The Kruskal–Wallis test showed that no significant difference was present in HIC RT 
between species (p = 0.39 > 0.05), thus indicating that the species of the antibody does not impact the 
HIC RT. 

However, a strong correlation to the species was observed in the generated descriptors when 
performing classification. CADEX with a stratification scheme was used to retain an 80/20 ratio of the 
chimeric, humanized, and human samples in the calibration set and test set, respectively [37]. The 
classification was then performed with C-SVM from the LibSVM toolbox and performance was 

Figure 1. Performance diagnostics of Seq2D based model. (A) Measured versus predicted values of
calibration (grey) and test set (red) samples. (B) Model learning curve showing the change of root mean
square error (RMSE) for calibration (grey circle), cross-validation (blue triangle) and test set (red cross).
Optimised ε-SVM model parameters from the original calibration model were used.

The high model bias was further assessed by examining the model learning curve (see Figure 1B).
The model learning curve (or experience curve) allows for the model performance to be assessed
by incrementally increasing the number of samples (experience) and then evaluating the change in
RMSE of the calibration, cross-validation, and test set. Fewer samples will yield a lower RMSE in
the calibration due to ease of accomplishing a better fit between used samples. However, this will,
in turn, result in higher RMSE values in cross-validation due to overfitting and the model will not
be able to perform accurate prediction except for the fitted calibration samples. As more samples get
added, the RMSE of the calibration will gradually increase due to higher difficulty in fitting a linear
line between the increasing number of samples. On the contrary, the RMSE of the cross-validation
will decrease with an increased number of samples where the model starts to capture the underlying
correlation between descriptors and the HIC RT response. As can be observed, the RMSE of the
calibration and the cross-validation approaches plateau values of approximately 0.4 and 0.7, respectively,
with an increasing number of samples. Therefore, further addition of samples to increase structural
variability in the dataset is unlikely to improve model performance in any significant way [36].
Thus, critical information in the selected descriptors that are correlated to the HIC RT is either missing
or confounded by uninformative information. The latter was explored by examining the impact of the
mAb species on both the HIC RT and descriptors.

2.2. Impact of Species on Primary Sequence Descriptors

A statistical test was performed to evaluate if any difference between species (chimeric, human,
and humanised) could be observed in the HIC RT. The non-parametric Kruskal–Wallis test was used
instead of one-way ANOVA due to the requirement of normality in the latter method not being fulfilled.
Normality was assessed using the Anderson–Darling test where the null hypothesis was rejected in
the human and humanised sample groups with p = 0.0007 < 0.05 and p = 0.005 < 0.05, respectively.
The Kruskal–Wallis test showed that no significant difference was present in HIC RT between species
(p = 0.39 > 0.05), thus indicating that the species of the antibody does not impact the HIC RT.

However, a strong correlation to the species was observed in the generated descriptors when
performing classification. CADEX with a stratification scheme was used to retain an 80/20 ratio of
the chimeric, humanized, and human samples in the calibration set and test set, respectively [37].
The classification was then performed with C-SVM from the LibSVM toolbox and performance
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was evaluated with Matthews correlation coefficient (MCC) as well as the class sensitivity and
specificity [38]. The MCC metric was used, as a discrete form of Pearson correlation coefficient, and can,
therefore, be evaluated in the same way [39,40]. Initial results showed a correlation of MCC = 0.42 in
the cross-validation and MCC = 0.71 in the test set, thus indicating a moderate and strong correlation
to the species, respectively. Many classification errors in the cross-validation were the result of wrongly
classifying the chimeric and human species as humanised with corresponding class sensitivities of
0.29 and 0.53, respectively, where a value of one indicates the correct classification of positive samples.
To investigate further, an additional 123 sequences were gathered from the IMGT mAb database in order
to increase the number of samples for each species, thus introducing more structural variability in the
dataset [41]. A new classification model was developed with the additional sequences which achieved
significantly higher discrimination performance of chimeric and human samples with sensitivities of
0.62 and 0.88, respectively, in the cross-validation. This, in turn, yielded a higher correlation between
descriptors and species with MCC = 0.73 in the cross-validation and MCC = 0.76 in the test set.
Classification performance for both models is presented in Table S1.

This strongly suggests that the descriptors, developed from the primary sequences,
contain information that is highly correlated to the mAb species. This is supported by research
that shows that systematic variation of the amino acid composition occurs between different mAb
species and is therefore well known [42]. Wold et al. stated that datasets containing systematic variation
uncorrelated to response can significantly reduce model performance due to being detrimental [43].
This stems from the fact that many of the Seq2D descriptors are calculated as a sum of tabulated residue
values for a specified region e.g., CDR loop or FRs. This means that each residue will impact the final
value of each descriptor equally. It is therefore unlikely that the descriptors will contain information
that is highly correlated to the HIC RT due to confoundment. This is due to that only a few residues
actually contributes in HIC column binding, whereas the majority of the antibody residues does not
interact with the hydrophobic ligands of the column [30].

2.3. HIC RT Prediction from 3D Homology Models

All-atom homology models were developed for the Fab regions of the 81 IgG1-Kappa samples
from the dataset published in Jain et al., using MODELLER. Two of the mAbs: muromonab and
teplizumab had to be excluded in this process due to modelling difficulties and poor quality of the
models. Therefore, only 79 of the 81 IgG1-Kappa mAbs were used for predictive model development.
Individual subsets of descriptors were then generated from the CDR loops and FRs of the variable
domains, VH and VL. In addition, descriptors were also generated for the constant domains, CH1 and
CL, where each constant domain was divided into smaller fragments that correspond to the seven
different strands (A-G) that make up the domain. For both the variable and constant domains, the IMGT
numbering scheme was used to identify the start and stop position of each substructure. For a list of
descriptors that were calculated for each substructure, refer to Table S4. The dataset was prepared and
split into calibration and test set as described in the material and methods section.

The selected descriptors with GA-PLS showed clear signs of overfitting where the calibration
samples were almost perfectly fitted with R2 = 0.99 in the calibration, whereas large errors were
observed between predicted and experimental measurements in the external test set with R2 = −0.08.
The negative value of the test set R2 indicates that the variation of the prediction error is greater than
that of the inherent standard deviation of the measured HIC RT of the test set. The model overfitting
can be observed in Figure 2A where calibration samples (grey) fall on the parity line while the test set
samples (red) have large errors in their prediction. The model learning curve (see Figure 2B) shows
that the error of the test set stabilised after having been trained with 10 or more samples and further
additions did not improve performance of the model on the test set. The error of the cross-validation,
on the contrary, decreases incrementally which is typical behaviour when predictive models suffer
from high model variance. This means that descriptors needed to explain individual sample variation
were selected, thus yielding a better model fit for the calibration samples but at the expense of poor
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performance in the external test set. This, therefore, further supports the observation that GA-PLS
struggled to select truly informative descriptors that were correlated to the HIC RT for all antibodies.
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Figure 2. Performance of Hom3D based model after genetic algorithm with partial least square
(GA-PLS) selection. (A) Measured versus predicted values of calibration (grey) and test set (red)
samples. (B) Model learning curve for Hom3D based model showing the change of RMSE for
calibration (grey circle), cross-validation (blue triangle) and test set (red cross). Optimised ε-SVM
model parameters from original calibration model were used.

Since all homology models were generated based on a single PDB template, it was believed that
the generated descriptors might have been biased. As the placement of residues in Cartesian space
is decided by pairwise sequence alignment of the template and an antibody sequence of interest,
the use of a single template might therefore not accurately represent the 81 IgG1-Kappa antibodies true
conformations. Relaxation of the homology models through MD simulation was therefore explored to
investigate the impact on the surface descriptors.

2.4. Molecular Dynamics Simulation for Protein Structure Relaxation

The generated homology models were used as starting structures in all-atom molecular dynamics
(MD) simulations with GROMACS where a single 50 ns production run was performed for each
structure. Structural stability of the MD simulations was assessed with the root mean square deviation
(RMSD) measured in Angstroms (Å) by comparing the resulting simulated structures at each time
frame of the simulation with the initial structure. As shown in Figure 3A, an instantaneous change in
the structural conformation occurred at the start of each simulation and reached stable RMSD values,
varying between 2–5 Å between mAbs, after roughly 5 ns for most antibodies. The structural change
was caused by slight shrinkage of the Fab region, thus resulting in more compact structures (results not
shown). The initial change can, therefore, be assumed as relaxation of the polypeptide backbone and
sidechains in the antibody structures. This indicates that the homology models represented slightly
unfavourable conformations. Three of the antibodies: dinutuximab, eldelumab, and gantenerumab
showed additional conformation change during the simulation (see Figure 3B) due to slight movement
of the domains in the Fab structure. For dinutuximab and gantenerumab, this change was more
gradual and was the result of the CH1 and CL domains twisting slightly. The conformational change
for eldelumab on the contrary, occurred more rapidly and was caused by the VH domain shifting
slightly upwards.

To investigate the relationship between protein dynamics and solvent accessibility, the functionally
relevant, essential motions were assessed for each of the trajectories in reference to their average
conformation via principal component analysis (PCA). This approach should indicate the absolute
magnitude of motions related to the largest principal component. When compared to the average SASA
per Fabs, two distinct groups emerged, as showed in Figure 4A. The main group, which is composed
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of 76 proteins, shows a clear correlation between SASA and the magnitude of motion for the biggest
principal motion for the simulation set. The second group consists of three members: dinutuximab,
eldelumab, and gantenerumab, which obtained high values for the principal motion magnitude.
These high values arise from the shift between the constant and variable domains, discussed in the
previous paragraph. Interestingly, the SASA values for the whole protein surface do not directly
correlate with the changes in the CDR-H3 region, which is a key motif for antigen binding and a critical
subregion for HIC retention. Dinutuximab, eldelumab, and gantenerumab (represented as red dots in
Figure 4B) still show stable behaviour for the CDR-H3 SASA in comparison to the rest of the dataset.
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Figure 4. Essential molecular motions of the mAbs and their respective SASA. (A) Magnitude of the
principal motion in function of the protein superficial SASA. (B) CDR-H3 SASA in function of the
whole protein SASA. The values for three outliers: dinutuximab, eldelumab, and gantenerumab are
depicted in red.

Given the fact that from the three outliers, only gantenerumab has its crystal structure solved (PDB:
5CSZ), dynamics for both modelled gantenerumab and its crystal structure were compared. As shown
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in Figure 5A, the RMSD curve of the modelled gantenerumab is much higher than the one obtained
from the simulation of the crystal structure due to the conformational change mentioned previously.
In addition, the modelled structure has a higher fluctuation for most of the residue in comparison to the
crystal structure (black and red curves in Figure 5B, respectively). The higher flexibility can be explained
given the difference between starting structures: the structural alignment between the modelled and
the crystal gantenerumab have a backbone RMSD of 8.8 Å between all 230 carbon-α pairs and 1.02 Å
for 107 pruned carbon-α atoms (calculated via UCSF Chimera Matchmaker). When the average
conformation obtained from the model simulation is compared with the starting crystal structure,
the total RMSD decreases to 8 Å, with a RMSD of 1.04 Å for 138 pruned atoms. Both have similar
structural composition regarding CDRs and secondary structures; however, the crystal conformation
already starts in a configuration that both domains are closer, resulting in a more stable starting
conformation. This also indicates that the starting structures are highly sensitive towards the template
used, which may hide important structural and biophysical information. MD simulation should
overcome this since the obtained conformation after the simulation is closer to the experimental crystal
structure, given the lower total RMSD and a higher number of pruned atoms.
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The effect of the initial conformational change was explored further by investigating the change
in cumulative solvent accessible surface area (SASA) of the residues in the CDR loops. This is due to
the fact that CDR loops contain the largest sequence variability in the mAb structure and are directly
involved in antigen binding [44]. Therefore, any change in the SASA of the CDR loops would signify
a potential change in surface properties such as hydrophobicity and charge that has been shown to be
important for HIC binding [45]. It was observed that a small initial change in cumulative SASA of
the individual CDR loops occurred in many of the mAbs which then stabilised throughout the rest of
the simulations.

This change was quantified for each CDR loop by calculating the absolute difference of SASA
averages between simulation intervals 0–5 and 5–50 ns. These intervals were chosen due to the
stabilisation of RMSD occurring after roughly 5 ns for most mAbs in the dataset (see Figure 3A).
The resulting SASA differences between the first five nanoseconds and the remaining part of the
simulation are presented in Figure 6 for each CDR loop. The largest differences were observed in
the H3 loop where roughly a third of all mAbs showed a SASA change greater than 50 Å2. This is
understandable due to the H3 loop having the most diversity in both amino acid composition and
length out of all the CDR loops and is considered the largest contributor in antigen binding [46].
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The length of the H3 loop in the dataset varied between 6–20 residues, based CDR identification with
the IMGT numbering scheme. The remaining CDR loops had a less pronounced change in SASA where
more than half of the mAbs varied between 0–25 Å2 for the H1, H2, L1, and L3 loops. The SASA of the
L2 loop especially only changed slightly in the simulations and varied between 0–25 Å2 for all mAbs
but one. It was found that the sequence length of the L2 loop was three residues long in the 79 used
mAbs from the Jain et al. dataset. Meaning that the change in cumulative SASA for the L2 loop is
expected to be much less as compared to the CDR loops H1, H2, L1, and L3 which varied between
5–12 residues in length.
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In addition, a structural comparison was performed using the MatchMaker function in the UCSF
Chimera toolbox where the initial homology models were superimposed onto the used template,
this was done in order to investigate conformational similarities between the two. Results showed
that 44 out of the 79 generated homology structures reported a RMSD of less than two for all possible
pruned atoms, meaning that the distance between pairwise aligned backbone carbon-alpha atoms of
the template and homology models was less than 2 Å on average. Thirty other molecules had the
carbon-alpha RMSD between 3 to 4 Å (Figure S1). With all aspects considered, the generated homology
models represented slightly biased conformations due to the used template which in turn led to
a misrepresentation of residue SASA values in the CDR loops. The MD simulation, therefore, succeeds in
relaxing the structures and the individual mAb structures adopt natural conformations based on their
unique amino acid composition and sequence order.

2.5. HIC RT Prediction from MD Structures

Surface descriptors were generated from 3D structures taken at the last time frame (t = 50 ns)
of the MD simulation due to the CDR SASA values remaining stable after the initial conformational
change (data not shown). This includes dinutuximab, eldelumab, and gantenerumab which showed
additional conformational change during the MD simulation (see Figure 3B). Descriptor generation
was performed in the same way as was done for the Hom3D descriptor set.
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The observed conformational shift of dinutuximab, eldelumab, and gantenerumab showed in
Figure 4A was further explored in order to investigate how the specific motions of the constant and
variable domains translated over to the generated SASA descriptors. This to investigate if the three
mAbs could be viewed as potential outliers in the data set. To this end, hierarchical clustering analysis
(HCA) was used with the farthest neighbour algorithm where pairwise differences between samples
were quantified with the Euclidean distance in the descriptor space. In addition, PCA was used
to explore the contribution of the generated SASA descriptors to the sample separation between
mAbs. The clustering analysis showed that two distinct clusters formed between the majority of mAb
samples which are depicted in green and red in Figure S2. However, dinutuximab and eldelumab
could not be associated with either cluster due to the high distance between cluster samples and
dinutuximab and eldelumab which are depicted in grey in Figure S2. This is further quantified by
observing the PCA score plots where eldelumab and dinutuximab are separated by the second and third
principal components, shown in Figure S3A,B, respectively. For eldelumab, descriptor contribution to
the observed separation originated from the constant domains, CH1 and CL, by observing the PCA
loadings (data not shown) whereas, for dinutuximab, descriptor contribution originated from both the
framework regions of the variable domains as well as the constant domains. Based on this information,
four individual predictive models were generated with ε-SVM for regression to quantify the effect of
dinutuximab and eldelumab and/or the constant domain descriptors on the predictive performance
according to:

1. Dinutuximab and eldelumab kept in the calibration set and constant domain descriptors kept in
the descriptor set.

2. Dinutuximab and eldelumab removed from the calibration set and constant domain descriptors
kept in the descriptor set.

3. Dinutuximab and eldelumab kept in the calibration set and constant domain descriptors removed
from the descriptor set.

4. Dinutuximab and eldelumab removed from the calibration set and constant domain descriptors
removed from the descriptor set.

Model (1) showed relatively high R2 values in both cross-validation and a test set of 0.75 and 0.63,
respectively, thus showing a reasonable ability to capture the correlation between structure and HIC
RT as well as generalising towards future samples. In model (2), the cross-validation performance
achieved an R2 of 0.80 but the performance of the test set significantly dropped to R2 = 0.06, thus losing
the ability to generalise towards future samples. This was caused by the removal of eldelumab, which is
one of the few mAbs in the data set with a high HIC RT. It is therefore believed that eldelumab acts
as a pivot point in the data set which is needed in order to link properties of the mAbs structure to
higher HIC RT behaviour. In model (3), both cross-validation and test set performance dropped when
removing the constant domain descriptors with resulting R2 values of 0.59 and −0.02, respectively.
This gives a strong indication of the contribution of the constant domains in column binding in HIC
which is corroborated by previously published research [30]. Model (4) showed similar results to
model (3) with R2 values of 0.57 and −0.02 in the cross-validation and test set, respectively. Based on
these findings, model (1) was selected as the final model, with dinutuximab and eldelumab retained in
the calibration set as well as the constant domain descriptors retained in the descriptor set.

The model fit is illustrated in Figure 7A in which the calibration samples (grey) and test set samples
(red) are depicted. As can be observed, slight overfitting of the calibration samples has occurred whose
predictions lie on or close to the parity line, whereas larger errors occur in the prediction of the test
set samples. However, the test set showed a clear improvement in performance with R2 = 0.63 over
the predictive model based on homology structures with R2 = −0.08. Based on the errors between
predicted and measured HIC RT in the test set, predicted values fall within ±1.32 min of their measured
HIC RT based on a 95% student t-test confidence interval.
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Figure 7. Performance of MD3D based model after GA-PLS selection. (A) Measured versus predicted
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(red cross). Optimized ε-SVM model parameters from original calibration model were used.

A diagnostic examination using the model learning curve showed the presence of high model
variance as indicated by the incremental decrease of cross-validation error without reaching a stable
RMSE value (see Figure 7B). However, the biggest difference between the Hom3D and the MD3D
based models is the incremental decrease of the test set RMSE of the latter. This is a strong indication
that the error of both the cross-validation and test set can be further improved, which is covered in
detail in the discussion.

A Y-Randomisation (or Y-Scrambling) test was used as a final validation step to evaluate the
selection of the descriptors [47]. An ε-SVM model was trained on a randomised (scrambled) HIC
response vector while the sample order in the MD3D descriptor set was kept unchanged. This was
repeated 50 times and the average of R2 and RMSE for the cross-validation was calculated. A resulting
R2 value of −2.38 and a RMSE value of 1.72 was obtained. This indicates that no chance correlation
occurs in the model and that the selected descriptors are important in describing the relationship
between mAb structures and HIC RT responses based on the current dataset.

2.6. Structural Descriptors Important for Prediction of HIC RT

A general trend observed in the GA-PLS selected descriptors from the MD3D set was that about
45% of all descriptor belonged to the CDR regions, 31% to the framework regions and the remaining
24% belonged to the strands in both constant domains, CH1 and CL. This indicates the importance
of the structural information contained in the variable domains. This is sensible as the CDRs are the
source of the greatest sequence variability in the entire mAb structure which in turn affects surface and
thermodynamic properties of both the CDRs as well as framework regions in the variable domains [31].
The effect is not as pronounced in the constant domains due to having identical primary sequence.
Instead, the variability present in the MD3D descriptors of the constant domains is likely to be related
to conformational differences originating from the molecular dynamics simulations. However, it is
important to note that the descriptors from the constant domains should not be disregarded due to
dynamic interactions between the constant and variable domains which in turn will affect the generated
descriptors [48].

A closer inspection revealed that selected descriptors describing the polar surface areas
(SPpolar and SASApolar) and non-polar surface areas (SPnonpolar and SASAnonpolar) belonged almost
exclusively to the CDR regions. Representation of the volume (VOLTAE) and the electrostatic
potential (SIEP) generated as part of the TAE descriptors were also commonly found belonging to
the CDRs [49]. This is consistent with published research where the CDRs have a pivotal role in
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binding to the HIC column resin with stronger binding usually occurring when the CDRs are long and
hydrophobic [45].

In addition, the stability of the mAb structures played a central role in the prediction of the HIC
RT represented mostly by energy-based descriptors. The free energy of conformational entropy, Gc(F),
which describes the stability of the protein with regards to the hydrophobic interactions in the protein
core was selected in the CDRs, framework regions, and the constant domains. This is supported by
published literature where protein stability has been reported to play a pivotal role in HIC binding [50].
Other important energy descriptors of note were the number of estimated water molecules surrounding
the surface, W(F), and the entropy energy from the first shell of water, ∆Gw, representing the energy
contribution from interactions between polar residues and surrounding water molecules. Both these
parameters are representative of the solvation/de-solvation energetics of the CDR region, which are
characteristics that play a role in environment-CDR interaction energy. Therefore, environment changes,
such as excipient composition should affect HIC RT. This is corroborated by salt concentration studies
which show that more stable mAbs require a higher concentration of salt to disrupt electrostatic forces
and solvation layers on the surface in order to expose hydrophobic patches and promote column
binding [30,51].

3. Discussion

Early-stage screening of mAbs with in silico tools during the pre-clinical phase, based on the
potential to cause developability issues, such as aggregation propensity and solubility problems that
arise from nonspecific interactions, would aid in selecting more promising candidates and thereby
reduce manufacturing failures and attrition rates. QSAR models can serve as important in silico tools
that allow for the prediction of mAb behaviour concerning nonspecific interaction. In this work,
a comparison between three descriptors sets (Seq2D, Hom3D, and MD3D) was performed and their
applicability evaluated towards the prediction of antibody HIC RT.

3.1. Insights from Using Primary Sequences

Based on the results, the primary sequence descriptors used in this research were not suitable for
HIC RT prediction due to being unlikely to contain information correlated to the HIC RT response due
to confoundment. Although this might explain part of the problem when using descriptors generated
from the primary sequence, another important factor to consider is the non-linear relationships
between descriptors and the HIC RT response. Hebditch et al. found that the aromatic content and
charge of the CDR loops have a non-linear relationship with the HIC RT and that a linear model,
therefore, would be unable to capture the underlying correlation [23]. Non-linear methods such
as ε-SVM with a non-linear kernel or ensemble modelling such as random forest could therefore
potentially help in improving model performance. However, the biggest drawback of using non-linear
and ensemble methods is that the interpretability of individual descriptors contribution to HIC RT
becomes much more difficult to assess [52]. Therefore, it is recommended to use linear models,
when applicable, as it allows for much greater interpretability where the effect of descriptors on
the HIC RT can be directly assessed. Another factor to consider is that surface properties such as
charge and hydrophobicity of the antibodies are not directly represented when using the primary
sequence as source for descriptors. Therefore, the selection of descriptors to use as well as the mode
of structural representation e.g., full protein, CDR loops etc., becomes challenging when trying to
minimise detrimental effects on model performance caused by uncorrelated (or irrelevant) information.

3.2. Insights from Using Homology Models

Many of the drawbacks of the primary sequence descriptors are resolved when using 3D models
where surface properties and protein stability can be considered more accurately. However, it was
shown from the results that many of the resulting homology models were greatly biased towards the
used template (PDB: 2FGW), and therefore deviated from their naturally relaxed conformations [53].
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This has also been observed in other structure determination software more specialised towards
antibodies where Almagro et al. and Teplyakov et al. assessed the predicted conformational
accuracy of several canonical structure determination methods [54,55]. The authors showed that the
resulting homology models still contained conformational errors when compared to their original
crystal structures, which was especially prevalent in the CDR-H3 loop. Therefore, considering that
MODELLER was used with a single reference template in this research, the resulting homology models
were likely to contain large conformational errors. This in turn would lead to misrepresentation of
surface and thermodynamic properties.

This was the main reason atomistic MD simulations were implemented as they allow structures to
relax and adopt more natural conformations. In this research, the last time frame was used due to the
certainty that most structures had reached stable conformations. However, conformational sensitivity
of SASA descriptors is still a concern as it varies slightly from frame to frame due to movement
in residue side chains and the protein backbone. Chennamsetty et al. stated that by calculating
SASA of residues as simulation averages will represent more naturally occurring SASA values [56].
Future work would therefore be to investigate if simulation averaged SASA values would improve
model performance as the protein dynamics are considered in such an approach which otherwise is
static at individual timeframes. The second reason for using MD is that additional modifications to the
simulation environment can be made. This would include changes made to temperature, pressure,
salinity, and addition of co-solvents that can greatly impact the quality and stability of the mAb
structures. Osmolality and co-solvents especially are considered important factors that affect many of
the so-called critical quality attributes (CQAs) of mAbs in QbD [57]. Each simulation can therefore
be adapted to mimic their corresponding experimental setup in order to more accurately investigate
different environmental factors effect on the protein structure [58]. However, the biggest drawback
with MD is that each simulation is computationally expensive and therefore takes a long time to run.

3.3. Considerations and Limitations of the MD3D Based Model

The model based on the MD3D descriptor set achieved higher generalisation ability towards future
samples with a R2 = 0.63 when compared to similar research performed by Robinson et al. with R2 = 0.44,
Hebditch and Warwicker with R2 = 0.39, as well as Jetha et al. with R2 = 0.47 [21,23,27]. This comparison,
however, needs to be considered with caution due to differences in samples, descriptors and modelling
methods used in respective research. Nonetheless, most exciting is the fact that similar descriptors were
found to be important to HIC retention in all instances, thus giving credibility to selected descriptors.

As previously mentioned, further improvement of the MD3D-based model is theoretically possible
due to the decreasing RMSE in both the cross-validation and external test set observed in the model
learning curve (see Figure 7B). One possibility would be to increase model complexity by using
non-linear methods in case that non-linear interactions between descriptors are not captured by
a linear model. However, as stated previously, this would decrease the model interpretability which
takes precedence from a process development point of view [52]. Another solution recommended
by Andrew Ng, would be to add additional samples for model training when available. Due to the
decrease in RMSE in the learning curve, additional samples could hypothetically aid in decreasing
the RMSE further by allowing for more structural variability to be introduced and considered [36].
In addition, the current dataset suffers from a skewed HIC RT distribution, where most samples have
a low measured retention time, whereas only a few have a higher retention time. This is linked to the
selection of mAbs used in the study performed by Jain et al., where the authors analysed mAbs that
had either been approved or were in clinical Phases II and III at the time of publishing. This effectively
reduced the number of mAbs with a higher HIC RT, which are more commonly encountered in the
pre-clinical studies and in clinical Phase I. Thus, end-point predictions of mAbs with higher HIC
RT are likely to have higher prediction uncertainty due to lack of structural variability that can be
linked to such samples. To efficiently circumvent this problem, the dataset should be enriched with
samples with high measured HIC RT, preferably those from the pre-clinical phase and clinical Phase



Int. J. Mol. Sci. 2020, 21, 8037 14 of 21

I. This would increase both the structural diversity and the retention time range of the dataset. It is
crucial to note that when adding new samples to the dataset, the previously selected descriptors from
GA-PLS are not likely to be representative of the new structures. In fact, new samples are very likely
to fall outside the applicability domain defined by the calibration samples, meaning that the values
of their structural descriptors would lie outside of the defined descriptor ranges of the calibration
samples [59]. Therefore, reselection of calibration samples to account for added structural variability
needs to be performed to increase the applicability domain of the model. This would also necessitate
reselection of descriptors with GA-PLS in order to re-evaluate descriptors importance and contribution
towards the HIC RT response.

Alternatively, a simplification can be made by converting the model to a classification model
where a threshold for the HIC RT is defined to separate well-behaving mAbs from problematics ones.
This would allow for the HIC RT to be linked to more general structural motifs instead of relaying on
smaller structural differences that would impact the HIC RT. Jain et al. defined a lower limit threshold
to be 11.1 min for the HIC RT, which results in a classification MMC value of 0.89 and 0.66 for the
calibration and the test set, respectively, when using the model developed in this research (data not
shown). Higher values for the test set are however desired with MCC values above 0.80 preferred due
to signifying very strong correlation between structural descriptors and HIC RT. This further elucidates
that more structural variability and samples with higher HIC RT are necessary to train the model in
order to increase model performance and accuracy. From the perspective of drug discovery and early
development, it is vital that that samples are correctly predicted/classified in order to be used in risk
assessment of mAb candidates due to the high inherent developing costs [5].

Regarding the intrinsic molecular dynamics captured by the MD simulations, it is important
to reiterate that 50 ns simulations are unlikely to sample significant conformational changes [60].
Nonetheless, it is a sufficient timescale for local stabilisation and improved sampling. As discussed
previously, most of the simulations reached a conformational plateau after 5 ns, but longer simulations
should, in principle, increase the variability and accuracy of the model. Nonetheless, within the
50 ns simulation window, we were able to see trajectories that had more significant changes,
i.e., gantenerumab. This supports the use of MD simulations on the generated homology models,
as MD can greatly improve the 3D models towards a more realistic representation, even in the
relatively short timescales used in this work. It is also recommended that several independent
simulations are performed for each mAb structure to mitigate the risk of overfitting in predictive model
development due to the formation of unique structural conformations. This could aid in generating
more representative descriptors due to increased sampling of many different occurring conformations.

Another important aspect to consider is the glycan structure of the antibodies which was not
considered in this research. In the data set from Jain et al, all antibodies were expressed as IgG1 using
the HEK293 cell line. Therefore, the distribution of glycan structures of each mAb can be assumed to
be the same. Meaning that variability in HIC RT will be dependent only on the sequence variability in
the variable domains. However, this assumption does not hold true when considering true therapeutic
mAbs where the glycan structure distribution will vary from drug to drug. Wada et al. stated that the
glycan composition of IgG1 mAbs greatly affected the protein stability and aggregation propensity [61].
Therefore, the proposed model in this research is likely to have a strong bias towards the glycan
distribution present in the Jain et al. dataset.

4. Materials and Methods

4.1. Data Collection

All sequence information, substructure, species, and phase of development for all mAbs were
collected from the international ImMunoGeneTics database (IMGT) and the Protein Data Bank
(PDB) [41,62]. Sequences were stored in FASTA format and 3D structures in PDB format.
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4.2. HIC Data

The HIC data for the 81 IgG1-Kappa mAbs were obtained from a previous study performed by
Jain et al. where 5 µg IgG samples (1 mg/mL) were spiked in with a mobile phase A solution (1.8 M
ammonium sulphate and 0.1 M sodium phosphate at pH 6.5) to achieve a final ammonium sulphate
concentration of about 1 M before analysis. A Sepax (Newark, DE, USA) Proteomix HIC butyl-NP5
column was used with a linear gradient of mobile phase A and mobile phase B solution (0.1 M sodium
phosphate, pH 6.5) over 20 min at a flow rate of 1 mL/min with UV absorbance monitoring at 280 nm.

4.3. Substructure Identification

The CDRs and FRs in the variable domains, VH and VL, were identified using the unique IMGT
numbering system, which relies on highly conserved amino acids such as Cys23, Trp41, Cys104,
and Phe/Trp118 [31]. Similarly, identification of individual strands (A-G) in the constant domains,
CH1 and CL, were also identified by using the IMGT numbering scheme [32]. Each sequence or 3D
structure was entered into MATLAB 2016 and, subsequently, user-written algorithms were applied
to identify the start and stop positions of the 28 smaller substructures corresponding to the CDRs,
FRs and strands based on the IMGT identification rules.

4.4. Primary Sequence Descriptors

Descriptors based on the primary sequence were generated using EMBOSS Pepstat and
ProtDCal [33,34]. See Table S2 for a list of used EMBOSS Pepstat and ProtDCal descriptors.
Smaller sequence fragments were generated corresponding to the individual CDRs and FRs of
the variable regions and used directly as input for EMBOSS Pepstat. The full mAb sequence was used
as input in ProtDCal due to the software calculating the individual contribution of each residue in
the sequence/structure. Descriptors for individual CDRs and FRs were then calculated as the sum of
corresponding residue properties from ProtDCal.

In addition, three amino acid scales: Z-scale, T-scale, and MS-WHIM were used to calculate
additional physicochemical, topological, and electrostatic sequence properties, respectively [63–65].
Each residue was converted into its corresponding amino acid scale values where each component was
summed according to the CDR and FR regions identified by IMGT numbering. A list of components
for the amino acid scales is presented in Table S3.

4.5. Fab Structure Determination

Fab fragments of the mAbs were prepared for simulation using the available sequences of the
variable domains VH and VL provided as supplementary information in the study of Jain et al.
The heavy chain was prepared by concatenating the IGHG1*01 (IgG1) sequence corresponding to the
CH1 domain to the provided VH domains. Similarly, the light chain was prepared by concatenating to
the IGLK1*01 (Kappa) sequence to the provided VL domains [66].

Homology models were generated using MODELLER (version 2.17) [67]. In this research,
PDB: 2FGW was used as a single template for structure determination [53]. This was done due
to the sequence identity between the 2FGW structure and the 81 mAbs was higher than 70% in all
instances. Pair-wise cysteines involved in disulphide bridges were restrained where the sulphur atoms
were placed at 2 Å from each other in order to properly connect the cysteine residues.

UCSF Chimera (Version 1.13) was used for structure comparison of generated homology models
and the template through superimposition with the MatchMaker function [68]. Sequence alignment
was performed with BLOSUM-62 per default and the spatial deviation between pairwise aligned alpha
carbons was reported in Angstrom (Å). The unpruned values were used in this research, meaning that
spatial deviation from non-aligned residues was included in the final values.
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4.6. MD Simulations

Atomistic simulations of generated Fab homology models were performed with GROMACS
(version 5.1.4) using the AMBER99SB-ILDN force field [69]. A cubic solvation box of 10 Å was
generated for each Fab structure and solvated using TIP3P water molecules. Next, sodium and
chloride ions were added to the system at a concentration of 0.1 M. The bonds were constrained
using the LINCS algorithm [70], setting a 2 fs time step. The electrostatic interactions were calculated
using the particle-mesh Ewald method [71], with a non-bonded cut-off set at 0.1 nm. All structures
were minimised using the steepest descent algorithm for 20,000 of 0.02 nm steps. The minimisation
was stopped when the maximum force fell below 1000 kJ/mol/nm using the Verlet cutoff scheme.
followed by an NVT equilibration of 20 ps with a time step of 2 fs and position restraints applied
to the backbone, a following NPT equilibration (20 ps, 2fs step) with backbone position restraints
applied. The temperature was set constant at 300 K by using an alternative Berendsen thermostat
(τ = 0.1 ps) [72]. The pressure was kept constant at 1 bar by using a Parrinelo-Rahman barostat
with isotropic coupling (τ = 2.0 ps) to a pressure bath [73]. A final production run was performed
for 50 ns using the high-performance computing (HPC) service ROCKET at Newcastle University.
Atom positions and trajectories of the system were recorded at intervals of 40 ps. All analyses were
made using Gromacs software suite. The PCAs were calculated per trajectory, using gmx covar and
gmx anaeig routines.

4.7. D Structure Descriptors

Like the primary sequence descriptors, the full 3D structure of the Fab region was used as input to
ProtDCal on which individual residue contributions were calculated for each descriptor. Descriptors for
each substructure i.e., CDR loops, FRs, and strands were then calculated by summing the residue
properties corresponding to each region. Used 3D descriptors in this research are listed in Table S4.

The solvent accessible surface area (SASA) for each residue in all Fab structures was calculated
using GROMACS, the last time frame at t = 50 ns was used for all structures. The relative surface area
(RSA) for each residue was then calculated according to Equation (1) for each residue:

RSAI =
SASAi

MaxASAi
(1)

The value MaxASAi is the theoretical SASA maximum for a residue i in a Gly-X-Gly conformation
which was acquired from research published by Tien et al. in 2013 [74]. The value RSAi will therefore
lie between zero and one, thus giving surface accessibility in percentages. Surface properties (SP)
corresponding to hydrophobic and polar patches for a defined region were calculated according to
Equations (2) and (3), respectively:

SPNonpolar =
∑

iεNPR
SASAi

MaxASAi
CKD

i (2)

SPPolar =
∑

iεPLR
SASAi

MaxASAi
CKD

i (3)

SPNonpolar is the surface descriptor describing the hydrophobicity, SPpolar is the surface descriptor
describing the surface polarity, and CKD

i is the Kyte-Doolittle value for residue i. The NPR group
corresponds to residues: Ala, Gly, Ile, Leu, Met, Phe, Pro, Trp, and Val, while the PLR group corresponds
to residues: Arg, Asn, Asp, Cys, Gln, Glu, His, Lys, Ser, Thr, and Tyr.

4.8. QSAR Model Development

Each descriptor set was first curated by removing static descriptors with a standard deviation
below 0.0001. Each descriptor set was divided into a calibration (training) and test set via the
Kennard–Stone algorithm, maintaining an 80% to 20% split of data [75]. The mAbs with the most
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structural dissimilarity measured as the largest Euclidean distance between samples in the descriptor
space is placed into the training set. This allows for high structural variability to be assessed during
model training as well as ensures that no sample in the test set falls outside of the descriptor applicability
domain defined by the calibration set [59,76].

Removal of highly collinear descriptors was then performed using the V-WSP algorithm on
the calibration set [77]. The descriptor reduction with V-WSP followed the outlined methodology
proposed by Kizhedath et al. [29]. Each descriptor set was further optimised through supervised
descriptor selection using the GA-PLS algorithm from the PLS Toolbox (Version 8.7) from Eigenvector
Research. Due to the chance of models becoming overfitted with a single run of GA, the descriptor
selection step was iterated 10 times which allowed for a more diverse population of potential descriptor
combinations to be generated. A final descriptor subset was then selected based on the number of
times they had been selected in the 10 GA-PLS runs that yielded the lowest cross-validation error,
thus mitigating the chance of overfitting by reducing the number of descriptors that increase the
fit of individual samples [78]. The GA-PLS parameters were set as follows: population size of 64,
maximum generations of 100, mutation rate of 0.005, window width of 1, convergence rate of 50%,
30% initial terms, and crossover set to 2 [79].

The HIC RT were modelled against each descriptor set using the ε-SVM algorithm from the
LibSVM toolbox with a linear kernel [38]. A grid search approach was used to find the optimal model
parameters C and ε [80]. The grid points used for C were [10−5, 10−4, 10−3, 10−2, 10−1, 100, 101, 102,
103, 104], whereas the grid points used for ε were [10−3, 10−2.5, 10−2, 10−1.5, 10−1, 10−0.5, 100, 100.5,
101]. This resulted in 90 different parameter permutations that were evaluated in the cross validation.
Model training of both the GA-PLS and ε-SVM algorithms was performed with repeated random
k-fold cross-validation with five splits and 20 iterations [81].

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/21/
8037/s1.
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MD3D Molecular Dynamics 3D Descriptors
PDB Protein Data Bank
QSAR Quantitative Structure-Activity Relationship
RMSD Root Mean Square Deviation
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RMSF Root Mean Square Fluctuation
SASA Solvent Accessible Solvent Area
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VH Variable Heavy
VL Variable Light
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