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The latest technologies associated with implantable physiological monitor-
ing devices can record multiple channels of data (including: heart rates
and rhythms, activity, temperature, impedance and posture), and coupled
with powerful software applications, have provided novel insights into the
physiology of animals in the wild. This perspective details past challenges
and lessons learned from the uses and developments of implanted
biologgers designed for human clinical application in our research on
free-ranging American black bears (Ursus americanus). In addition, we refer-
ence other research by colleagues and collaborators who have leveraged
these devices in their work, including: brown bears (Ursus arctos), grey
wolves (Canis lupus), moose (Alces alces), maned wolves (Chrysocyon bra-
chyurus) and southern elephant seals (Mirounga leonina). We also discuss
the potentials for applications of such devices across a range of other species.
To date, the devices described have been used in fifteen different wild
species, with publications pending in many instances. We have focused
our physiological research on the analyses of heart rates and rhythms and
thus special attention will be paid to this topic. We then discuss some
major expected step changes such as improvements in sensing algorithms,
data storage, and the incorporation of next-generation short-range wireless
telemetry. The latter provides new avenues for data transfer, and when com-
bined with cloud-based computing, it not only provides means for big data
storage but also the ability to readily leverage high-performance computing
platforms using artificial intelligence and machine learning algorithms.
These advances will dramatically increase both data quantity and quality
and will facilitate the development of automated recognition of extreme
physiological events or key behaviours of interest in a broad array of
environments, thus further aiding wildlife monitoring and management.

This article is part of the theme issue ‘Measuring physiology in free-
living animals (Part I)’.
1. Background
Biologgers and tracking devices have been used for the past six decades and
have provided the principal means of studying the interactions of many free-
ranging animals with their environments, including both aquatic and terrestrial
species [1–15]. Bears were among the first animals to be radio-collared, in part
because their size enabled them to carry large battery packs unencumbered
[16]. An interest in bear hibernation also prompted an early use of physiological
biologgers, pioneered in the early 1970s using custom-designed devices [17].
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Figure 1. Inset image: The form factors of three generations of implantable monitors used by our research teams. (A) Generation 1 (GEN 1; 80 cc). (B) Generation 2
(Gen 2; 9 cc). (C) Generation 3 (GEN 3; 1.2 cc). The main image (adapted from [41]) shows the systems associated with the human clinical application of the GEN 3
device, including the implantation tools, device programmer (Model 2090), patient assistant, home monitor (Model 24950) and web-based repository (CareLink
Network). All system components have been successfully used in wildlife applications, with the exception of the patient assistant, which requires patient interaction
to capture episodes of interest.

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

376:20200217

2

Subsequent to this, the field of physiological telemetry
emerged, including technological advancements enabling
research on both wild and captive animals [6,18–21]. Our
team has been using devices designed for human clinical
uses, or modifications to such devices, for more than two
decades in field investigations focused on heart rate (HR)
modulations and the physiology of American black bears
(Ursus americanus) [22–32]. The principal advantages of
using devices designed for humans has been the ability to
leverage both advanced features and the exhaustive testing
required for the use of such devices in human medicine
[33,34]. Yet, for wildlife research applications, challenges can
arise since the clinical systems were optimized for characteriz-
ing and monitoring human physiology. More specifically, the
automatic detection algorithms in the devices were optimized
based upon the expected ranges of HRs and rhythms and
the frequency characteristics of the human electrocardiogram
(ECG). The unique electrophysiologies and anatomies of
other species can result in excessive movement artefacts
and interfering muscle noise and can cause suboptimal per-
formance of the automatic detection algorithms for rhythm
characterization [35]. In addition, the expected ranges for
HRs were initially based upon human extremes, which are
often exceeded in animals in the wild [4,36–40]. Moreover,
the human systems come equipped with a patient activator
that allows the given patient-individual to freeze the current
ECG in device memory when they experience clinical symp-
toms. This limits the amount of memory necessary for
human clinical applications, but of course, does not translate
to wild cohorts.

To date, we have used three unique hardware platforms
in our work on bears, Generations 1–3 (GEN 1–3), which
were progressively less invasive (miniaturized) and enabled
increasingly more comprehensive and consistent data
collection (figure 1) [42]. These platforms leveraged both
hardware and software developed by Medtronic for their
human clinical devices. Where possible, we have shared tech-
nical details and specifications, but it should be noted that
some product information is considered proprietary by the
manufacturer and thus could not be included and/or was
not available to our team.

The monitoring of physiological parameters in combi-
nation with location data has provided deeper understanding
of how species interact with and adapt to their environment
[43]. In our work monitoring HRs and rhythms, respiratory
patterns and activities of hibernating bears, we have gained
unique insights relative to adaptive physiological mechanisms.
We documented extreme variations in HRs, including a 33.8 s
asystolic pause and a 261 beats min−1 (bpm) sinus tachycardia
in our work on black bears [42]. It was also notable that
we observed extreme respiratory sinus arrhythmias that act
to conserve energy during hibernation, yet provide adequate
circulation to maintain the potential for alertness that may be
required in the case of a disturbance (i.e. ‘fight or flight’ beha-
viours) [23]. Long-term data recording has also identified
annual trends in HRs and active behaviours associated with
denning, parturition, parental care, feeding, migrating and
social behaviours [24,27]. Combining physiological data with
concurrent GPS collar locations has provided further insights
as to the potential impacts of human and environmental stres-
sors (hunting, predation, road crossings, drones), whichwould
not have been apparent through spatial data analyses alone
[29–32]. More recently, short-range wireless telemetry has
allowed for real-time streaming of data via telemetry stations
placed at bears’ remote winter den sites (figure 2). Although
this perspective focuses on our experiences with American
black bears, research leveraging the latter generations of the
devices described in this paper has also been carried out in
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Figure 2. System configuration for a Generation 3 (GEN 3) device with a telemetry station. Antennas with a range of 3–5 m are buried 4–5 cm under the den floor.
The antennas transfer the data from the implanted device to the home monitor on a 2 h interval for transmission over a cellular network to a web-based repository.
The solar panel-powered system is duty-cycled (turned on for 20 min every 2 h) to enable transmissions while minimizing battery consumption. The sample elec-
trocardiograms (ECGs) shown are from a female black bear in Minnesota hibernating with yearlings. Episodes shown include an episode with a 16 s asystole and a
222 bpm sinus tachycardia that was believed to be related to disturbance of the den by the landowners. The episode with the tachycardia includes two over-sensed
beats due to skeletal myopotentials and/or motion artefact (marked with an *).
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brown bears (Ursus arctos), grey wolves (Canis lupus), moose
(Alces alces), maned wolves (Chrysocyon brachyurus) and
southern elephant seals (Mirounga leonina) by our colleagues
and collaborators [44–54]. To date, the devices described have
been used in fifteen different wild species with publications
pending in many instances. In addition to applications relating
to conservation and management, opportunities for applying
knowledge gained about the unique physiologies of bears to
human medicine is an area of increased interest by our team
and other researchers. Some of the potential applications to
human medicine relating to the physiology of bears, as well
as other species, include stroke prevention, elimination of
muscle disuse atrophy, treatments for diabetes, heart failure,
kidney disease, osteoporosis, respiratory conditions, pre-con-
ditioning organs for transplantation and many others [55–63].

Published papers highlighting results from our biologging
studies do not do justice to the bumpy journey of trials and
errors that we have experienced. A quote from heart surgeon
C. Walton Lillehei and medical device pioneer Earl E. Bakken
captures the essence of our trials with bears—“Ready, Fire,
Aim: You have to do something before you can find out how
to fix the problems that might arise”. Often, we could not fore-
see potential problems in using medical devices engineered
specifically for human applications, so our process was to
seek to leverage their capabilities and then adapt when chal-
lenges were encountered. Here, we outline the inadvertent
misadventures that led to subsequent improvements, and dis-
cuss future opportunities that have promise in advancing this
area of science.
2. Learning from past experiences
In order to provide structure to this portion of the paper
and to make it easier for the reader to focus on areas of
particular interest, we have used a format that describes
the problem encountered and the solutions employed for
the various aspects of these systems. Potential future
developments and enhancements will be discussed and sum-
marized in §3. The reader should be reminded that the
devices were initially optimized for human clinical use and
that many of the problems encountered were because our
team was pushing the boundaries as to the amount of data
to be collected and the duration of data collection, and we
were, of course, focused on a species with unique anatomy
and physiology. While the solutions that we used were not
the only ones available, we present them here to save
others from the anguish of lost data and unanticipated
obstacles. Here, we recall one of George Santanyana’s
famous quotes: “Those who cannot remember the past are
condemned to repeat it”. In terms of opportunities for
improvement, we have focused on modifications to the
software programming of the biologgers and other non-
implantable components of the system. Since the implantable
devices discussed here were designed for human clinical
use, further adaptions for our bear research would be
costly, and to date, have been beyond the resources available
to our team. A summary of the key features of the three gen-
erations of implantable devices used by our team is found in
table 1.
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(a) Data storage and device memory
— Problem: Our original devices required the device to be

explanted and a 96 MB SanDisk CompactFlash memory
card removed in order to download the data [22]. Solution:
Wireless telemetry for data downloading in subsequent
generations (devices with up to a 3m transmission range).

— Problem: Limitations in device memory resulting in over-
writing of uniquely recorded data. Solution: Trade-offs
were required in what information could be recorded and
with what resolution. GEN 1 devices were programmed
to cycle to collect windows of data versus continuous
recording. In addition, a 21-day delay was programmed
to ensure that the bear had returned to a hibernating state
prior to the initiation of data collection. In the GEN 2 and
GEN 3 devices, we worked with the corporate engineers
to determine what information could be collected over a
400-day period before overwriting of memory would
occur since this would allow some flexibility around the
date of annual den visits/animal handling. We were given
discretionary access to a portion of the device memory
(approx. 450 MB), which of course required trade-offs in
the parameters to be recorded and the recording density.
The original GEN 2 and GEN 3 devices could record 49.5
and 57 min of ECGs, respectively, and these devices could
also collect single daily values for daytime HR, night-time
HR, heart rate variability (HRV) and activity. To better
meet our needs, we had the memory reallocated to collect
2 min averages for HRs and activity over 15 min intervals.
Also, ECGs were collected for the 10 fastest HRs (this
enabled us to document extremes relating to stressors), the
10 most recent HRs exceeding a programmed threshold
(this provided insight into the reaction to capture) and the
10 intervals with the longest asystoles (we were interested
in how long a bear’s heart can go without beating). GEN 3
had increased functionalities that also enabled the collection
of single values for temperature, posture and regional impe-
dance every 4 h. Increasing the recording density for any
one of the parameters mentioned would have required a
decrease in another parameter. Increasing the frequency of
data downloads would of course provide more flexibility
in this regard. As mentioned, with our current program-
ming the devices write over existing data when 400 days
are reached. We chose this option versus freezing the
memory at 400 days in order to always include data that
are associated with our most recent interactions with the
animals. Another solution was to implant multiple devices,
programmed with differing functionalities.

— Problem: The memory cannot be read when the battery
reaches the end of life (EOL). Solution: We either replace
devices well in advance of EOL or place a second, redun-
dant device, overlapping the battery life of the first device.

(b) Signal quality and signal processing
— Problem: Poor signal qualities due to suboptimal implant

location. Solution:Wehave found that the left lateral location
over the silhouette of the heart is the most reliable in black
bears. In our early experiences, we placed a secondary
redundant device on the right side of the chest but observed
poor signal-to-noise ratios. For other species, we now com-
monly use smart phone-based applications where an
electrode pair can be placed on the skin to seek areas for
the best quality cardiac electrograms. In determining the
ideal implant location(s), we seek a location and device
angulation in which the QRS (the electrical signal corre-
sponding to the depolarization of the right and left
ventricles) has anamplitudeof at least 0.15 mVand is signifi-
cantly larger than theamplitudesofboth theP- andT-waves.

— Problem:Over- and undersensing of cardiac electrical activi-
ties. This is directly related to the fact that these deviceswere
designed andoptimized for human clinical applications and
both the anatomies and cardiac electrophysiologies vary
among species. Solution: The sensitivities of the signal
processing algorithms for autodetection of rhythms can be
varied to reduce the impacts of muscle noise and/or
motion artefacts. We consistently use a sensing threshold
of 0.035 mV in our bear research in an attempt to reject
such noise. In addition, a ‘blanking period’ can be used to
avoid the oversensing of cardiac repolarization (so-called
‘T-wave’ oversensing) where the range of the QT interval
(the total duration of the depolarization and repolarization
of the right and left ventricles) is known. The blanking
period allows the user to set a time interval over which
the device will ignore any electrical activity. In bears, we
have consistently programmed the devices to a blanking
period of 150 ms following the detection of a QRS complex
but blanking periods of up to 300 m have been required
in other species to avoid T-wave over sensing (TG Laske
2020, unpublished). Having devices that collect and display
electrograms versus simply reporting averages, enables the
user to troubleshoot sensing issues and confirm the par-
ameters being collected.

— Problem: Oversensing due to myopotentials (electro-
myographic (EMG) activities from skeletal muscles) or
subcutaneous motion artefacts (electrical noise generated
by the relative motion of the device and/or the subcu-
taneous tissues). See an example of this in figure 2.
Solution: As is done in human applications, we place the
electrodes of the subcutaneous devices towards the skin
instead of the muscle and set the sensing threshold at a
level that aims to ignore such electrical activity (typically
0.035 mV). In addition, we target implant sites away from
large skeletal muscle and regions where we anticipate
significant relative motion between the device and the sub-
cutaneous tissues (for example, near intercostal spaces and
away from pectoral muscles). We are also careful to avoid
teat regions when nursing is anticipated. Although a liab-
ility in terms of the sensing of cardiac activity, in several
studies we, in turn, have analysed such EMG activations
to detect either thermogenic shiver or intense contractions.

— Problem: Lost information during the shipping and trans-
port of explanted devices. When outside of the body, the
devices continue to collect both electrical and motion-
based data and thus may overwrite relevant information.
Solution: Download prior to explantation from the animal
or immediately after explantation but before shipping.
When this is not possible, ship the devices in a stable
package to avoid electrical noise generated by relative
motion between the sensing electrodes and packaging.

— Problem: Devices collecting HRs that are outside of a
reasonable physiological range due to oversensing,
undersensing or transportation. Solution: Programme the
devices to ignore implausibly extreme cardiac events. For
the American black bear, we programme the devices to
reject any asystole (a period of no heart activity) of longer
than 60 s and any tachycardia (a period of a high HR)
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exceeding 275 bpm. In an early iteration of our wildlife-
modified software, we programmed the devices to stop
collecting data if a heartbeat was not detected for 2 min
(surmising that the animal had died). Unfortunately,
we found that in situations of extreme physical activity,
the subcutaneous electrical signal can become weak and
undetected for several minutes and thus we had devices
turn off in healthy, active animals.

— Problem: Inadequate specificities on high HR episodes.
Solution: A key programming feature for high rate epi-
sodes is to require a minimum number of beats to
exceed a particular rate for the episode to be considered
a true tachycardia. We currently require 48 consecutive
beats above the programmed threshold for the event to
be recorded. This helps to avoid the recording of transient
noise due to myopotentials or motion artefact.

— Problem: Improper rhythm characterization. Solution:
When programming the devices, an awareness of both
the anticipated extremes and rhythm characteristics are
key to selecting the appropriate programmed parameters.
As an example, we turn off atrial fibrillation (AF) detection
within the human clinical devices. The associated human
algorithm looks for unusual variations in the ventricular
HR, and due to the extreme respiratory sinus arrhythmia
that commonly occurs in bears but is very mild in
humans, the device believes that the bear is in AF nearly
all of the time. Another example of a species-specific
extreme relates to asystoles. The human clinical devices
can be programmed to set the asystolic sensing threshold
to a maximum of 4.5 s. It is noteworthy that, in a hibernat-
ing bear, the asystole exceeds 4.5 s with nearly every
respiratory cycle. To compensate for this, we now pro-
gramme the devices to catalogue the 10 longest periods
without a heartbeat that are longer than 4.5 s and shorter
than 60 s. This gives us a snapshot of the extremes. In a simi-
lar manner, we also have the devices collect the 10 fastest
HR episodes of more than 176 bpm and less than 275 bpm.

— Problem: During hibernation, HRV was often recorded as
‘zero’. Solution: The devices utilized report HRV as the stan-
dard deviation of the median HRs over a 5min interval. The
so-called SDANN method provides insight into daily vari-
ations in HRs, but this particular algorithm is not designed
to detect and record beat-to-beat variations [66]. In the
bears, although the beat-to-beat variation in HRs during
hibernation is extreme, the overall daily median HRs are
extremely consistent and hence HRV is reported as zero.
Clearly, an intimate knowledge of both the physiological par-
ameters of interest and the signal processing methodologies
used by a given device is critical to both data interpretation
and the collection of the most relevant information.

— Problem: Lack of temporal resolution on recorded data
limited the ability to correlate GPS locations and activities
with specific physiological responses. GEN 1 was limited
to 104 h of wide-band electrograms, and GEN 2 and 3
clinical software only provided average daytime and
night-time HRs and daily activity. Since the human
clinical devices were designed to focus on specific arrhyth-
mogenic events and general trends in HRs and activities,
reallocation ofmemory and newdata sampling algorithms
were required for wildlife application. Solution: The team
developed custom software for use with the GEN 2 and
GEN 3 devices to record 2min averages for HRs and
activity for 15min intervals. In addition, non-commercially
available algorithms and sensors were used to record sub-
cutaneous temperature, impedance and posture on 4 h
intervals. See table 1 for additional detail.

— Problem: Clock in the device does not match other devices
or systems (e.g. time recorded for GPS locations). Solution:
Check and record the exact time in the biologger at the
time of implantation and record the exact device time
during each data download since some drift may occur.
As an example of where temporal synchronization becomes
problematic, the devices used do not adjust for daylight
savings time and thismay create confusionwhen comparing
to other data sources (such as behavioural observations).

(c) Data transmission and downloading
— Problem: Poor communication with the implanted device

when attempting a download. Solution: When two devices
are implanted in an animal, the auto-device detection used
by the telemetry head can become confused. This is reme-
died by using a metallic object (clipboard, surgical tray,
etc.) to isolate the targeted device from a secondary
device. When monitoring remotely with telemetry stations,
only a single device is used and we use two antennas split
onto separate coaxial cables inside the den. This both
improves the likelihood that the animal will be close
enough to one of the antennas to communicate, but also pro-
vides redundancy if one is damaged (e.g. chewed by bears).

— Problem: Variable or poor cellular reception for wireless
data transmissions at bear dens. Solution: Check whether
the den site has adequate cellular coverage, and from
which provider, via network maps. Ideally, you should
also visit the site prior to hauling in the equipment
since areas purported to have adequate cellular coverage
may not when you are in a deep ravine or similar.

(d) Power in the field
— Problem: The instrumentation used for communicating

with the implanted devices was designed for use in medi-
cal clinics and most commonly is line powered. Solution:
We operate the equipment on 12 V batteries with a DC
to AC power inverter. We carry 14–21 amp h 12 V sealed
lead-acid batteries in backpacks for short term use. For
long-term deployment, we use two 55 amp h 12 V sealed
lead-acid batteries connected in parallel, which are trans-
ported over the snow on a sled or carried in backpacks.

— Problem: Telemetry station battery drain. Solution: We
connect solar panels to the batteries that are powering
remote telemetry stations and use a controller to avoid
overcharging and battery drain back to the panels. In
this application, we also duty cycle the equipment such
that it is only powering the equipment when required
(we transmit on a 2 h interval and thus only power on
the equipment for a 20min period during this interval).

(e) Implant stability and retrieval
— Problem: Devices rejected due to a foreign body response.

Although we have tried numerous implant techniques,
we have found that the American black bears often eli-
cited an extreme foreign body response and commonly
rejected devices through the skin (even devices that had
remained successfully implanted for up to 2 years). This
phenomenon has been reported in more detail by our
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team and by previous investigators [25,67]. Moreover, we
found that rejection was particularly high for devices
implanted in summer, or early denning. We have some-
times found devices at den sites with a metal detector.
Interestingly, this is not common in brown bears [42]. Sol-
ution: Implant devices during late denning. Implant two
devices for redundancy (we place both devices on the left
side of the bear to optimize signal quality). Use smaller
‘injectable’ devices (GEN 3), which have been found to
reduce rejection rates in black bears in our experience.
As a comparison, in human clinical use, erosion/rejection
of the implant site was reported in 1.2% of patients in a
study using the GEN 2 device [68]. For the GEN 3, rejec-
tion of this device was reported in 0.4–0.6% of clinical
patients, with one device noted to have externalized
due to trauma, which may be a common factor contribut-
ing to device rejection in the wild (N = 1/451) [69,70].

— Problem: Retrieval of devices from animals legally shot
by hunters or killed in motor vehicle accidents. Solution:
Animals have ear tags with contact information, so we
often had an opportunity to talk to hunters or drivers
about retrieving devices.

3. Future opportunities
For more than two decades, our research team has benefited
from the use of modern implantable physiological monitors
designed initially for human clinical applications. In addition,
in a partnership with corporate biomedical engineers and
scientists, we have developed custom software applications
for these devices to expand their utility. Although this has
resulted in significant advancements in our ability to monitor
free-ranging black bears, exciting opportunities remain both
to address current limitations and to expand functionalities
across wider taxa and environments.

As we look forward to the future, numerous issues can
be readily solved. Importantly, new opportunities will be
presented by the expanded use of wireless telemetry and
cloud-based data storage. Such data transfers can occur via
wearable transponders or via telemetry stations/transponders
placed in a location where animal presence is expected [71].
Importantly, combining these technologies will dramatically
reduce the on-board data storage requirements and potentially
further decrease device sizes, enabling use on ever-
smaller species. It should be noted that the effects of biologgers
on small, mobile species (e.g. birds) remain a concern and
researchers must weigh such effects against both the welfare
of the animals and the impact on the hypotheses under inves-
tigation [72,73]. In addition, if the entire content of the device
memory can be transmitted, manual downloads for retrieving
the full complement of data, and the related handling of the
animals, would be minimized or even no longer be required.
Reducing handling of both wild and captive species, of
course, reduces the impact on behaviours and physiology
and also reduces risks associated of both handling and anaes-
thesia [74,75]. Further, it would be ideal if the implantable
devices could be reprogrammed remotely. This would allow
real-time adjustments to programmed parameters in the
event of inappropriate sensing and/or changes in the types
of data to be collected. This would be particularly important
in species where pilot work/benchmarking on captive popu-
lations is not feasible (for example: cetaceans) and/or where
physiologic extremes were not anticipated/documented prior
to device deployment (for example: species prone to
predation and/or experiencing ‘fight or flight’ situations).

As previously described, wireless telemetry and cloud-
based storage were used in the GEN 3 devices for partial
downloads of device memory (figure 2). Stationary monitors
thatwere either line powered or poweredwithin the aforemen-
tioned telemetry station were required [26,28]. In these
instances, either the monitor or an employed antenna exten-
sion must be within 3–5 m of the implanted subject. We have
found that such stationary monitors have had significant prac-
tical uses for studying hibernating American black bears that
remain at their den site all winter and typically do not aban-
don dens when monitoring devices are installed. These same
monitors have also been applied to captive species where
the location of the animal is predictable [53]. Further, such
monitors could also be deployed to download data when the
return of an animal to a particular location is predictable;
such as is the case with many species of nesting birds.

The device to transponder link in our next-generation
system (GEN 4) uses the Bluetooth protocol, enabling data
transfer and communication across a distance of 3–5 m to
smart devices (cell phone, tablets, etc.) instead of the current
stationary wall-powered monitor. Ideally, these transponders
will have a life similar to the implanted monitor and can be
mounted onto radio collars or worn by the animals for ambu-
latory monitoring and geolocation information [76]. For
species where a mounted transponder is not practical, teleme-
try stations might again be applied in locations where, at the
least, the transient presence of the animal is predictable,
or even attached to a drone to enable an approach for data
transfer. Upon transmission of data, memory can then be
reallocated and reused, thereby enabling dramatic increases
in the information collected. However, an increase in the
on-board data storage would enable the collection of signifi-
cantly more data between transmissions. An example of a
situation requiring increased memory would be monitoring
continuous ECGs and/or detailed data on other physiological
parameters; these could be stored in short term memory on
either the device or transponder and then transmitted routi-
nely. It is anticipated that data could then be streamed either
on programmed intervals or ‘on-demand’. This has broad
application across species and would eliminate current com-
promises required due to either intermittent/duty-cycled
data collection or data compression. In other words, this
could eliminate sampling biases due to seasonal data collec-
tions and/or the non-detection of rapid physiological
modulations in behaviours. Finally, ameans of synchronization
of all device clocks (or regular clock updates during trans-
missions) should be considered for any automatic modality
for data transmission to ensure temporal alignment with
other systems, such as GPS collars. Figure 3 shows the future
configuration that will be enabled by the GEN 4 device.

Considerations for transmission to a cloud-based repository
will require either local cell phone coverage or satellite trans-
mission via the Iridium, Globalstar or Starlink satellite
networks, or in some geographies, via the 5G network.
Although cell phone coverage has become increasingly ubiqui-
tous, there are still many regions on the planet with no
coverage or where poor coverage exists for one or all providers.
This problem was solved for animal tracking collars by using
satellite networks for data downloads, thereby reducing the
chances of lost data (animals with store-on-board data not
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Figure 3. Proposed configuration for the GEN 4 system. The implanted device transmits data to a radio collar-mounted transponder, which in turn communicates
with either a cellular or Iridium network. This allows data transfer from an ambulatory/free-ranging animal to a web-based repository. The associated photo was
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rate over an 8 min interval occurring while this female was in the den hibernating. The variations in heart rate are due to a respiratory sinus arrhythmia, and thus
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of the rhythm. Although these exemplary data were captured by a stationary GEN 3 telemetry system, similar data capture and transfer are anticipated with GEN 4.
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recaptured) and expanding the usefulness of data collected in
real-time [77]. Nevertheless, diving mammals represent a
unique challenge, where the link to even a satellite network is
transient. It is our hope that the transition to 5G will enable
fast, data-intense uploads during short transmission windows.

Aswireless transmissions becomemore frequent, biologger
power consumption will also increase and so concurrent
improvements will be required in battery capacities or means
of recharging might be deployed. Small solar panels or circuits
that transform mechanical energy from motion into electrical
energy (piezoelectric or mechanical technologies, such as is
used in watches) could be incorporated into such transponder
systems [78–80]. In the event of battery failure or exhaustion,
permanent, retrievable memory would be desirable. In some
species, reductions in size may be the most valuable improve-
ment feature, but in bears and other larger mammals, increases
in battery size/capacities and memory and/or an increase in
inter-electrode spacing would likely provide a better trade-
off regarding longevities, functionalities and specificities of
sensing. Note that recommendations on the maximum
mass of biologgers vary by taxa [81]; for example, they
should not exceed 3–5% of the mass of flying species
[72,82–84], but even below this threshold negative effects
have been observed in some species during sensitive periods
[73,75]. This would make the ongoing GEN 3 device appli-
cable to individuals as small as 83 g. With decreases in
device size, researchers have continued to push the envelope
to enable monitoring of ever-smaller species [85]. For many
species, where externally mounted devices could interfere
with movement, implantable devices may be beneficial
[73,86]. In any circumstance, a thorough understanding of
the impact of the biologger on the viability of the animal
and the particular behavioural aspects under study is
always recommended [82,87–92].

Significant unmet needs in relation to the use of human clini-
cal devices and systems in the field include weather-,
environment- and animal-proofing. Current human clinical
systems are designed to be used in controlled environments,
and thus we have had programming systems and monitors
(installed at bear den sites) fail due to cold and wet conditions.
To minimize the burden associated with transporting program-
mers in the field, tablet-based programmers are emerging, but
these are typically also designed for in-home use and normally
will not function well in the cold. As is the case for any systems
used in the field, the user needs to protect the integrity of the
system from both the environmental extremes and from the ani-
mals themselves (e.g. in our bear research we found that the
animals were inclined to chew or tamper with the systems left
at their den site). The use of such systems in diving mammals
must also consider the impact of extreme pressures on the
integrity of both implantable and wearable devices.

One of the chief restrictions that we encountered with
human medical devices is that they are specifically targeted to
the characteristics of human HRs, anatomies and associated
electrophysiology. We have adapted the programming to
accommodate the wide range of HRs seen in bears, but more
flexibility in this regard would be desirable, especially as use
expands to other species. Some examples of natural extremes
that have been reported in the literature include blue whales
with average HRs of 25–37, and 4–8 bpm during a dive, and
hummingbirds and bats with HRs in the range of 500 bpm at
rest to more than 1000 bpm in flight [36,39,40]. Such rates are
notwithin the range of humanapplications and thus thedatapro-
cessing or data displays do not readily accommodate these
extremes (for example,GEN2 and 3only show trends for average
HRs of 30 bpm or greater). Although the devices we used have
typically been found to properly interpret the electrical signals
in bears, the algorithms were found to be unreliable in a recent
studyonmoose [52].When adapting any device to a new species,
it is of course helpful to conduct pilot trials in captivity to both
understand the benefits and limitations of a particular technol-
ogy. Pilot evaluations in captive cohorts not only allow for
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optimization of telemetry and biologger system designs, but
also for the determination of the best procedural techniques
and implant locations. This approach is being taken in captive
cohorts of black bears, grey wolves, maned wolves and scimi-
tar-horned oryxes (Oryx dammah) [51,53].

Transmission/streaming of raw signals would allow unlim-
ited possibilities, aswell as creating repositories to feedmachine
learning algorithms. Such transmissionswould reduce the chal-
lenges of interspecific differences in biology or cardiac
electrophysiology, since they could be managed through post-
processing. A practical example of this would relate to trans-
missions of continuous wide-band ECGs. Post-processing
could ensure that no over- or undersensing of HRs occurs due
to myopotentials/poor signal quality and/or species-specific
cardiac electrophysiology [93]. From these recordings we can
also measure respiratory rates via cyclic modulations of the
QRS signal amplitudes as the lungs inflate/deflate (thoracic
cavity diameter increases), thus enabling the potential for
calculations of metabolic rates [24,94]. Instead of rejecting myo-
potentials, one can use them as another surrogate for activities.
In GEN 1, we used post-processing on such electrograms to cal-
culate basic electrophysiological parameters, including PR (the
interval from the initiation of the depolarization of the right and
left atria to the initiation of the depolarization of the right and
left ventricles) and QT intervals and QRS durations. These cal-
culations could be achieved by novel algorithms within the
next-gen device, but an advantage of cloud-based computing
is that it allows not only prospective analyses, but retrospective
analyses of existing data using novelmethods. One such specific
example relates to heart rate variability (HRV), where the
devices currently calculate HRV using the SDANN method,
storing a single daily value. Access to raw data would allow
HRV analyses using any method on a beat-to-beat basis.

As biologger technologies evolve, the potential exists for
more forms of real-time monitoring. These might be in the
form of on-demand data access to query the current physiologi-
cal state aswell as thegiven locationof the studyanimal. Itmight
alsobe in the formof an ‘alarm’whencertainprogrammedphys-
iological parameters are exceeded, much like the currently
available alarms on GPS tracking collars that signal, in real-
time, events such as deaths, birthing, migrating or movements
into or outside a certain defined area [77]. The animal’s given
physiological state combinedwith locational data could provide
researchers with real-time indications of stressful conditions,
enabling immediate on-site field investigations.

Collectively, the aforementioned advances can and will
continue to provide quantum leaps in our understanding of
the physiologies and behaviours of numerous species of free-
ranging animals. Combined with the rapidly advancing
animal tracking devices, they will be part of what Kays et al.
[77] have called the ‘golden age… of unprecedented exciting
discoveries’. Increasingly efficient biologgers and advanced
data transfer protocols will provide an onslaught of detailed
information, requiring increasingly sophisticated analytical
tools to keep up and decipher all that the data can divulge.
We look forward to not only working to advance scientific
and conservation efforts through future advancements in bio-
logger technologies, but also to solving the misadventures
that are sure to accompany the evolution of such devices.
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