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Abstract

Background: Activation of extracellular signal-regulated protein kinase (ERK), a member of
mitogen-activated protein kinase (MAPK) family, has been proposed to mediate neurite outgrowth-
promoting effects of several neurotrophic factors in vitro. However, the precise activity of ERK
during axonal regeneration in vivo remains unclear. Peripheral axotomy has been shown to activate
ERK in the cell bodies of primary afferent neurons and associated satellite cells. Nevertheless,
whether ERK is also activated in the axons and surrounded Schwann cells which also play a key role
in the regeneration process has not been clarified.

Results: Phosphorylation of ERK in the sciatic nerve in several time-points after crush injury has
been examined. Higher phosphorylation of ERK was observed in the proximal and distal nerve
stumps compared to the contralateral intact nerve from one day to one month after crush. The
activation of ERK was mainly localized in the axons of the proximal segments. In the distal segments,
however, active ERK was predominantly found in Schwann cells forming Bungner's bands.

Conclusion: The findings indicate that ERK is activated in both the proximal and distal nerve
stumps following nerve injury. The role of activated ERK in Wallerian degeneration and subsequent
regeneration in vivo remains to be elucidated.

Background

Peripheral axotomy can activate several signaling path-
ways in neurons and associated glial cells leading to two
opposing consequences: cell death or adaptation to regen-
erate neurites. The principal signaling pathways that have
been demonstrated to be involved in axonal regeneration
are PI3K-Akt [1-3] and JAK/STAT [4,5].

Accumulated evidence has shown the participation of
mitogen-activated protein kinases (MAPKs) during axonal
injuries. MAPKs are a family of serine/threonine specific
kinases that transduce extracellular stimuli to altered gene
expression and have been shown to play a role in diverse

cellular events ranging from proliferation, differentiation
to apoptosis. So far, three subfamilies of MAPKs have
been identified, namely: extracellular signal-regulated
kinase (ERK), c-Jun NH,-terminal kinase (JNK) and p38
kinase (p38). JNK along with its main transcription factor,
c-Jun, are activated in the dorsal root ganglia (DRG) after
sciatic nerve transection [6-8]. Similarly, it has been
reported that p38 was activated in axotomized neurons
and, in case of spinal root ligation, this activation has
been linked to the development of mechanical allodynia
[9-11]. Moreover, inhibition of p38 leads to enhanced
axonal regeneration, suggesting that p38 is likely involved
in this process [12].
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As for ERK, its role in neurite extension in response to
growth factors is well-recognized. Following axotomy,
ERK activation has been observed in transected sciatic
nerve and ipsilateral DRG [4,13]. Evidence suggests that
this increased activity of ERK is mediated by endogenous
neurotrophic factors known to stimulate axonal regenera-
tion. Nerve growth factor (NGF) which is known to be up-
regulated shortly after nerve injury, requires ERK to pro-
mote neurite outgrowth in vitro [14,15]. Moreover, other
regeneration-promoting molecules, such as glial-derived
neurotrophic factor (GDNF) and FK506 also mediate
their effects via the ERK pathway [15,16]. Therefore, it is
possible that activation of ERK is essential for axons to
regenerate in response either to endogenous growth fac-
tors or exogenous molecules. Although the ERK activation
has been linked to mechanical allodynia in the models of
neuropathic pain [18,25], the precise function of activated
ERK after nerve injury in vivo, especially in term of axonal
regeneration, is still unclear. In fact, spatial and temporal
changes of ERK activity in the peripheral nerve in response
to injuries have not yet been studied. Hence, the objective
of this work was to investigate the time-dependent
changes in the activation of ERK in crushed sciatic nerve
with correlation to the cell types.

Results

Activation of ERK in sciatic nerve after crush

Levels of phosphorylated ERK (ERK-P) relative to those of
total ERK (ERK-T) were elevated in the proximal nerve seg-
ment compared to the intact nerve in all time-points with
statistically significant changes observed at week1 after
crush (Figure 1). In the distal stump, ERK phosphoryla-
tion was even higher relative to the proximal nerve, espe-
cially at post-crush 1 week and 1 month. No differences in
the expression of ERK (ERK-T) were found among various
nerve segments from any time point (quantitative data
not shown).

ERK activation in axons and Schwann cells

No positive immunoreactivity was observed when pri-
mary antibodies were omitted in the presence of either
secondary antibodies conjugated with FITC or thodamine
(Figure 2A and 2B). In the intact nerve, the ERK-P immu-
noreactivity was found in the axons identified by its co-
localization with the pan-neurofilament immunoreactiv-
ity (Figure 2C-2E). In addition, ERK-P was also located in
Schwann cell cytoplasm which appeared as crescent struc-
tures encapsulating the axons (Figure 2E). However, ERK-
P was present mainly in the axons in the proximal nerve
stump from all time points (Figure 2F-2H). In the distal
nerve stump at day 1 after crush, ERK-P immunoreactivity
was found in axons and with higher frequency in
Schwann cells compared to the intact nerve (Figure 3A
and 3B). In contrast, from week 1 until month 1, ERK-P
was predominantly located between clumps of degener-
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ated axons whose unremoved neurofilament proteins
were stained red at week 1 (Figure 3C-3E) and between
the regenerated axons at 2 weeks and 1 month post-crush
(Figure 3F-3G and 3]-3K, respectively). This location of
ERK-P was likely the Bungner's band, the tube forming by
Schwann cells, since the co-locatization of ERK-P and S-
100 (a Schwann cell marker) immunoreactivities was
demonstrated (Figure 3H-31 and 3L-3M).

Discussion

This study has demonstrated the activation of ERK in the
proximal and distal nerve stumps from one day to one
month after crush. Immunohistochemistry has shown
that this activation occurred mainly in the axons of the
proximal nerve, whereas the activation was more promi-
nent in Schwann cells forming Bungner's bands in the dis-
tal nerve. Increased phosphorylation of ERK in the injured
sciatic nerve has been previously reported by Sheu and co-
workers [4]. They found that ERK-P levels were increased
in the proximal nerve segment adjacent to the transection
site as well as in the distal segment starting from one day
until at least 16 days after operation. However, they have
not demonstrated in which cell types this activation
occurred. In accordance with that study, we found the pro-
longed activation of ERK from one day to one month after
crush with slightly higher degree in the distal stumps com-
pared to the proximal stumps. The expression of ERK as
determined by the levels of ERK-T appears to be unaf-
fected by the injury although the high variations can be
observed. These high variations of ERK-T along with those
of ERK-P may explain the insignificant increase in the
phosphorylation ratio of ERK in the crushed nerve com-
pared to the intact nerve at week 2. In addition, for the
first time, this study showed that this ERK activation
occurred mainly in the axons of proximal nerve. Early in
the distal nerve at post-crush 1 day, the active ERK was
observed both in the axons and Schwann cells. Further-
more, from week 2 to month 1, ERK-P was almost exclu-
sively expressed in the Bungner's bands of Schwann cells.

The ERK activation in the axons of the proximal stump
might be related to its activation in the neuronal cell bod-
ies. The previous study has shown that ERK was activated
in spinal ganglion neurons and satellite cells 7 and 14
days after sciatic nerve injury [13]. Interrupted antero-
grade axonal transport at the crush site resulting in the
accumulation of ERK-P in the proximal nerve segment
may account for the earlier increase in the expression of
ERK-P in this part at post-crush day 1 than in the DRG (7
days). This possibility is supported by the previous report
of ERK axonal transport in DRG neurons [23]. At later
time points, 1, 2 and 4 weeks post-lesion, elevated ERK-P
in the proximal stump may be due to the upregulated ERK
phosphorylation in the cell bodies. Whether anterograde
transport of ERK-P is involved in the up-regulation of
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Phosphorylation of ERK in sciatic nerves at various time points after nerve crush. Sample immunoblots probed for ERK-P and
ERK-T are shown above. For ERK-P, two isoforms were observed (ERK| at 44 kDa and ERK2 at 42 kDa), whereas they were
not distinguishable in ERK-T. The bar chart below demonstrates the ratio of ERK-P to ERK-T in three nerve segments for each
time point. The data are means * SEM. AU = arbitrary unit, DI = day |, WI = week |, W2 = week 2, M| =month |, | = intact
nerve, P = proximal segment to the crush lesion, D = distal segment to the crush lesion. * p < 0.05 vs. W1 intact, # p < 0.01 vs.
W1 intact, ** p < 0.05 vs. M| proximal and p < 0.01 vs. Ml intact, * and # by Kruskal-Wallis test, ** by ANOVA, n = 67 for

each time-point.
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Intact

Proximal stump

Immunoreactivity of phospho-ERK (ERK-P) in the intact and proximal stumps of crushed sciatic nerves. The nerves were longi-
tudinally sectioned (C, D, F, G and H) or transversely sectioned (A, B and E). The sections exposed to secondary antibodies
conjugated with FITC or rhodamine without primary antibodies are shown in A and B, respectively. C-E were from intact
nerves. F-H were representatives of the proximal stumps from all time points studied. Single staining for ERK-P only (C, E and
F). Double staining for ERK-P (green) and pan-neurofilament (NF, red) (D & G). Double labeling for ERK-P (green) and S-100
(red) (H). Arrowheads indicate the locations of axons; filled arrows indicate the ERK-P immunoreactivity in Schwann cells. In
the intact nerve, ERK-P was present in the axons as indicated by co-localization with pan-neurofilament (C & D), and Schwann
cells as recognized by the characteristic semilunar shape (E). In the proximal stump, ERK-P was exclusively co-localized with
pan-neurofilament in the axons (F & G), but not Schwann cells (open arrows in H). Scale bars represent 40 um.

ERK-P in the proximal stump remains to be clarified. It is
also worth noting that the ERK-P immunoreactivity was
observed in many Schwann cells in the intact nerve,
whereas most positive signals in the proximal stump were
localized to the axons. This may suggest the down-regula-
tion of ERK-P in Schwann cells in the proximal segment
after injury. Nevertheless, the significance of this change
needs to be clarified.

The underlying mechanisms that stimulate the ERK path-
way are unknown. It is unlikely that ERK was activated by
the upregulated cytokines, such as, interleukin-1 beta (IL-

1B), interleukin-6 (IL-6) since the patterns of upregula-
tion of these cytokines were not correlated with that of
ERK-P [4]. Some evidence shows that the upregulated
growth factors after nerve injury may be responsible for
this ERK activation in DRG. Obata and colleagues have
administered NGF either intrathecally or intraneurally
and found an increase in the ERK phosphorylation in L4/
5 DRG [13,18]. Furthermore, GDNF, another growth fac-
tor whose expression is also upregulated after nerve injury
can activate ERK in cultured DRG neurons [15]. It is also
noteworthy that ERK-P was observed in satellite cells
around neuronal cell bodies. The importance of this find-
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ERK-P + NF

Immunoreactivity of ERK-P in the distal stumps of sciatic nerves in various time points after crush injury. Longitudinal sections
are shown in E-M. Transverse sections are shown in A-D. Single staining for ERK-P only (A, C, F, H, ] and L). Single staining for
S-100 (red) (I and M). Double staining for ERK-P (green) and pan-neurofilament (NF, red) (B, D, E, G and K). Arrowheads indi-
cate the locations of axons; filled and open arrows indicate the ERK and S-100 immunoreactivities in Schwann cells, respec-
tively. At post-crush | day (A & B), ERK-P immunoreactivity was observed in the axons and with higher frequency in Schwann
cells compared to the intact nerve as indicated by partial co-localization of ERK-P with pan-neurofilament. Afterwards, ERK-P
was exclusively localized in Schwann cells forming Bungner's bands since it was co-localized with S-100 (H-1 and L-M) but not
NF at post-crush | week (C-E), 2 weeks (F-G) and | month (J-K). Scale bars represent 40 um.

ing is not known but may emphasize the role of glial cells
or the glial-neuronal interaction in the DRG after nerve

injury.

Although the downstream events in the process of axonal
regeneration stimulated by the active ERK remain
unknown, the importance of ERK activation in nerve
regeneration is increasingly evident. In the neuronal cell
bodies, at least one study has demonstrated that ERK was
required for an upregulated expression of brain-derived
neurotrophic factor (BDNF) following axotomy [13] and
BDNF can accelerate axonal regeneration [21,22]. Moreo-
ver, ERK is likely to mediate the regeneration-promoting

effects of NGF in vitro [14,15] and in vivo [19,20]. Simi-
larly, ERK was required for the neurite outgrowth stimu-
lated by GDNF [15]. Therefore, it appears that the ERK
pathway is essential for nerve regeneration.

In the distal nerve stump, Schwann cells proliferate to
form Bungner's bands following Wallerian degeneration.
This activity may need the ERK activation as one study has
found that ERK was required for Schwann cell prolifera-
tion induced by ascorbate in the co-culture of DRG neu-
rons and Schwann cells [24]. ERK has also been shown to
be involved in Schwann cell proliferation triggered by lep-
rosy bacilli [26]. Furthermore, ERK has been shown to
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play a role in maintaining Schwann cells in an immature
state which can still proliferate by counteracting the effect
of PI3K [3]. The main localization of ERK-P in Bungner's
bands observed in this study is in accordance with these
findings. The responsible mechanisms that stimulate the
ERK pathway in these proliferating Schwann cells are not
clarified. Nevertheless, Sheu and colleagues have reported
that the sustained pattern of ERK-P up-regulation in the
distal stump was correlated with three sequential peaks of
increased expression of growth factors: NGF, GDNF and
BDNF, in chronological order [4]. Whether there is a rela-
tionship between these growth factors and ERK phospho-
rylation during Schwann cell proliferation remains to be
studied. Besides the possible role of ERK in Schwann cell
proliferation, it has been proposed that ERK may be also
involved in the elimination of supernumerary Schwann
cells through up-regulated p75NTRin the advanced stage of
regeneration [27,28]. Taken together, the above evidence
may explain the sustained and more pronounced activa-
tion of ERK in the distal nerve.

Conclusion

The higher phosphorylation of ERK was found in the
proximal and distal stumps of sciatic nerve from one day
until one month after crush. In the proximal segments,
active ERK was mainly localized to the axons, whereas it
was exclusively expressed in Schwann cells forming the
Bungner's bands in the distal segment. These findings
indicate that ERK is also activated in the injured periph-
eral nerve in addition to in the DRG. To elucidate the pre-
cise role of ERK in peripheral nerve regeneration,
strategies to inhibit the ERK pathway must be employed
and various components participating in the regeneration
should be carefully examined.

Methods

Animal surgery and sacrifice

Forty male Wistar rats weighing 200-250 g were anesthe-
tized using halothane and underwent unilateral sciatic
nerve crush. The left sciatic nerve of each animal was
exposed at the mid-thigh level and crush was induced by
the use of a fine arterial clamp with firm pressure against
the nerve for 30 s. Epineurial suture with Ethilon® 6/0 was
done to mark the crush site. Following the surgery, the
wound was closed and sutured with Ethilon®4/0. The ani-
mals were allowed to recover and housed in an animal
care unit until sacrifice. All experimental procedures were
approved by the institutional ethics committee and were
performed according to the guidelines of the National
Research Council of Thailand.

Eight rats per each time-point were sacrificed 1 day, 1
week, 2 weeks and 1 month after nerve crush. The sciatic
nerves were removed bilaterally and snap-frozen on dry
ice. These tissues were later transferred to -70°C and kept
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there until use for Western blot analysis. Additional 2 rats
underwent transcardial perfusion at each time-point with
200 ml of 0.9% NacCl followed by 500 ml of 4% parafor-
maldehyde (PFA). The sciatic nerves were removed and
post-fixed in 4% PFA for 6 hours at 4°C. After fixation, the
tissues were washed several times and kept in 20% sucrose
in 0.1 M phosphate buffer pH 7.4 until the next process of
immunohistochemistry.

Western blot analysis

The sciatic nerves on the crush side were divided at the
crush location marked by the suture into the proximal and
distal stumps, whereas the whole contralateral (intact)
nerves were used. All nerve segments were homogenized
in homogenization buffer [0.1 mmol/l PIPES pH 6.9, 5
mmol/l magnesium chloride, 5 mmol/l EGTA, 0.5% Tri-
ton X-100, 20% glycerol, 10 mmol/l sodium fluoride plus
1 mmol/l PMSF, 2 mmol/]l sodium orthovanadate and
protease inhibitor cocktail (1 pg/ml pepstatin A, 1 pug/ml
leupeptin, 10 pg/ml benzoyl-L-arginine methyl ester, 10
pg/ml p-tosyl-L-arginine methyl ester, 10 pg/ml L-1-tosy-
lamide-2-phenylethylchloromethyl ketone, 10 pg/ml
trypsin inhibitor and 10 pg/ml aprotinin); all from
Sigma]. Sample buffer (0.25 M Tris pH 6.8, 10% glycerol,
0.01% bromophenol blue, 10 mM dithiothreitol, 2% SDS
and 2% f-mercaptoethanol; all from Sigma) was added to
the samples before boiling for 5 min. These homogenized
samples were stored at -20°C until use.

Concentration of protein in each sample was determined
using Bramhall protein assay [17]. SDS-PAGE was per-
formed on 10 pg protein in 10% acrylamide and proteins
were transferred to nitrocellulose membrane (Hybond
ECL, Amersham Biosciences) using a semi-dry electroblot-
ter (Trans-Blot SD semi-dry transfer cell, Bio-Rad). Preven-
tion of non-specific binding on the membrane was
achieved by incubating with 10% dried skim milk in
Tween buffer (0.05% Tween20, Sigma). The membranes
were then incubated overnight at 4°C in primary antibod-
ies [rabbit antibodies to total and phosphospecific ERK1
and 2 (1:500 and 1:5000, respectively, Santa Cruz Bio-
technology)]. Different membranes were probed for total
and phosphospecific ERK. In the following day, the mem-
branes were washed and incubated in the secondary anti-
body conjugated with horse-radish peroxidase (HRP)
(anti-rabbit-HRP 1:5000, Cell Signaling Technology) for 2
hours at room temperature. The membranes were washed
and the immune complex was detected by enhanced
chemiluminescence (LumiGLO, Cell Signaling Technol-
ogy). Hyperfilms (Hyperfilm ECL, Amersham Bio-
sciences) were exposed to the membranes and scanned
with a flat-bed scanner. All scanned digital images were
imported to microcomputer in tiff format and the densi-
ties of specific bands were analyzed with image analysis
program (Image ProPlus 4.5). Results from different blots
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were combined using standards present in every blot in
triplicate and are expressed as a ratio of phosphorylated to
total protein. The data of 2 isoforms of ERK (ERK1 and
ERK2 at 44 and 42 kDa, respectively) were combined and
shown in a bar chart.

Statistical analysis

The data were imported to SPSS for Windows version 10
and checked for normal distribution and homogeneity of
variances. If these assumptions were met, one-way analy-
sis of variance (ANOVA) was employed to compare
means from different time-points. However, if the meas-
urements were extremely skewed from normal distribu-
tion and/or had a markedly significant difference in
variances, a non-parametric test (Kruskal-Wallis test) was
used instead. Where statistically significant differences
were observed in ANOVA or Kruskal-Wallis test, pair-wise
or post-hoc comparisons were achieved by using Tukey's
HSD or Mann-Whitney U test, respectively. Statistically
significant differences were considered when p < 0.05
unless otherwise stated.

Immunohistochemistry

Sciatic nerves kept in 20% sucrose in PBS were embedded
in OCT medium and 9 pm-thick slices were cut by cryostat
section. Proximal and distal segments of sciatic nerves
were sectioned either transversely or longitudinally. The
slides with sections were blocked in 10% normal serum
(Sigma) and incubated in the primary antibody to phos-
phorylated ERK (1:200, Cell Signaling Technology) for 48
hours at 4°C. After washing, the slides were incubated in
the secondary antibody conjugated with fluorescein iso-
thiocyanate (FITC) (anti-rabbit-FITC 1:200, Santa Cruz
Biotechnology) for 2 hours at room temperature. The
slides were then mounted with anti-fading mounting
medium (Vectashield, Vector Laboratories), cover-slipped
and examined under fluorescence microscope. In some
sections, double-staining with either anti-pan-neurofila-
ment (1:50, Zymed) or anti-S-100 (1:100, Chemicon)
antibodies overnight at 4°C followed by secondary anti-
body conjugated with rhodamine (1:200, Santa Cruz Bio-
technology) was done to locate the axons or Schwann
cells, respectively.
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