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A B S T R A C T   

Scientific research can be categorized into: a) descriptive research, with the main goal to summarize characteristics 
of a group (or person); b) predictive research, with the main goal to forecast future outcomes that can be used for 
screening, selection, or monitoring; and c) explanatory research, with the main goal to understand the underlying 
causal mechanism, which can then be used to develop interventions. Since each goal requires different research 
methods in terms of design, operationalization, model building and evaluation, it should form an important basis 
for decisions on how to set up and execute a study. To determine the extent to which developmental research is 
motivated by each goal and how this aligns with the research designs that are used, we evaluated 100 publi-
cations from the Consortium on Individual Development (CID). This analysis shows that the match between research 
goal and research design is not always optimal. We discuss alternative techniques, which are not yet part of the 
developmental scientist’s standard toolbox, but that may help bridge some of the lurking gaps that develop-
mental scientists encounter between their research design and their research goal. These include unsupervised 
and supervised machine learning, directed acyclical graphs, Mendelian randomization, and target trials.   

1. Introduction 

Research in the social and behavioral sciences can be divided into 
having a descriptive, predictive, or explanatory goal (Hernán et al., 2019; 
Shmueli, 2010). Each of these scientific goals requires different methods 
in terms of design, operationalization, model building, and model 
evaluation. While this may seem rather obvious at first, there is reason to 
assume that in practice the goal of a study is not always that clear. One 
particularly common situation is when researchers are actually inter-
ested in an underlying causal mechanism, but are not able to perform a 
randomized experiment due to ethical and/or practical limitations. The 
typical reaction to this problem is to avoid explicit causal language, and 
instead resort to less explicit statements (Grosz et al., 2020; Hamaker 
et al., 2015; Hernán, 2018). However, without being transparent about 
one’s goal, it is difficult to critically evaluate the approach that is taken, 
and the validity of the conclusions that are drawn based on the study; 
this in turn hampers scientific progress (cf. Hernán, 2018). 

The aim of the current paper is to shed more light on the connection 
between research goals and methodology. In the first half of the paper, 
we begin with elaborating on the three different research goals in the 

context of developmental science. Subsequently, we discuss three 
research designs, that is, cross-sectional, longitudinal, and experimental 
research, and indicate how these align with the three scientific goals. As 
an example, we investigate to what extent published studies of the 
Consortium of Individual Development (CID; Kemner et al. this issue) fall 
within the categories of descriptive, predictive or explanatory research, 
and what research design was used. The aim of CID is to build a 
comprehensive model of the development of two crucial adaptive skills, 
that is, social competence and behavioral control, and it is based on a 
wide variety of data types and research designs, thereby providing a rich 
picture of current developmental research. In the second half of the 
paper, we discuss several techniques that are not yet part of the devel-
opmental scientist’s standard toolbox, but that may be used in a pursuit 
of one or more of the three scientific goals; these techniques include 
machine learning, directed acyclical graphs, Mendelian randomization, 
and target trials. With this review we aim to clarify the connection be-
tween research goals and research designs, and to inspire devel-
opmentalists to explore new methodological avenues to strengthen this 
connection. 
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2. Three goals of scientific research 

Scientists are driven by different motivations, and we can classify 
their goals into description, prediction, and explanation (Hernán et al., 
2019; Shmueli, 2010). Here we provide some examples of research 
questions in developmental science to illustrate the differences between 
these scientific goals. 

When the interest is purely in describing, we need very little theory 
to base our research on. For instance, we may be interested in the 
question whether the use of social media in adolescents is related to 
feeling lonely. Or we may want to know whether the use of harsh 
punishment by the parents is positively associated with behavioral 
problems in children. In such cases we simply want to determine 
whether there is a relation between two variables, which could be 
captured by—for instance—a correlation coefficient or a mean differ-
ence. Typical of description is that we are not making any claims or 
suggestions about the origin of this association, or how this could be 
used to screen, select or identify individuals or individual develop-
mental trajectories. 

A second research goal is to predict a particular variable from one or 
more other variables. Prediction pur sang is based on predictors that 
precede the outcome in time (Hernán et al., 2019), and on an evaluation 
of how well the predictive model performs in out-of-sample predictions 
(Shmueli, 2010). Prediction allows us to identify individuals, for 
instance, adolescents who are at risk to become depressed, to select 
individuals, for instance primary schoolers who will benefit from more 
challenging learning materials, or to differentiate between children, for 
instance hyperactive children who will respond well to a more struc-
tured learning environment or to medication. The temporal order of 
predictors and outcome is essential to make such predictions ahead of 
time. 

If the purpose of the study is explanation—which means we want to 
understand the driving forces of the underlying mechanism—we typi-
cally need to have a theory about what factors may serve as causes, and 
what variables are outcomes or effects of the causal process. Based on 
such a theory, we can develop hypotheses, such as: Excessive social 
media use puts adolescents at risk to feeling lonely. Or: Increased feel-
ings of loneliness lead an adolescent to spend more time on social media. 
It is important to realize that the description of a causal mechanism does 
not always require the use of explicit causal language (Hernán, 2018); 
instead, critical in causal thinking is that changing X will result in a 
change in Y. In contrast, in descriptive or predictive thinking we may 
assume a higher X is accompanied or followed by an elevated Y, but 

there is no assumption that increasing X will result in a change in Y. 
It is sometimes assumed that the goals described above form a hi-

erarchy, where causality is the “highest” or most scientific, while the 
other two are mere stepping stones towards this ultimate goal (Hernán 
et al., 2019; Shmueli, 2010). This idea is also reinforced by the common 
assumption that if one understands the underlying, data generating 
mechanism (i.e., the causal process), this implies one can make the best 
possible predictions. However, this is not necessarily the case with finite 
samples, where sampling fluctuations may critically affect the param-
eter estimates of the true, data-generating model, thereby leading to less 
accurate predictions. For instance, Shmueli (2010) has shown analyti-
cally that in finite samples a simpler model may lead to better pre-
dictions than the true data-generating model, which further underscores 
the importance of being clear and unambiguous about one’s goal. 

Moreover, some researchers make a distinction between causation 
and explanation (Hernán et al., 2019), or causal description and causal 
explanation (Shadish et al., 2002, p.9), where the former is simply about 
establishing a cause-effect relation, while the latter requires a true un-
derstanding of the actual mechanisms underlying this connection. This 
requires not only knowing the mediators in the cause-effect relation, but 
may also require knowledge of the underlying processes, which arguably 
could go down to the level of biochemical and physiological processes at 
the cell level. For most practical purposes causal description is sufficient, 
but detailed knowledge of the underlying processes might help to solve 
problems when under some circumstances manipulating the cause does 
not lead to its expected effect. 

3. Research designs 

When setting up a study, researchers have to decide what design they 
will use. We can distinguish between three broad classes of research 
designs, that is: a) cross-sectional research, in which a sample of cases (e. 
g., individuals, dyads, or families) is measured on a set of variables at 
one point in time; b) longitudinal research in which the same cases are 
measured repeatedly on the same variables; and c) experimental 
research, in which a putative cause is manipulated to determine its effect 
on a particular outcome. We discuss the strengths and weaknesses of 
each of these designs with respect to the three scientific goals mentioned 
above, and we provide a simplified summary of this—including some 
prominent analysis techniques—in Table 1. While some goals and de-
signs fit more naturally together than others, we want to emphasize here 
not to rule out less obvious combinations. Rather, we hope the discus-
sion here will encourage researchers to think in more detail about what 

Table 1 
Overview of the combination of the three research goals and the three main research designs, with some examples of analysis techniques, and identification of 
challenges.   

Research Design 

Research 
Goal 

Cross-sectional Longitudinal Experimental 

Description Example techniques:  
• summary measures such as means, proportions, 

correlations;  
• summaries of patterns, such as principal component 

analysis, mixture modeling, cluster analysis 

Example techniques:  
• latent growth curve modeling (e.g., relating 

intercept and slope, or slope to slope)  
• latent growth mixture analysis 

Example techniques:  
• comparing performance of different existing 

groups  
• describing the relation between two outcome 

variables (e.g., relating brain activity and 
behavior in neuroscience) 

Prediction Less appropriate, as outcome should be situated in 
future 
An exception is when concurrent outcome is difficult or 
expensive to measure (e.g., screening when ultimate test 
is expensive or invasive) 

Example techniques:  
• regression analysis, with outcome measured 

after predictors  
• models with lagged relations 
Note that often all occasions are used to estimate 
the model, rather than used to predict a distal 
outcome 

Example techniques:  
• covariates (to account for residual variance 

within a condition)  
• using experimental outcomes as a predictor for 

future outcomes 

Causation Challenging due to potential confounding, and lack of 
time-order between cause and effect 

Challenging due to potential confounding 
Example techniques:  
• cross-lagged panel models and Markov models 

that decompose observed variance into within- 
and between-person sources 

Example techniques:  
• comparison of means across conditions 
Note that the focus may be on the effect of a non- 
manipulated variable on another (i.e., the medi-
ation paradox)  
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they are aiming at, and how this may be achieved, hopefully a priori and 
as a basis for pre-registration of the research protocol at the service of 
enhanced replicability. 

3.1. Cross-sectional research 

Cross-sectional data consist of obtaining measurements from a 
sample of cases (e.g., individuals, families, or dyads), at one point in 
time. As there is no experimental manipulation involved, cross-sectional 
data are also referred to as non-experimental, observational or correla-
tional. These data are very appropriate to answer descriptive research 
questions. For instance, we may be interested in the percentage of nine- 
years-olds who have a mobile phone, in the difference in behavioral 
control between boys and girls, or whether social competence and 
happiness are positively related in adolescents. A limitation of cross- 
sectional research is that it is based on a single snapshot of people 
(Cattell, 1978). As a result, it is impossible to tell to what extent the 
individual differences that are observed reflect stable, trait-like differ-
ences between individuals, and to what extent they are the result of 
temporal, state-like fluctuations within individuals (Hamaker et al., 
2017). 

Since cross-sectional data are obtained at a single point in time, they 
are less appropriate for prediction, which is concerned with being able 
to forecast outcomes that have not (yet) been observed (Shmueli, 2010). 
A notable exception may be formed by scenarios where obtaining the 
outcome is so expensive or intrusive, that it is beneficial to be able to 
predict it using measures that are easier to obtain. In such cases the 
timing is not critical as the purpose is not forecasting, but a reduction in 
burden or costs. A second exception is when there is a natural time order 
among the variables due to their operationalization. For instance, we 
may have measured childhood adversities (such as having experienced 
physical or sexual abuse, or growing up in poverty) retrospectively, and 
use these to predict current adult happiness. However, it is not guar-
anteed that such retrospective measures of childhood adversities can 
replace prospective measures of childhood adversities to predict adult 
outcomes in the future. For example, Baldwin et al. (2019) have shown 
that agreement between prospective and retrospective measures of child 
maltreatment is poor. 

When the interest is in causation, cross-sectional data need to be 
handled with extra caution, as most researchers are well aware. Gelman 
(2011) points out that causality implies a sequential chain of events, and 
that cross-sectional data may be helpful in ruling out particular chains of 
events, but that there may be multiple chains left of which one or more is 
true. For instance, deviant friends may lead to more deviant behaviors 
and vice versa. Furthermore, a widely recognized threat for causal 
inference are omitted variables, or confounders; such a common cause of 
two observed variables can lead to a spurious correlation, or a sup-
pression of their true causal relation. Yet, while causal inferences based 
on cross-sectional research are difficult and some will even argue they 
should be avoided at all times, there are also intriguing contemporary 
developments in this area (e.g., Angrist and Pischke, 2009; Hernán and 
Robins, 2020; Imbens and Rubin, 2015; Pearl and Mackenzie, 2018), 
several of which will be discussed below. 

It could be argued that an anomaly in cross-sectional research for 
studying causality is twin research, which tends to be concerned with 
the degree to which individual differences in a particular phenotype are 
caused by genetic differences, and to what extent they are caused by 
shared and unique environmental factors, and possibly by the interac-
tion between these factors (Plomin, 2018). Here, the causes are not 
observed directly, nor are they manipulated by the researcher. Because 
genetic and environmental influences encompass all possible causes, 
there is no concern about unobserved confounding. However, the factors 
are extremely broad and undifferentiated, and it is unclear what is 
practically meant when we consider a one unit increase in the genetic or 
environmental factor at the individual level. Heritability represents a 
proportion of variance of a phenotype in a specific population at a 

specific time (Plomin, 2018). 
Kendler and Gardner (2010) make use of a twin design that is more 

explicitly focused on supporting claims of causality (see also Kendler, 
2008). It is based on measuring a specific environmental risk factor to 
which one member of a twin pair had been exposed (e.g., a major 
stressful early life event, or drinking before the age of 15), whereas the 
other twin had not had this experience, and estimating the odds of later 
disease (e.g., major depression or alcohol dependency). Elevated odds 
for the risk factor in dizygotic as well as monozygotic twins would point 
to a causal role of this factor (Kendler and Gardner, 2010), whereas an 
odds ratio of 1 for the monozygotic twins indicates the risk-disease 
relation can be fully ascribed to genetic factors (Kendler, 2008). Trian-
gulation and convergence between this twin approach and another 
quasi-experimental method such as propensity score matching makes 
the causal claim more plausible (Kendler and Gardner, 2010; Ohlsson 
and Kendler, 2020). 

3.2. Longitudinal research 

Longitudinal data consist of two or more separate measurement oc-
casions at which the same variables have been measured on the same 
cases. The vast majority of longitudinal studies in developmental 
research are based on panel data, consisting of a relatively small number 
of repeated measures (say smaller than 8), and a large number of cases. 
With these data, we can describe developmental trajectories over time, 
and investigate individual differences therein, for instance with latent 
growth curve modeling. Moreover, we can relate the change in one 
variable to the change in another, by correlating the slopes in bivariate 
latent growth curve modeling. 

At first sight, longitudinal data may seem ideally suited for predic-
tion, and in fact, forecasting is one of the major topics in the time series 
literature (Box and Jenkins, 1976; Harvey, 1989; Tuarob et al., 2017). 
Yet, the approach in panel research tends to differ from that in time 
series analysis. While many of the analyses in panel research are pre-
dicting the scores of individuals at one measurement occasion, based on 
their scores at the previous measurement occasion—for instance with 
cross-lagged relations (see Usami et al. (2019) for an overview), or 
Markov models (Vermunt et al., 1999)—these models are typically not 
evaluated in terms of how well they can forecast the future. Instead, the 
focus is on how well they describe the observed data across all mea-
surement occasions. Another way in which prediction may play a role in 
panel research is through using person characteristics to predict a per-
son’s trajectory (e.g., by predicting the intercept and slope in latent 
growth curve modeling). Yet again, this is typically done using all the 
data at once, rather than as a forecasting technique for unseen data. 

Longitudinal research is sometimes considered as more appropriate 
for causal inference than cross-sectional research, as it allows for the 
temporal ordering of the potential cause and its outcome. Indeed, it is 
tempting to think of the lagged relations, which characterize many 
longitudinal models, as representing causal effects (Usami et al., 2019). 
Moreover, the possibility to control for previous levels of a variable is 
sometimes considered a necessity to study causality in a 
non-experimental setting (Allison, 2006; Bollen and Brand, 2010; Bou 
and Satorra, 2018). However, there are diverse ways in which this can 
be done, and these approaches can easily lead to different, and even 
conflicting conclusions when results are used for causal inference 
(Allison, 2006; Larzelere et al., 2010; Usami et al., 2019). Moreover, 
lagged relations depend critically on the distance in time between the 
observations (Deboeck and Preacher, 2016; Gollob and Reichardt, 1987; 
Ryan et al., 2018; Voelkle et al., 2012). 

In recent years it has been argued that longitudinal data need to be 
decomposed into stable between-person differences versus temporal 
within-person fluctuations (cf. Hamaker et al., 2015; Berry and Wil-
loughby, 2017). At each of these levels, different causal mechanisms are 
likely to operate (cf., Boker and Martin, 2018; Gische et al., 2020; 
Hamaker, 2012). By untangling these levels in longitudinal data, we no 
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longer need to be concerned with unobserved stable confounders at the 
within-person level, or with the within-person time-varying part of un-
observed confounders at the between-person level, which partly miti-
gates the risk of omitted variables (Hamaker and Muthén, 2020). For 
instance, when considering the causal effect of parental monitoring and 
adolescents’ behavioral problems, separating the within-family dy-
namics from stable between-family differences is an important step 
forward (Keijsers, 2016); however, there may still be time-invariant 
confounders at the between level (e.g., social economic status, person-
ality factors, etc.), as well as time-varying confounders at the within 
level (e.g., momentary emotional well-being or openness of adolescent). 

3.3. Experimental research 

Experimental research is characterized by the fact that the researcher 
actively manipulates a presumed cause (i.e., the independent variable), 
to observe the effect this has on an outcome (i.e., the dependent vari-
able). A particularly strong and popular experimental designs is the 
randomized controlled trial (RCT): It is based on randomly assigning 
participants to different conditions (often referred to as the treatment 
and control conditions), which ensures that on average there are no 
differences between the people that received the treatment and those 
who do not. Hence, random assignment rules out the threat of con-
founding (cf. Holland, 1986), and this is why the RCT is often considered 
the royal road to causal inference. Yet, there are well-known limitations 
associated with it, such as ethical and practical restrictions on what can 
be manipulated. Furthermore, there is extensive literature on the risks 
posed by selective drop-out and non-compliance, and how these can be 
mitigated (cf. Barnard et al., 1998; Sagarin et al., 2014). Moreover, 
while the focus in experiments is often on the causal effect of a manip-
ulated variable at the group level, Rosenberg et al. (2018) argue that the 
societal relevance of lab experiments could greatly benefit from com-
plementing this with predicting individual differences in out-of-lab be-
haviors. Here, we want to discuss three other considerations that put 
into question the ease with which the experiment-causality link tends to 
be made. 

First, when individuals are randomly assigned to different condi-
tions, this does not ensure that there will be no initial differences be-
tween the groups. In fact, when we use an alpha of 0.05, we should 
expect to find significant initial differences in one out of 20 studies, 
regardless of sample size.1 For example, in one of the randomized 
controlled trials of CID (L-CID; Euser et al., 2016), which was based on 
almost 250 families, a significant difference in symptoms of depression 
and anxiety was found between the two groups prior to the intervention. 
Such prior differences between groups are called adroitly ‘unhappy 
randomization’ (Wadhwa and Cook, 2019). When no pre-test is 
included, such a difference will go unnoticed and might inflate or deflate 
the estimated effect of the manipulation drastically. However, inclusion 
of a pre-test may also have disadvantages: For instance, it may result in 
sensitization of the participants to the outcome of interest, and it may 
lower the external validity when a pre-test is not implemented in the 
wide-scale application. To counter these problems, researchers may use 
the Solomon four-group design (Navarro and Siegel, 2018), in which 
half of the participants in each condition also undergoes the pre-test 
measure, while the other half does not. This results in a factorial 
design that allows for the investigation of main effects of each factor (i. 
e., the effect of treatment, and the effect of the pre-test), and the inter-
action between the two. However, the feasibility and resulting power of 
this design is rather low. 

Second, while the internal validity of an experiment is—in princi-
ple—secured by random assignment, the external validity of an 

experiment depends on five different sampling specifics, which Wadhwa 
and Cook (2019)—building on earlier work by Cronbach (1982), who 
introduced the acronym utos—summarize with the acronym utosti: units 
of observations (u), treatments (t), outcomes (o), settings (s), and 
time-points (ti). Each experiment is based on a selection of particular 
sampling specifics from a population of possibilities. For instance, when 
considering treatments, a parent support program focusing on Video-
feedback to Promote positive Parenting and Sensitive Discipline 
(VIPP-SD) implemented in two L-CID cohorts (Crone et al., this issue; 
Euser et al., 2016), is only one of a variety of interventions that could 
have been chosen to enhance parenting quality and help optimize child 
development. Similarly, when considering outcomes, the use of a pro-
social cyberball game (Van der Meulen et al. this issue) forms only one 
facet or dimension of the complex multidimensional construct that 
prosocial behavior is. While the choice of treatment, type of outcome, 
setting (e.g. lab, school or home; Rohrer, 2018), and timing of the 
outcome measure is almost never object of randomization, causal in-
ferences are often generalized across various utosti’s (Wadhwa and Cook, 
2019). 

Third, when an experiment is performed, this does not mean that all 
research questions are concerned with the effect of the manipulation on 
the outcome. For instance, the main interest may be in differences in 
performance between prior existing groups, such as children with a 
particular disorder versus children without a disorder, or different age 
groups (Vrijhof et al., 2016). Similarly, the focus may be on the degree to 
which some prior measure, such as the number of offspring or gender of 
the participants, predicts some measure obtained during the experiment, 
such as the degree to which participants’ brain activation changes when 
listening to a baby crying versus listening to white noise (Witteman 
et al., 2019). 

Alternatively, the main interest may be in the relation between two 
outcomes of the manipulation, such as level of brain activity and 
behavior in response to feedback, or the degree to which the effect of the 
manipulation on one outcome (e.g., behavior) was mediated by another 
(e.g., brain activity). In L-CID (Euser et al., 2016; Crone et al., this issue) 
for example, families are randomly assigned to either a treatment con-
dition (in which they receive video-feedback focused on positive 
parenting and sensitive discipline), or a control condition. While the 
primary focus of this intervention study is on whether the 
video-feedback changes parenting behavior, a secondary interest is the 
relation between neural activation of the parents (in response to dis-
tressed child facial expressions), and their parenting behavior. The latter 
could shed some light on the neurobiological mechanisms underlying 
behavioral change, which would form an important step towards 
bridging the brain-behavior gap. However, here we encounter what 
could be referred to as the mediation paradox: Randomly assigning par-
ticipants to the experimental and control conditions (here: video feed-
back versus control) does not imply random assignment to the mediator 
(here: neural activation), and as a consequence the mediator and the 
outcome (here: parenting behavior) may still share unobserved common 
causes (for instance: personality traits), which can lead to confounder 
bias (cf. Cox et al., 2013; Imai et al., 2010; Shrout, 2008). 

Related to this, in experimental studies on preventing less adaptive 
developmental trajectories and promoting optimal behavioral control 
and social competence the goal often is not only to show the efficacy of 
the intervention (e.g., a parenting support program) and to explain why 
the intervention works (the mediating mechanisms), but also to sort out 
what works for whom. However, even in randomized controlled trials 
the answers to such moderator questions are not entirely straightfor-
ward, because participants might not have been randomly assigned to 
the moderators (Bakermans-Kranenburg and Van IJzendoorn, 2015). 
Including an observed—rather than manipulated—moderator can pro-
vide important information about treatment effect heterogeneity or 
differential susceptibility to treatment (Belsky and Van IJzendoorn, 
2017; Crone et al., this issue), which may be used to predict the effec-
tiveness of treatment for different levels of the moderator (see Mayer 

1 While sample size does not mitigate the risk of significant differences 
occurring, it does imply that in general the size of the differences will be smaller 
to the point that they become irrelevant. 
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et al. (2019) for an extension with latent moderators). However, it does 
not necessarily imply causal moderation, in which the moderator itself 
actually dampens or amplifies the effect of treatment, and could thus be 
manipulated to change the effect (VanderWeele, 2009). Finally, the ef-
fect of an intervention is liable to heterogeneity accruing randomly from 
a large variety of sources, not all of them being measured moderators. 
Such unavoidable treatment effect heterogeneity might jeopardize 
replication efforts (Kenny and Judd, 2019). 

These moderator and mediator paradoxes play an often undetected 
role in deriving causal conclusions from experimental studies on animal 
(e.g., Knop et al., 2019) as well as human development (e.g., Euser et al., 
2016; Crone et al., this issue). Thus, while experimental research is often 
considered the best approach to study causality, it does not automati-
cally warrant high quality causal inference; the generalizability of re-
sults can be problematic, and the actual research focus may not be on the 
manipulation and its effect. Hence, the Pavlovian association of 
experiment-causality should be placed under scrutiny, and the search for 
alternatives of the randomized controlled trial should be intensified 
(Van IJzendoorn, 2019). 

3.4. Conclusion 

From the discussion above it is clear that some designs are more 
suitable for particular research goals than others. We have summarized 
the main points in Table 1, which necessarily forms a simplification of 
the often permeable boundaries between the different types and of the 
complexities of empirical research. 

In particular, the large category of quasi-experimental designs (see 
Shadish et al., 2002), may be difficult to properly locate in this overview. 
Some quasi-experimental designs consist of comparing two different 
treatment groups, while participants were not randomly assigned to 
these treatments; such research designs may be considered as some-
where on a continuum between cross-sectional research and experi-
mental research. Similarly, one may use a pre-post design, in which no 
control group without the intervention is used; this may be considered as 
some combination of longitudinal research and experimental research. 
To what extent one may draw causal conclusion from such 
quasi-experimental designs depends on additional assumptions the re-
searchers have to make (cf. Holland, 1986; Shadish et al., 2002), and it is 
up to the researcher to argue why such additional assumptions are 
reasonable (cf. Ahern, 2018; Grosz et al., 2020; Hernán and Robins, 
2020). 

Researchers may also be interested in predicting certain outcomes in 
the distant future (e.g., health ten years from now), but it may not be 
practically feasible to obtain data that actually cover the entire time 
range; as a compromise between ideal and practice, researchers may 
choose to predict concurrent outcomes instead. However, when 
considering their ultimate goal in this scenario, researchers need to 
identify additional assumptions they have to make (e.g., current health 
is a good proxy for health ten years from now), and argue why these 
assumptions are reasonable. 

The purpose of Table 1 is to identify what can be considered ideal 
combinations of research goals and research designs, and which com-
binations are more challenging. The latter require the researcher to 
make more conscious efforts to ensure a stronger connection between 
the two, for instance through the use of additional assumptions, or with 
the help of certain methodological innovations. Below, we will first 
evaluate the degree to which goals and designs align in the practice of 
empirical research, and how often more challenging scenarios are 
encountered. After that, we will discuss a number of methodological 
tools that may prove helpful in tackling common challenges. 

4. Scientific goals and research designs in practice 

To illustrate how the focus in recent developmental studies are 
related to the three goals that were discussed above, and what designs 

tend to be used, we evaluated 100 published studies.2 First, a random 
sample was drawn from the CID’s Annual Report 2017–2018, which 
contained an overview of all CID publications (either submitted or 
published) before 2019. Publications without new data analyses, such as 
systematic reviews, formal commentaries, essays, and review articles, 
were excluded from the sample, and replaced by CID papers that did 
meet the criteria. Second, we purposively searched for sentences 
regarding the research question(s), hypotheses, discussion, and 
conclusion of the sampled publications. We discarded sentences from 
coding that pertain to: a) publications other than the publication itself 
(e.g., “Researcher X et al. found that …”, “This is in line with findings by 
…”); b) strengths and limitations of the current study; c) directions for 
future research; and d) potential explanations for a result that was found 
(e.g., “This might suggest that…”, “We see two possible interpretations 
for…”). Third, we categorized each sampled sentence as being descrip-
tive, predictive, or explanatory using a coding scheme (inter-coder 
reliability of the finalized coding scheme was .713 [Cohen’s kappa]; 
details can be found in the supplementary materials). We not only 
classified explicit causal language as falling in the category causation, 
but also terminology that implies causal relations, such as: affect, in-
fluence, impact, underpinnings, spill-over, risk factor, lead to, put at 
risk, et cetera. Such terminology refers to causation and forms a typical 
way to avoid explicit causal language, especially in the context of per-
forming a non-experimental study (Grosz et al., 2020; Hernán, 2018; 
Pearl and Mackenzie, 2018). 

In Fig. 1 we present the number of CID studies that indicate a 
descriptive, predictive, or causal interest in the research question, hy-
pothesis, discussion and conclusion. Note that in each part multiple 
goals could be identified (i.e., out of 100 papers, 51 indicated multiple 
goals for the research questions, 31 for the hypothesis, 81 for the dis-
cussion, and 42 for the conclusion). It shows that CID studies are mostly 
driven by descriptive and causal interests. The relatively low number of 
studies based on a predictive goal may come as a bit of a surprise, given 
the interest of developmental science in predictive screening of the most 
vulnerable families. 

We also considered the combination of research goal and design, 
which is summarized in Fig. 2. It shows that a majority of studies that 
focus on description and/or prediction are based on a longitudinal 
design, whereas causal research uses an experimental design most often, 
although in a substantial number of cases it is also based on cross- 
sectional or longitudinal designs. For the experimental studies in the 
causal category, we made a further distinction into studies in which the 
assumed cause in a research question was actually manipulated versus 
observed (denoted as “M” and “O” respectively in Fig. 2). The latter 
includes: a) cases in which the assumed cause was observed prior to the 
manipulation; and b) research question regarding the causal effect of 
one outcome of the manipulation on another outcome (discussed before 
as the mediation paradox). 

5. Techniques for description, prediction and causation 

In this section we elaborate on various techniques that researchers 
can use to improve the alignment of research goals with their research 
design. We focus specifically on techniques that are not yet part of the 
standard toolbox of (neuro-)developmental scientists. Some of these 
techniques already have an impressive history in other disciplines such 
as computer science, artificial intelligence, econometrics, epidemiology, 
and statistics, but they are only recently becoming of practical interest to 
researchers in studies on human development. Because developmental 
researchers are often interested in explaining “why some children thrive 
and others do not” (e.g., CID’s overarching goal), the need for tech-
niques that support causal inference is paramount. Therefore, we will 

2 For details, see the supplementary materials on: https://github.com/Jeroe 
nDMulder/CID-goals-and-design 
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elaborate in particular on innovative techniques to improve causal 
inference, but we will also discuss sophisticated techniques that can be 
used to improve current practice in descriptive or predictive research. 

5.1. Techniques for descriptive research questions 

Descriptive research may seem the least interesting and, as a result 
perhaps, the least popular of the three research goals; it is often not even 
mentioned as a separate goal in addition to prediction and explanation 
(Shmueli, 2010). Yet, our content analysis of CID studies indicates it is 
actually a frequent focus of developmental research. Moreover, as 
technology allows for increasing amounts of data to be gathered, 
developmental scientists are facing the challenge of how to find mean-
ingful ways to summarize these data (Dwyer et al., 2018; Walter et al., 
2019). 

A promising approach to reduce the dimensionality of data is by use 
of unsupervised learning, which is part of the larger class of techniques 
known as machine learning (Hastie et al., 2009; Malik and Tuckfield, 
2019). The general goal of unsupervised learning is to find patterns in 
the data. The two most common types of unsupervised learning—cluster 
analysis and principal component analysis—are actually quite 
well-known in the social and behavioral sciences. Cluster analysis can be 
used to obtain qualitatively different groups of individuals; for instance, 
Drysdale et al. (2017) used this technique to identify different neuro-
physiological subtypes of patients based on distinct patterns of 
dysfunctional connectivity in the brain. Principal component analysis 
has been used to study large numbers of recorded neurons, as opposed to 
studying neurons individually (Cunningham and Yu, 2014), and in the 
field of genetics it is used to study differences in genetic make-up of 
different populations (Patterson et al., 2006). Such unsupervised 
learning approaches are often used as a form of preprocessing data, to 
reduce the number of predictors in big data (but also in ‘small’ datasets, 

see Van der Meulen et al. this issue). Moreover, unsupervised learning 
can also be used for outlier detection (i.e., a case that does not fit the 
general pattern in the data). 

While unsupervised learning is sometimes presented as a new field 
associated with big data, the techniques clearly build on the rich tradi-
tion of Exploratory Data Analysis (EDA, Tukey, 1977). Also, the con-
cerns about a lack of replicability due to multiple testing and our human 
inclination to see patterns in noise—which play a lead role in the liter-
ature on machine learning in general—have actually been on the sta-
tistical agenda for decades (Diaconis, 1985; Leamer, 1978). We will 
discuss the problem of replicability and how to counter it, in the 
following paragraph and in the final section of this paper in more detail. 

5.2. Techniques for predictive research questions 

Although prediction is often considered an inferior goal in compar-
ison to explanation, it should not be underestimated, both in terms of a 
research goal, but also in terms of how to accomplish it (Shmueli, 2010). 
As indicated above, prediction is concerned with being able to predict 
outcomes that have not (yet) been observed: By forecasting these scores, 
it becomes possible to screen individuals for early intervention, to 
choose the most promising intervention modality, or to match in-
dividuals with specific roles or positions. Prediction can thus be of great 
societal relevance. 

A major threat in prediction is overfitting, which is almost guaran-
teed to happen when no specific actions are taken to avoid it (Polikar, 
2006; Yarkoni and Westfall, 2017). Overfitting occurs when variables 
are selected that contribute to the prediction in the current sample, but 
actually worsen prediction in other samples. To illustrate the very real 
risk of overfitting, Raftery (1995) first randomly generated a dataset of 
100 cases on 51 unrelated variables. Subsequently, he used one of these 
variables as the outcome variable in a regression analysis, and the other 

Fig. 1. Number of papers in a random sample of 100 CID studies that indicate a descriptive/association, predictive/forecasting, or explanation/causal interest in the 
research question, hypotheses, discussion, and conclusion. Note that a study may include multiple goals. 

Fig. 2. Number of papers in the random sample of 100 CID 
studies based on a particular design and that indicate a 
descriptive/association, predictive/forecasting, or explana-
tion/causal interest in the research question. Papers may 
include multiple goals and multiple study designs. Experi-
mental research focused on causation is further divided into 
“M” when the assumed cause X was actively manipulated by 
the researchers, and “O” when the assumed cause X was 
observed (e.g., when X is an outcome variable in the experi-
ment, as in the mediation paradox, or a variable measured 
prior to the experiment; see main text for further details).   
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50 variables were used as predictors. While the true R2 was thus zero, 
using all 50 predictors resulted in an R̂2 of 0.60. Even when using the 
first four predictors that explained most of the variance, R̂2 was 0.18, 
combined with a very small p-value. The adjusted R2 that is sometimes 
reported as a more realistic estimate of the proportion of explained 
variance, can also seriously overestimate how well the model will do in 
out-of-sample prediction (Yarkoni and Westfall, 2017). The funda-
mental problem here is that model performance in a particular sample is 
affected by the particularities of that sample, and a selected model will 
almost always perform less well in a different sample, even when the 
new sample comes from the same population (Yarkoni and Westfall, 
2017). 

To avoid the risk of overfitting, researchers can use cross-validation 
techniques (Arlot and Celisse, 2010; Dwyer et al., 2018; Mosteller and 
Tukey, 1977; Stone, 1974). This is based on splitting the data into a 
training set and a validation set (also known as the holdout or test set or 
sample; Polikar, 2006): The training set is used to obtain estimates of the 
parameters, which are then used to make predictions in the validation 
set. The idea behind this approach is simple and intuitive: To evaluate a 
predictive model we should not use the same data twice, but instead use 
out-of-sample metrics. Without such an evaluation, the predictive value 
of a model will be overestimated. There are many variations of 
cross-validation techniques, such as K-fold cross-validation (based on 
dividing the total sample into K subsamples, each of them serving as the 
validation set with the remaining subsamples forming the training set), 
and leave-p-out cross-validation (based on leaving out p observations at 
the time as the validation set, and using the remaining observations as 
the training set). 

The concept of cross-validation lies at the heart of supervised learning, 
which is a type of machine learning that mitigates the risk of overfitting 
when we try to predict an observable outcome as accurately as possible 
(Dwyer et al., 2018; Hastie et al., 2009; Yarkoni and Westfall, 2017). The 
target variable can be either continuous (as in regression analysis), or 
categorical (as in logistic regression and nonlinear classification tech-
niques). Cross-validation is used to evaluate the out-of-sample perfor-
mance of a particular model; subsequently, alternative models can be 
compared on their out-of-sample performance, so that the best per-
forming model can be selected. A nice example of this approach in the 
developmental neuroimaging research of CID is Qoala-T, a supervised 
learning tool that examines the accuracy of manual quality control of T1 
imaging scans and their automated neuroanatomical labeling processed 
in FreeSurfer (Klapwijk et al., 2019). 

Prediction may be even further improved through combining the 
information of multiple models, instead of selecting one model as the 
best model; this approach is known as ensemble methods, and includes 
model averaging (Burnham and Anderson, 2004), or bagging (including 
random forests; Shmueli, 2010). It is important to note though that, 
while cross-validation and supervised learning ensure that the results 
will replicate in other samples from the same population, they do not 
guarantee that results obtained from a convenience sample such as 
students, can be generalized to (samples taken from) another popula-
tion, which may be where the actual interest lies. 

5.3. Techniques for causal research questions 

There is a vast and fast growing body of literature across diverse 
disciplines—including computer science, statistics, econometrics and 
epidemiology—that focuses on the development and promotion of 
innovative methodology that can improve causal inference under ideal 
and less ideal scenarios (e.g., Angrist and Pischke, 2009; Foster, 2010; 
Hernán and Robins, 2020; Pearl, 2009a, 2009b; Rosenbaum and Rubin, 
1983; Schafer and Kang, 2008; Shrout et al., 2008; VanderWeele, 2015; 
VanSteelandt and Lange, 2012). Here we discuss three of these de-
velopments, that is, directed acyclical graphs (DAGs), Mendelian 
randomization, and the target trial. All three fit within the more general 

contemporary interventionist framework, which is based on defining 
causality in terms of the effect a real or hypothetical intervention has on 
an outcome. 

5.3.1. Directed acyclical graphs 
A causal DAG is a graphical representation of a causal structure, and 

consists of nodes, representing the variables, and edges, which are one- 
headed arrows serving as direct causal relations between nodes 
(Spirtes et al., 2000).3 A directed edge between two nodes thus repre-
sents the assumption that one variable has a direct causal effect on the 
other. Likewise, no edge between two nodes represents the assumption 
that neither variable has a (direct) causal effect on the other. DAG 
methodology in non-experimental research can be used in an explor-
atory way, to determine the causal structures that may have given rise to 
the observed data (Haughton et al., 2006; Sprites et al., 2000), or in a 
theory-driven way, to answer the question: If this DAG is the true causal 
structure, which other variables need to be controlled for to establish the 
true causal effect of X on Y? Here we focus on this latter use of DAG 
methodology, and in particular on its use prior to data selection, such 
that it can inform decisions about which variables actually need to be 
measured. 

In this approach, researchers begin with representing their causal 
assumptions in a DAG, which contains all the variables that are believed 
to play a role in the causal mechanism under investigation, as well as 
their specific causal connections (Rohrer, 2018). Based on this DAG, we 
can determine whether controlling for a particular third variable Z will 
improve or actually harm the causal analysis. To this end, we first have 
to consider all the paths in the DAG that connect X and Y and that 
contain Z, that is, each sequence of nodes and edges between X and Y 
regardless of the direction of the edges. Subsequently, we need to 
determine whether Z is a confounder, a mediator, or a collider on each of 
these paths, which critically depends on the direction of the edges. 
Elwert and Winship (2014) argue that only confounders should be 
controlled for in causal analyses, while controlling for a mediator leads 
to overcontrol bias,4 and controlling for a collider is known to result in 
collider bias. 

Fig. 3 contains DAGs that illustrate the three different roles Z can 
have. In each DAG there are two paths from X to Y: the direct causal 
effect X → Y, and a second path that includes Z. The left panel of Fig. 3 
contains the path X ⟵ Z → Y, where Z is a common cause, also referred to 
as a confounder. Such a path adds to the association between X and Y, 
and if we do not control for Z, this will result in confounder bias in the 
estimation of the causal effect of X on Y. By controlling for Z, we block 
the path X ⟵ Z → Y, a practice also referred to as closing the back-door. 
The risk of confounder bias is well recognized in psychology and related 
disciplines, and has in some fields led to the practice of including as 
many covariates as possible (Rohrer, 2018). Yet, this is not always 
harmless, as the other two examples show. 

In the middle panel of Fig. 3 the variable Z is a mediator on the path X 
→ Z → Y. Again, this path contributes to the association between X and 

3 Readers familiar with structural equation modeling (SEM) may notice a 
resemblance between DAGs and SEM models. However, important differences 
are that: a) typically, a DAG does not contain two-headed arrows to represent 
covariance, but will instead contain a (possibly unobserved/unobservable) 
common cause to account for covariance (although semi-Markovian DAGs form 
an exception; see Pearl, 2009b); b) a DAG typically does not contain nodes that 
represent random measurement error terms; c) an arrow in a DAG is a quali-
tative statement that there is a direct causal connection, but it does not involve 
information about the strength or even the shape of this relation; and d) a DAG 
cannot include feedback loops, meaning that if we follow a sequence of arrows 
starting at variable X, we can never return to X (hence the term acyclical).  

4 An exception is formed by the front-door criterion, discussed by Pearl 
(2009b), when there is unobserved confounding for X and Y, and there is a 
mediator Z that is not directly affected by the confounder. In this case, the 
average total effect of X on Y can be estimated by conditioning on the mediator. 
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Y, and controlling for Z will block this path. However, blocking this path 
(i.e., controlling for Z) implies that part of the causal effect of X on Y is 
removed. If the interest is in establishing the total causal effect of X on Y, 
one should not control for mediators, as the indirect effect through Z also 
forms part of the total causal effect. Most developmental scientists are 
familiar with this reasoning, and report the total, direct and indirect 
effects whenever there are mediators in their model. 

Finally, in the right panel of Fig. 3 the variable Z is a collider on the 
path X → Z ⟵ Y, where the arrows pointing into Z imply X and Y 
causally influence Z. A path with a collider is by default blocked, which 
means it does not add to the association between X and Y. However, 
conditioning on a collider opens this path, which implies that it will now 
add to the association between X and Y; this is sometimes also referred to 

as opening the back-door. Since controlling for a collider (or a variable 
that is itself caused by a collider) biases the estimation of the causal 
effect of X on Y, it should be avoided at all times. 

Given the major implications of controlling for a collider and its 
prominence in the literature in other disciplines such as epidemiology, it 
is somewhat surprising that this phenomenon is not very well known in 
developmental research. One of the few exceptions is the study by 
Drevin et al. (2020), who study the causal effect of childhood abuse on 
unplanned pregnancies in the large Norwegian Mother and Child Cohort 
Study (MoBa). They present a DAG (Figure 1 in their paper), which 
shows that the decision to have an abortion is influenced by both 
childhood abuse (the putative cause), and whether it was a planned or 
unplanned pregnancy (the outcome of interest). Since only women who 

Fig. 3. Three different directed acyclical graphs (DAGs) that show the three different roles of a third variable Z, that is: a confounder or common cause, a mediator on 
an indirect causal path, and a collider or effect of both variables. 

Box 1 
Illustration of how to use causal DAGs. 

Suppose there are three researchers who are interested in studying the effect of maternal warmth (W) on the child’s behavior (B), and they 
wonder whether there is a need to control for marital satisfaction of the mother (S). Fig. 4 contains the causal DAGs that each researcher comes 
up with. 

The causal DAG proposed by the first researcher, presented in the left panel of Fig. 4, indicates that maternal warmth is influenced by marital 
satisfaction. As there is no path between treatment (W) and outcome (B), that contains marital satisfaction, controlling for the latter will not 
change the association between treatment and outcome. 

In the middle panel the DAG of a second researcher is presented. It includes two other variables, that is the mother’s personality (P) and the 
relationship quality (R). The researcher argues that the mother’s marital satisfaction depends on her personality and the actual quality of the 
marriage. Furthermore, her personality determines her behavior and therefore the amount of warmth she shows towards her child. Moreover, 
the actual quality of the marriage is also a cause of the child’s behavior, as it is an important factor in shaping the larger family context and 
atmosphere in which the child grows up. Even though the variable P and R are not measured, a DAG that includes them can be used to determine 
the effect of controlling for S. To this end we need to consider the path between W and B through S, that is W⟵P→S⟵R→B. The variable S is a 
collider on this path, as two arrows are pointing into it. This means that this path is closed and it does not contribute to the association between 
W and B. However, if we condition on the collider S (e.g., by including it as a covariate), this will unblock the path, leading to bias in the 
estimation of the causal effect of W on B. 

The third researcher comes up with a DAG that combines the ideas of the other two researchers, and is represented in the right panel of Fig. 4. In 
this DAG there are two paths in addition between W and B, that is, W⟵P→S⟵R→B, where S is a collider, and W⟵S⟵R→B, where R is a 
confounder. This implies that if we control for S, this opens the first path and introduces collider bias; however, if we do not control for S, there is 
confounder bias via the second path. This catch-22 is an instance of an unidentified causal effect: When only W, B and S are observed, it is 
impossible to obtain an unbiased estimate of the causal effect of W on B. The latter poses a difficult problem for researcher 3 who is dealing with 
an existing dataset; this researcher has to decide which of the two biases is expected to outweigh the other, which may be a quite impossible task. 
But if researcher 3 has performed this causal identification analysis prior to data collection, this researcher could conclude that only obtaining 
W, B, and S does not suffice, and that it is essential to include measures of either R or P. When a measure of the confounder R can be obtained, this 
can be controlled for in the analyses, thus blocking the path W⟵S⟵R→B; then S would not be controlled for. Alternatively, if a measure of P is 
obtained, then both S and P could be controlled for, where S controls for the confounder bias (as it blocks W⟵S⟵R→B), but in doing so opens 
the path on which S is a collider (i.e., W⟵P→S⟵R→B); controlling for P closes this path again. Moreover, when it is not possible to obtain 
direct measures of P or R, it may still be possible to obtain a proxy for one of them. Then, including the proxy is a way to control for part of the 
effect of the unmeasured variable. 

Insightful follow-ups on DAGs: Glymour et al. (2005), use DAGs to decide whether one should use baseline adjustment in change analysis (see 
also: Pearl, 2016; Kim and Steiner, 2019; Tennant et al., 2019); Rohrer (2018) discusses DAG methodology in psychology; Lee (2012) presents 
an extensive account of DAG methodology in the context of personality psychology, followed by multiple commentaries from diverse disciplines, 
including psychology, epidemiology and computer science; Richardson et al. (2019) discuss the problem of collider bias in response to a study 
that considered the interaction between neuroticism and health on mortality; Glymour (2006) provides an elaborate introduction to using DAGs 
in the field of social epidemiology; Shrier and Platt (2008) provide a simple six-step approach that can be used to analyze a DAG to determine 
which variables should or should not be controlled for in the context of biomedical research; and Grosz et al. (2020) present the use of DAGs as 
the second step in a four-step roadmap for causal inference in psychological science.  
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did not have an abortion were selected for this study, this implies there 
was conditioning on (a descendent of) a collider, which will result in 
collider stratification bias (Drevin et al., 2020). For further elaborations, 
see Austin et al. (2019), who systematically discuss DAGs in the study of 
child maltreatment. To illustrate the role of colliders in more detail here, 
we provide a less complicated hypothetical example from the field of 
child development in Box . This shows the potential of DAGs for making 
more informed decisions, both in designing a study, and in dis-
tinguishing between variables that we need to control for versus vari-
ables we should actually not control for. Additionally, DAGs are also a 
useful tool in understanding phenomena such as selection bias, nonre-
sponse bias, and measurement bias (e.g., Elwert and Winship, 2014; 
Hernán and Robins, 2020). 

While we are convinced that familiarity with DAG methodology 
could prove enormously beneficial to many researchers and we have 
tried to make a case for it here, two critical remarks are in place. First, 
our coverage of the topic is necessarily brief and simplified, and does not 
do justice to the vast and nuanced literature that exists in this area. We 
hope, however, that the current treatment triggers the readers’ curiosity, 
and that they will use the references for follow up reading. Second, a 
major criticism of causal DAG methodology is that it is based on the 
premise that the DAG a researcher uses captures the true underlying 
causal structure (e.g., Imbens, 2019). How to come up with the right—or 
even a plausible—DAG however, is a major challenge. As Rohrer (2018) 
states, it is not a mechanistic procedure, but requires assumptions and 
thorough domain knowledge. While this can be seen as a major draw-
back of DAG methodology, the advantage is that it forces researchers to 
be concrete about their assumptions, which facilitates communication, 
transparency, and discussion. The call for pre-registration of study 
protocols might be addressed by detailed discussions about the merits 
and plausibility of DAGs involved before the study starts. 

5.3.2. Mendelian randomization 
A promising approach to handle unobserved confounding in non- 

experimental research is through Mendelian randomization, which can 
be considered a special case of the more general technique of using 
instrumental variables. The latter is a particularly popular approach for 
studying causality in non-experimental studies in the field of economics 
(Angrist and Pischke, 2009), although there are also major challenges 
associated with this technique, most notably the difficulty of finding a 
good instrument (cf. Angrist et al., 1996; Hernán and Robins, 2020; 
Stock and Yogo, 2005). Here, we will explain the basics of using 
instrumental variables first, and then describe how genetic variables 
have been used as instruments to avoid unobserved confounder bias. 

Suppose we are interested in the effect of Ritalin (X) on attention 
deficit hyperactivity disorder (ADHD) symptomatology (Y). As shown in 
the left panel of Fig. 5, if we simply observe X and Y, the relation is likely 
to be confounded for instance by the severity of the disorder (U), as 
children with more severe forms of ADHD are more likely to receive 
medication than children with less severer forms. To obtain an unbiased 
effect of X on Y, we could perform a randomized controlled trial (RCT) in 
which children are assigned to receive medication or not based on the 
flip of a coin. This is depicted in the middle panel of Fig. 5, which shows 
that if treatment X is completely determined by random assignment, it 
no longer shares the confounder with the outcome Y. However, when an 
RCT is not feasible, we can search for an instrumental variable Z, which 
has to satisfy the following three conditions (Davies et al., 2018; Hernán 
and Robins, 2020). First, the instrument should be related to the cause X, 
and this relation should not be too weak; note that this can be tested in 
practice. Second, the instrument should not share any common causes 
with the outcome Y. Three, the instrument should affect Y only through 
X. The latter two conditions cannot be tested, and have to be argued 
based on domain knowledge. In the current example, we could consider 
the parents’ attitude towards psychoactive drugs as an instrumental 
variable, as: 1) this is likely to have an effect on whether or not parents 
decide to give their child Ritalin (i.e., X), and this should be tested; 2) we 

may assume it does not share common causes with the ADHD symp-
tomatology (i.e., Y);5 and 3) it is also unlikely to affect the ADHD 
symptomatology through anything else but the treatment (i.e., X). Here, 
we first estimate the total effect of Z on Y; this is identical to the indirect 
effect through X in this model, which—in the linear case—is the product 
a*b. Subsequently, we estimate the effect of Z on X, which is a. Then, by 
dividing the first by the second, we obtain an unbiased estimate of b. 

In Mendelian experiments, which are increasingly used in epidemi-
ology, the instrumental variable may be either a Single Nucleotide 
Polymorphism (or SNP, i.e., allelic variation in a single nucleotide in 
DNA; Van IJzendoorn, 2019), or a (dichotomized) version of a Polygenic 
Risk Score (PRS), which consist of thousands of SNPs (Plomin, 2018). 
Such a genotype score serves as a genetic coin flip dividing the sample 
already at conception into a ‘treatment’ group at risk for a specific 
exposure or phenotype, and a ‘control’ group not at risk for this exposure 
or phenotype, randomly distributing all other potentially confounding 
factors (only if pleiotropy is absent or controlled for; see Ference, 2018). 
While in principle the genotype measure should only affect the outcome 
indirectly through its effect on the exposure of interest (Davies et al., 
2018), it is also possible to block additional indirect (genetic) paths by 
conditioning on mediators on such paths. 

To give an example of this, Richmond et al. (2017) performed an 
intergenerational Mendelian experiment on data from Generation R—a 
cohort study which is part of the CID—to test the hypothesis that 
maternal pregnancy obesity causes future offspring obesity. Specifically, 
they hypothesized that maternal prenatal body mass index (BMI) affects 
the BMI of children through birth weight, but also through critically 
affecting appetite control, neuroendocrine functioning, and /or energy 
metabolism of the child. As represented in Fig. 6, the relation between 
maternal BMI and child BMI is of course likely to be confounded by 
habits of the family regarding food and exercise, and by genetic factors 
that the mother and child share. In this scenario, the genotype score for 
maternal BMI can be used as an instrumental variable based on: a) the 
assumption that it is unrelated to the environmental common causes of 
the maternal BMI and offspring BMI relation (pleiotropy should be ab-
sent, i.e., the BMI genotype is not related to other phenotypes that may 
affect offspring BMI); and b) the inclusion of the offspring genotype 
score for BMI to block the second indirect effect from the instrumental 
variable (Maternal genotype) to the outcome (Offspring BMI). In that 
case, the effect of maternal genotype on offspring BMI will be the in-
direct effect, only mediated by maternal BMI (i.e., a*b). Dividing this by 
the effect of maternal genotype on maternal BMI (i.e., a), gives an es-
timate of the effect of maternal BMI on offspring BMI (i.e., b). 

Davies et al. (2018) discuss several tests that can be run to see 
whether the underlying assumptions are violated, and they describe how 
to report on the analyses. Particularly important is that an instrumental 
variable explains a reasonable proportion of the variance in the cause X. 
Stock and Yogo (2005) provide substantiated guidelines on how to 
decide whether an instrument is “good enough”. For BMI and for 
educational achievement, PRSs have been developed that are rather 
strongly related to the phenotypes, with explained variance of around 
15%–20%, and there is great optimism that these percentages will go up 
in the near future with better assessment of the whole genome (Plomin, 
2018). Hence, we can expect that Mendelian experiments will become 
increasingly popular in the near future to study causality when a ran-
domized controlled trial is not feasible. 

5.3.3. The target trial 
As indicated above, contemporary approaches to causality are based 

on defining causality as the effect of an intervention. In this context, a 

5 Some may argue that the severity of the underlying disorder U is likely to 
affect the attitude of parents towards psychoactive drugs Z; in that case, the 
latter cannot be used as an instrumental variable. This illustrates the difficulty 
associated with finding an appropriate instrument in practice. 
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number of assumptions need to hold in order to draw causal conclusions 
(Hernán and Robins, 2020; Rosenbaum and Rubin, 1983). Three key 
assumptions are: 1) exchangeability, which means that receiving the 
treatment or control condition depends only on the measured covariates 
(i.e., there are no unobserved confounders); 2) positivity, that is, for each 
combination of the covariates that are needed to ensure exchangeability, 
the probability of being assigned to treatment or no treatment needs to 
be larger than zero; and 3) consistency, that is, the treatment values 
under investigation should correspond unambiguously with a 
well-defined intervention. 

When focusing on this third assumption, we can see this actually has 
major consequences for our thinking about causality. It implies that if 
we are interested in the effect of stress on well-being, it is not enough to 
distinguish between stressed and non-stressed conditions; instead, we 
have to be very specific about what kind of stress we are considering, 
because being stressed about an upcoming test may have a different 
effect on well-being than the stress due to having a conflict with one’s 
parents, going on a first date, or being bullied at school. When there are 
different ways in which we can lift the treatment score from zero to one, 
this implies there are multiple versions of treatment (i.e., a population of 
t’s within utosti, see Wadhwa and Cook, 2019), which in turn means that 
there is not a single treatment effect and it becomes unclear what causal 
effect we are trying to study. 

To counter this problem, Hernán and Robins (2020) propose the use 
of a target trial, a hypothetical intervention study that one would perform 

if there were no ethical and/or practical barriers (cf. Dorn, 1953). 
Hence, the point of specifying the target trial is not to actually execute it, 
but to clearly articulate the causal question we try to answer. The target 
trial should state in an unambiguous way: a) how the treatment variable 
is raised by one unit, such that it is completely clear how the treatment 
condition differs from the non-treatment condition (utosti’s t); and b) 
what the outcome is (utosti’s o), including at what point in time or during 
what time interval after the treatment the outcome is measured (utosti’s 
ti). The process of formulating the target trial is likely to consist of 
having to rephrase and refine the research question multiple times; 
Hernán and Robins (2020) indicate that this iterative process and the 
discussion with colleagues on what exactly the causal question of in-
terest is, should be considered an inextricable part of causal inference 
research. Note that this fits perfectly to the concept of (pre-)registration 
of study designs, which also requires detailed descriptions of primary 
hypotheses, how they are tested and whether confounders play a role 
(Van’t Veer and Giner-Sorolla, 2016). 

While the concept of a target trial has been primarily proposed as a 
way to determine how to best analyze large cross-sectional datasets to 
support causal inference, it can also be used in longitudinal research to 
explain the nature of within-person versus between-person differences. 
For instance, Dietvorst et al. (2018) considered the relation between 
adolescents’ secrecy and parental privacy invasive behaviors (perceived 
by the adolescents) in longitudinal data. Using a statistical model that 
separates stable between-person differences from the within-person 
dynamics (Hamaker et al., 2015), they found that at the 
between-person level there was a positive relation, whereas at the 
within-person level there was a negative lagged relation from secrecy to 
privacy invasion. When evaluating such results, it is important to realize 
that the stable between-person differences in the data are the cumulative 
results of prior within-person causal processes that differed across in-
dividuals (cf. Baltes et al., 1988). Hence, within-person fluctuations in 
the data are by definition associated with causal processes that take 
place at a shorter time-scale than the causal processes that result in 
stable between-person differences in the data. This implies that a target 
trial that is related to the within-person results probably consists of a 
short-term or momentary intervention (e.g., a temporary increase in 
secrecy), whereas a target trial that is related to the between-person 
results is most likely to consist of a prolonged intervention that takes 
place over a particular period of time, typically longer than the interval 
spanned by the study. Disentangling the short-term, within-person dy-
namics from the long-term, stable between-person differences, and 
linking these results to different target trials, forms a first step in 

Fig. 4. Three different directed acyclical graphs (DAGs) that show the three different roles of a third variable Z, that is: a confounder or common cause, a mediator on 
an indirect causal path, and a collider or effect of both variables. 

Fig. 5. Three directed acyclical graphs (DAGs). Left DAG 
shows an observational study in which the causal effect of X on 
Y is biased due to unobserved confounding U. Middle DAG 
shows how randomizing treatment (through a flip of a coin), 
breaks the causal effect of U on X, thereby allowing for the 
estimation of the causal effect of X on Y. Right DAG shows the 
use of an instrumental variable Z in a non-experimental study: 
By dividing the effect of Z on Y (a*b) by the effect of Z on X (a), 
one can estimate the unbiased effect of X on Y (b).   

Fig. 6. DAG for intergenerational Mendelian experiment for investigating the 
causal in uterus effect of maternal BMI on future offspring BMI, with family 
eating habits as unobserved confounders, maternal genotype as the instru-
mental variable, and offspring genotype as mediator that needs to be controlled 
for. Based on Figure 1 in Richmond et al. (2017). 
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uncovering the complexity of multiple processes operating at different 
timescales in individual development (see also Driver and Voelkle, 
2018). 

5.3.4. In conclusion 
Due to space limitations, we are not able to discuss the ins and outs of 

causal inference research in more detail. A more comprehensive treat-
ment of this topic would include a discussion of the actual act of esti-
mating the causal effect (e.g., through the use of techniques such as 
inverse probability weighting, matching, or g-estimation), and a dis-
cussion of the ways researchers can test the assumptions on which their 
causal model is based (such as sensitivity analysis (e.g., Hernán and 
Robins, 2020), and local (mis)fit analysis (e.g., Shipley, 2003; 
Thoemmes et al., 2018)). For a more elaborate discussion of the diverse 
steps in causal research, we refer the reader to the recent work of Grosz 
et al. (2020; see also Ahern, 2018; Hernán and Robins, 2020). 

6. Discussion 

We have argued that the research goal should be leading in decisions 
on what design, techniques, and assumptions are needed in its pursuit. 
Hence, being unambiguous and explicit about one’s goal and how this 
aligns with the design that one plans to use, is a critical step that has 
perhaps been skipped over too easily in practice. While certain goal- 
design combinations—such as a causal goal with a cross-sectional 
design—are widely recognized as challenging, others—such as 
prediction-longitudinal or causation-experiment—tend to be considered 
as ideal. However, we caution against over-simplifications either way. 
On the one hand, some combinations may be less ideal, but nevertheless 
the only practical possibility. An open discussion about the additional 
assumptions that are needed to align the design and goal under these 
circumstances will be more beneficial than upfront dismissing a 
particular combination. On the other hand, seemingly ideal combina-
tions should not be taken for granted. For instance, the use of a longi-
tudinal design does not automatically fit with a focus on prediction, as 
the latter requires an evaluation out-of-sample performance. Moreover, 
the real interest in an experimental study may actually be on the effect of 
a cause that was itself not manipulated. We hope the discussion of these 
issues forms an invitation to be (even) more deliberate about one’s 
research goals, and to consider more consciously how these connect to 
the research design researchers (plan to) use. 

There are two closely related concerns, which are fundamental to 
scientific research, but that were only touched upon in passing so far: 
Replicability and generalizability. Here we offer a brief discussion of 
each, with a specific focus on how these concerns relate to some of the 
main themes of the current paper. 

6.1. Replicability 

It has been argued that the lack of replicability of empirical results 
may well be rooted in the fact that experiments tend to focus on a very 
narrow part of the method space, holding as many factors fixed as 
possible (Baribault et al., 2018; Elliott et al., 2020; Heckendorf et al., 
2019). To counter this problem, Baribault et al. (2018) propose radical 
randomization, which consists of a combination of many 
micro-experiments that differ from each other in particular facets—such 
as the exact stimuli (t), or setting (s)—that could serve as moderators of 
the treatment effect. While each micro-experiment itself is underpow-
ered (due to small sample size), combining them in a multilevel model 
allows for the direct investigation of the robustness of a particular effect 
against variations in utosti (see also Kenny and Judd, 2019). A pro-
spective instead of post hoc replication approach might be needed to 
systematically vary one potential design assumption or feature at a time 
(Steiner et al., 2019). A related approach is individual participant data 
(IPD) meta-analysis, which originated in biomedical research (Riley 
et al., 2010), and is now slowly gaining ground in developmental science 

(e.g., Roisman and Van IJzendoorn, 2018; see Gardner et al., 2018 for an 
application to the Incredible Years interventions to promote children’s 
prosocial behaviour). It is based on combining the raw data from indi-
vidual participants across multiple studies in a multilevel model. This 
approach is more powerful than conventional meta-analysis (which uses 
study summaries instead of raw data), and it allows for the inclusion of 
moderators not only at the study level, but also at the individual level, 
thus providing a richer picture of the effect and its individual 
differences. 

Both radical randomization and IPD meta-analyses emphasize the 
importance of using a large number of studies with slightly varying 
methods and designs to obtain robust and replicable results (Van 
IJzendoorn, 1994). A related issue is that choices made during 
pre-processing the raw data may critically affect the results of the final 
analysis. Botvinik-Nezer et al. (2020) asked 70 independent teams to 
analyse the same neuroimaging dataset and found no two teams 
applying the same analytic strategy, resulting in alarmingly large vari-
ability in reported findings. To combat the arbitrariness of results arising 
from a multitude of subjective decisions, Steegen et al. (2016) propose 
multiverse analysis, which is based on considering all the different 
reasonable choices for pre-processing the raw data, and analyzing all the 
datasets that result from this. Moreover, publication bias against null 
results (Rosenthal, 1979), and the profuse use of ‘researcher degrees of 
freedom’ (see Luck and Gaspelin, 2017 for an example from EEG 
research), might be counteracted by (pre-)registration (Kvarven et al., 
2019). Yet, it should also be noted that even robust and replicable results 
may be of little value if they are based on statistical models that are not 
properly linked to an underlying theory (Larzelere et al., 2010; Oberauer 
and Lewandowsky, 2019; Szollosi et al., 2019). 

Clearly, the machine learning techniques, cross-validation, and 
ensemble methods which we discussed, are specifically designed to 
counter the problem of non-replicability. Yet, while some of the other 
techniques we discussed—such as DAGs, Mendelian randomization, and 
the target trial—are not specifically concerned with replicability, they 
may indirectly support replicability by requiring careful a priori 
reflection and debate on design and analytical strategies. Ideally, this 
will lead to decisions made in advance, which result in better docu-
mented pre-registration of experimental as well as non-experimental 
studies, which decrease the researcher’s degrees of freedom and 
thereby promote replicability. 

6.2. Generalizability 

It is often argued that the ultimate goal of science is to uncover 
general laws (cf. Hamaker, 2012). While finding replicable results may 
be seen as an important step towards this ultimate goal, there is also a 
large body of literature arguing that averages and aggregates obtained at 
the level of the population cannot be automatically generalized to the 
individual (cf. Molenaar, 2004). 

The notion that individuals may differ, is actually fundamental to 
much of the causal literature, which is based on defining the individual 
causal effect as the difference between two possible outcomes for a 
particular individual: the potential outcome when treated versus the 
potential outcome when not treated. This difference is in essence person- 
specific: While some individuals benefit from treatment, others may 
worsen because of it, while yet others remain unaffected. However, as it 
is fundamentally impossible to observe both potential outcomes for a 
given person at the same time (cf. Holland, 1978), researchers have to 
resign to alternatives, such as estimating the average causal effect, 
which averages over the individual causal effects of individuals, or the 
average causal effect of the treated, which averages over the individual 
effects of individuals who (are like those who) were treated. 

It is tempting to assume that such an average causal effect represents 
the causal effect for each individual; yet this requires the additional 
assumption of a constant effect (Holland, 1978). In a similar vein, pre-
dictive and descriptive results obtained in a sample of individuals 
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represent averages and are not necessarily generalizable to any partic-
ular individual (Hamaker, 2012; Molenaar, 2004). To obtain results that 
pertain to a specific individual, it may be necessary to study that indi-
vidual in depth over time, such as described by Tuarob et al. (2017) in 
the context of forecasting, or by Holland (1978) who proposes the as-
sumptions of temporal stability and causal transience to allow for the 
study of causality in an individual (Kratochwill et al., 2010). This may 
result in idiographic descriptive, predictive, and causal results, which 
are hard to generalize to the population. However, if this is a concern, 
one should also realize that generalization is a two-way street here: If it 
is not possible to generalize from the individual to the population, it is 
also impossible to generalize from the population to the individual. 
Simply using a technique that averages over individuals does not 
guarantee the discovery of general laws that apply to each and every 
individual (or even a single individual; cf. Hamaker, 2012). 

6.3. Conclusion 

In our study based on 100 CID studies we have found that researchers 
often pursue multiple goals, and that their design not always aligns 
easily with their goal(s). It should be noted though that the current 
sample of papers is not a random sample from developmental research in 
general; to study the latter it may prove fruitful to repeat this exercise 
with a random selection of studies published in the most influential 
developmental journals instead. 

To conclude, it is important to note that one goal is not higher or 
more scientific than another; rather, description, prediction and expla-
nation should be considered as complementary components of science, 
each with their own strengths, challenges, and purpose. Description can 
be useful to establish which phenomena may be of interest to predict or 
explain, and it can be considered critical for laying down the ground-
work from which researchers can develop new theories. Prediction is 
useful to identify who needs an intervention most or adapts optimally to 
a particular role or niche in life. Explanation is necessary to decide how 
to intervene or to understand why someone adapts well. This implies that 
preventive, clinical, and policy applications should be the outcome of 
cumulative slow science (Van IJzendoorn, 2019), and that results from 
single studies should always be evaluated within the broader context of 
descriptive, predictive and explanatory concepts and findings within 
developmental research. 
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