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Chronic pain, a severe public health issue, affects the quality of life of patients and
results in a major socioeconomic burden. Only limited drug treatments for chronic
pain are available, and they have insufficient efficacy. Recent studies have found
that the expression of long non-coding RNAs (lncRNAs) is dysregulated in various
chronic pain models, including chronic neuropathic pain, chronic inflammatory pain, and
chronic cancer-related pain. Studies have also explored the effect of these dysregulated
lncRNAs on the activation of microRNAs, inflammatory cytokines, and so on. These
mechanisms have been widely demonstrated to play a critical role in the development of
chronic pain. The findings of these studies indicate the significant roles of dysregulated
lncRNAs in chronic pain in the dorsal root ganglion and spinal cord, following peripheral
or central nerve lesions. This review summarizes the mechanism underlying the
abnormal expression of lncRNAs in the development of chronic pain induced by
peripheral nerve injury, diabetic neuropathy, inflammatory response, trigeminal neuralgia,
spinal cord injury, cancer metastasis, and other conditions. Understanding the effect
of lncRNAs may provide a novel insight that targeting lncRNAs could be a potential
candidate for therapeutic intervention in chronic pain.

Keywords: long non-coding RNA, chronic neuropathic pain, chronic cancer-related pain, dorsal root ganglion,
spinal cord

Abbreviations: AQP4, Aquaporin 4; BCP, bone cancer pain; BDNF, brain-derived neurotrophic factor; CCRP, chronic
cancer-related pain; CCI, chronic constriction injury; CDK, cyclin-dependent kinase; ceRNA, competitive endogenous RNA;
CFA, Complete Freund’s Adjuvant; CGRP, calcitonin gene-related peptide; CIP, cancer-induced pain; CIPN, chemotherapy-
induced peripheral neuropathy; CNP, chronic neuropathic pain; CRNDE, colorectal neoplasia differentially expressed;
CRPS, complex regional pain syndrome; CXCL13, chemokine ligand 13; CXCL9, chemokine ligand 9; CXCR5, chemokine
receptor 5; DGCR5, DiGeorge syndrome critical region gene 5; DILC, downregulated in liver cancer stem cells; DLEU1,
deleted in lymphocytic leukemia 1; DNP, diabetic neuropathic pain; DRG, dorsal root ganglion; ELAVL1, embryonic lethal
abnormal version-like RNA-binding protein 1; ERK 1/2, extracellular regulated protein kinases 1/2; exo-lncRNA H19,
exosome containing lncRNA H19; FIRRE, functional intergenic repeating RNA element; GAS5, growth-arrest-specific 5;
GO, Gene ontology; HMGB1, high-mobility group box 1; IL-1β, Interleukin-1β; IL-6, Interleukin-6; IL-12, Interleukin-12;
JAK, Janus kinase; KCNA2-AS, KCNA antisense RNA; KEGG, Kyoto Encyclopedia of Genes and Genomes; lncRNAs, long
non-coding RNAs; MALAT1, Metastasis-associated lung adenocarcinoma transcript (MALAT)1; MAPK, mitogen-activated
protein kinases; MEG3, maternally expressed gene 3; miR, miRNA; NEAT1, nuclear paraspeckle assembly transcript 1;
NF-κB, nuclear factor-kappaB; NO, nitric oxide; OA, osteoarthritis; P2X3R, P2X3 receptor; P2X7R, P2X7 receptor; PNI,
peripheral nerve injury; PVT1, plasmacytoma variant translocation 1; SC, spinal cord; SCI, spinal cord injury; SGCs, satellite
glial cells; siRNA, small interference RNA; SNHG1, small nucleolar RNA host gene 1; SNHG5, small nucleolar RNA host gene
5; SNI, spared sciatic nerve injury; SNL, spinal nerve ligation; STAT3, signal transducer and activator of transcription 3; TG,
trigeminal ganglia; TN, trigeminal neuralgia; TNF-α, tumor necrosis factor; TRPV1, transient receptor potential vanilloid
type 1; UCBMSCs, umbilical cord blood mesenchymal stem cells; XIST, X-inactive specific transcript; YY1, Yin-Yang 1.
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INTRODUCTION

Chronic pain is an extremely prevalent healthcare issue that
affects the quality of life of patients, resulting in an annual
financial impact (van Hecke et al., 2014; Hamood et al., 2018).
It can be generally categorized as chronic cancer-related pain
or chronic non-cancer-related pain, such as chronic neuropathic
pain (CNP) and chronic postsurgical or posttraumatic pain
(Treede et al., 2019). Although many studies have elucidated the
mechanisms underlying the development of chronic pain, only
a few currently available clinical therapeutic strategies effectively
alleviate pain symptoms in patients with limited unwanted side
effects. Thus, it is imperative to explore novel targets for the
treatment of chronic pain.

Long non-coding RNA, which consists of more than 200
nucleotides, is a non-coding RNA that lacks a complete open
reading frame (Batista and Chang, 2013). Although they cannot
translate into detectable proteins individually, long non-coding
RNAs (lncRNAs) can play a crucial role in the expression
and translation of other genes and whole gene networks by
interacting with DNA, proteins, and other RNAs (Wang and
Chang, 2011). Accumulating evidence indicates that lncRNAs
are potent regulators of physiological and pathological processes,
such as embryonic development, cancer, inflammation, and
neurological diseases (Ulitsky and Bartel, 2013). Recently, many
studies have identified changes in the expression and important
role of lncRNAs in chronic pain models. Therefore, this review
aimed to explore the roles and mechanisms of lncRNAs in the
development of chronic pain, including CNP and chronic cancer-
related pain (CCRP).

THE ROLE OF lncRNAs IN THE
NERVOUS SYSTEM AND THE
PAIN-SIGNALING PATHWAY

Dysregulated lncRNA expression has been found in damaged
nerves, primary sensory dorsal root ganglion neurons, spinal
cord, and postsynaptic dorsal horn after peripheral nerve lesions
or spinal cord injury (SCI). Under these conditions, accumulating
evidence has shown the effect of the interaction between
lncRNAs and miRNAs in the development of chronic pain. As a
competitive endogenous RNA (ceRNA) (Chen et al., 2017; Sun
et al., 2019), lncRNAs can competitively bind miRNAs, inhibit
the interaction between miRNAs and downstream genes, and
regulate the transcription and expression of downstream genes.
For example, lncRNA MALAT1 can sponge miR-129-5p as a
ceRNA and upregulate the expression of high-mobility group box
1 (HMGB1) in the spinal cord, promoting the development of
CNP (Zhao et al., 2016). lncRNA CRNDE can upregulate the
expression of IL-6 receptors in chronic pain by interacting with
miR-136 (Zhang et al., 2019). In addition, lncRNA Linc01119
can interact with embryonic lethal abnormal version-like RNA-
binding protein 1 (ELAVL1), upregulate the expression of brain-
derived neurotrophic factor (BDNF) at the mRNA and protein
levels, and induce chronic pain in the spinal cord and DRG
(Zhang L. et al., 2021). In summary, lncRNAs can interact with

miRNA or RNA-associated proteins and regulate the different
downstream mechanisms involved in chronic pain.

In addition, some lncRNAs have been reported to mediate the
activation of signaling pathways (Ren et al., 2020) and participate
in the development of chronic pain. lncRNA LOC100911498
small interfering RNA (siRNA) treatment can decrease the
phosphorylation of the p38 pathway in the spinal cord induced
by chronic pain (Tang et al., 2021). Another study suggested
that activation of the ERK1/2 pathway in the DRG is regulated
by lncRNA uc.48+ (Wang et al., 2016). p38 and ERK1/2 can
participate in the development of chronic pain (Lin et al., 2014;
Qian et al., 2019). In addition, P2X3 and P2X7 receptors have
been found to be regulated by lncRNAs (Seino et al., 2006; Peng
H. et al., 2017). The two receptors play a role in the development
of chronic pain (Wu et al., 2021; Xia et al., 2021). Furthermore,
the levels of pro-inflammatory factors, such as IL-1β, IL-6, IL-
12, and TNF-α (Xia et al., 2018; Li Z. et al., 2020; Pan et al.,
2020), have been found to change in chronic pain after lncRNA
downregulation. Neuroinflammation plays a significant role in
chronic pain. Thus, the effect of lncRNAs on the development of
chronic pain may involve various mechanisms (Figure 1).

lncRNAs AND CHRONIC NEUROPATHIC
PAIN

Chronic neuropathic pain (CNP), a major public health concern
worldwide, affects the quality of life of 6.9–10% of the general
population (van Hecke et al., 2014). CNP is characterized by
spontaneous ongoing or evoked by sensory stimuli (hyperalgesia
and allodynia). It is mainly observed in peripheral nerve
lesions [diabetic neuropathy, peripheral nerve injury (PNI), and
trigeminal neuralgia (TN)] or central nerve lesions (SCI) (Scholz
et al., 2019). Various animal models of peripheral neuropathic
pain and central neuropathic pain have been established to
explore the mechanisms underlying the development of CNP
(Tian et al., 2020; Zhang P. et al., 2021). However, the treatment
of CNP remains a major challenge. Recent accumulating evidence
has shown that lncRNAs are related to the development of
peripheral neuropathic pain and central neuropathic pain (Liu
et al., 2018; Sun et al., 2018; Tian et al., 2020; Xu et al., 2020).

lncRNAs and Peripheral Neuropathic
Pain
lncRNAs and Peripheral Nerve Injury
Peripheral nerve injury, which induces CNP, is a common clinical
cause of peripheral nerve lesions. PNI can cause excitability of
the primary sensory ganglia or the spinal cord in the nervous
system (Tsuda et al., 2009), which plays a role in pain-signaling
transmission. Most animal models, such as those of chronic
constriction injury (CCI), spinal nerve ligation (SNL), and spared
sciatic nerve injury (SNI), have been used to investigate the
relationship between lncRNAs and CNP in the nervous system
(Table 1 and Figure 2). Zhao et al. (2013) were the first to show
that the expression of a new native lncRNA was upregulated in
mammalian DRG neurons of SNL and CCI model mice. Since
the sequence of this lncRNA was found to be complementary
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FIGURE 1 | Long non-coding RNA (lncRNAs) and their mechanism in pain transmission: lncRNAs can participate in pain transmission through various mechanisms.

to that of KCNA2 RNA, the researchers named it as KCNA
antisense (KCNA2-AS). KCNA2-AS was identified to trigger the
downregulation of KCNA2 in the DRG and participate in the
development of neuropathic pain by using KCNA2-AS siRNA,
indicating the important role of lncRNAs in CNP development.
The following studies were performed to explore the roles and
mechanisms of lncRNAs in the development of PNI-induced
CNP. lncRNAs, such as MALAT1, DILC, FIRRE, XIST, H19, and
DGCR5 in the spinal cord, have been found to have a continuous
effect on CNP (Wei et al., 2018; Peng et al., 2019; Li K. et al.,
2020; Liu et al., 2020; Wu et al., 2020; Wen et al., 2021). lncRNAs,
such as H19, SNHG5, and MRAK009713 in DRG, have also been
identified to play important roles in the development of CNP (Li
et al., 2017; Chen et al., 2020; Wen et al., 2020). Since numerous
lncRNAs are involved, we have summarized the following points:

(1) Most lncRNAs interacted with miRNAs, and MALAT1
and XIST were the most common among these lncRNAs.
miRNA downregulation triggered by these lncRNAs
could influence the downstream mechanism and
induce mechanical and cold hypersensitivity and
the symptoms of PNI-associated CNP. In addition,
other mechanisms of lncRNAs have been investigated
in PNI models. DILC, Linc00311, AK141205, and
KCNA2-AS have been reported to participate in
CNP by regulating the JAK/STAT3-signaling pathway
(Mao et al., 2018; Kong et al., 2020; Liu et al., 2020).

MRAK009713-mediated CNP development is involved
in P2X3 receptor activation (Li et al., 2017). Cyclin-
dependent kinases 4 and 6 (CDK4 and CDK6) have
been found to be regulated by lncRNA SNHG1 and
PKIA-AS1, respectively (Hu et al., 2019; Zhang J.Y. et al.,
2020). Notably, changes in the levels of pro-inflammatory
cytokines (IL-1β, IL-6, and TNF-α) have been found in
most PNI models (Li Z. et al., 2020; Pan et al., 2020),
indicating that lncRNA-mediated CNP development may
be involved in neuroinflammation.

(2) The same issue could express various lncRNAs, which
may be different expression levels or play opposite effect
on the PNI model. In the spinal cord of CCI rats,
DLEU1 expression was upregulated (Li Z. et al., 2020),
whereas GAS5 expression was downregulated (Tian et al.,
2020). Thus, the two lncRNAs played opposite roles in
the development of PNI-induced CNP. In addition, the
expression of the same lncRNA in different conditions or
models may display opposite changes. MALAT1 expression
was increased in the L4-L6 spinal cord of male CCI rats (Ma
et al., 2020), while its expression was reduced in the C5-T1
spinal cord of male complete brachial plexus avulsion rats
(Meng et al., 2019).

(3) Owing to the sex difference in pain sensitivity (Fullerton
et al., 2018), clinical and experimental findings have
suggested that women are more sensitive to pain than
men (Fillingim et al., 2009). lncRNA XIST, which mediates
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TABLE 1 | lncRNAs and peripheral nerve injury.

Model lncRNAs Distribution Expression Mechanism References

CCI MALAT1 SC of female rat ↑ MALAT1/miR-154-5p/AQP9 axis Wu et al., 2020

SC of female rat ↑ MALAT1/miR-206/ZEB2 axis Chen Z.L. et al., 2019

SC of male rat ↑ MALAT1/miR-129-5p/HMGB1 axis Ma et al., 2020

DILC SC of male rat ↑ SOCS3/JAK2/STAT3 pathway Liu et al., 2020

FIRRE SC of female mouse ↑ HMGB1 Wen et al., 2021

CRNDE SC of rat ↑ CRNDE/miR-136/IL6R axis, IL-1, IL-6,
IL-10, TNF-α

Zhang et al., 2019

XIST SC of female rat ↑ XIST/miR-154-5p/TLR5 axis Wei et al., 2018

SC of female rat ↑ XIST/miR-150/ZEB1 axis Yan et al., 2018

SC of female rat ↑ XIST/miR-544/STAT3 axis, TNF-α, IL-1β,
IL-6

Jin et al., 2018

SC of female rat ↑ XIST/miR-137/TNFAIP1 axis Zhao et al., 2018

Linc00657 SC of female rat ↑ Linc00657/miR-136/ZEB1 axis Shen et al., 2019

NEAT1 SC of female rat ↑ NEAT1/miR-381/HMGB1 axis, IL-6,
IL-1β, TNF-α

Xia et al., 2018

uc.153 SC of male mouse ↑ uc.153/miR-182-5p/EphB1-NMDA
receptors

Zhang C. et al., 2020

Linc00311, AK141205 SC of male rat ↑ STAT3, IL-6, IL-1β Pang et al., 2020

SNHG16 SC of female rat ↑ SNHG16/miR-124-3p,
miR-141-3p/JAG1 axis, IL- 6, TNF-α,
IL-1β

Li H. et al., 2020

GAS5 SC of female rat ↓ GAS5/miR-452-5p/CELF2 axis Tian et al., 2020

DLEU1 SC of female rat ↑ DLEU1/miR-133a-3p/SRPK1 axis, IL-6,
TNF-α, IL-1β

Li Z. et al., 2020

H19 SC of rat ↑ H19/miR-196a-5p/CDK5 axis, p-CREB Li K. et al., 2020

HAGLR SC of female rat ↑ HAGLR/miR-182-5p/ATAT1 axis, NLRP3 Zhang Q. et al., 2021

CCAT1 Hippocampus, SC, DRG
of male rat

↓ miR155, SGK3 Dou et al., 2017

MRAK009713 DRG of male rat ↑ P2X3 receptor Li et al., 2017

SNL, CCI Kcna2-AS DRG neuron of male rat ↑ MZF1/Kcna2-AS/Kcna2 Zhao et al., 2013

SNL PKIA-AS1 SC of male rat ↑ CDK6 Hu et al., 2019

SNHG1 SC of male rat ↑ CDK4 Zhang J.Y. et al., 2020

SNHG4 SC of male rat ↑ miR-423-5p, IL-6, IL-12, TNF-α Pan et al., 2020

SNHG5 L5 DRG of male mouse ↑ SNHG5/miR-154-5p/CXCL13 axis Chen et al., 2020

P21 SC of male rat ↑ P21/miR-181b/Tnfaip1, AKT/CREB axis Liu et al., 2021

Linc00052 SC of male rat ↑ Linc00052/miR-448/JAK1 axis, IL-6,
TNF-α

Wang L. et al., 2020

H19 DRG of male mouse ↑ Unknown Wen et al., 2020

Lncenc1 DRG of male mouse ↑ Lncenc1/EZH2/BAI1
TNF-α, IL-1β, IL-10

Zhang Z. et al., 2021

SNI AC111653.1 DRG of male rat ↑ Unknown Mao et al., 2018

DGCR5 SC of female rat ↓ DGCR5/miR-330-3p/PDCD4 axis Peng et al., 2019

LOC100911498 L4, L5 SC of male rat ↑ P2X4R, BDNF, p38 Tang et al., 2021

Slc6a19os, Sox11 L3-L5 DRG of male
mouse

↑ miR-125a-5p, miR-125b-5p,
miR-351-5p

Chen et al., 2021

Linc01119 L4-L5 SC and DRGs of
male rats

↑ Linc01119/ELAVL1/BDNF axis Zhang L. et al., 2021

Complete brachial
plexus avulsion

MALAT1 cytoplasm of neurons in
male rat C5-T1 SC

↓ Unknown Meng et al., 2019

PHN Kcna2-AS L4, L5 SC of female rat ↑ STAT3, astrocyte Kong et al., 2020

CCI, chronic constriction injury, SNL, spinal nerve ligation; SNI, spared sciatic nerve injury; SCI, spinal cord injury; SC, spinal cord; DRG, dorsal root ganglion; PHN,
postherpetic neuralgia; ↑, upregulated expression; ↓, downregulated expression.

X-chromosome inactivation or reactivation in female cells
(Vacca et al., 2016), has been found to play an important
role in female PNI models (Jin et al., 2018; Wei et al., 2018;

Yan et al., 2018; Zhao et al., 2018). However, most lncRNAs
exert their effect on all PNI models, regardless of sex,
indicating that most lncRNAs can play an important role
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in the development of PNI-induced CNP in both female
and male models.

(4) Many studies have paid attention to the effect of lncRNAs
on spinal cord and DRG. However, various specific brain
regions, such as hippocampus, periaqueductal gray (PAG),
anterior cingulate cortex (ACC), can also exert their
effect on the development of chronic pain (Bliss et al.,
2016; Ong et al., 2019). Dou et al. (2017) found the
decrease of the lncRNA CCAT1 level in hippocampus and
ACC of the CCI model. Overexpression of CCAT1 could
alleviate CNP and inhibit the increased miR-155. As a
role of ceRNA, CCAT1 could inhibit miRNA expression,
and the researcher further identified the role of serum
and glucocorticoid-regulated protein kinase 3 (SGK3)
in CCAT1-mediated miR-155 expression and CCAT1-
induced CNP. These results indicated the significant role
of lncRNA in hippocampus and ACC. However, the effect
of lncRNAs on specific brain regions needs to be explored
in the future.

lncRNAs and Diabetic Neuropathic Pain
Diabetic neuropathic pain (DNP), a painful diabetic peripheral
neuropathy, is one of the most common types of neuropathic
pain (de Vos et al., 2014), and it commonly manifests as
allodynia, hyperalgesia, or spontaneous pain (Wang et al., 2014).
Approximately, 40–50% of patients with diabetes experience
DNP (Schreiber et al., 2015), whereas effective therapies for
DNP remain elusive. Recently, genome-wide expression patterns
of lncRNAs have been identified, and RT-qPCR validated the
dysregulation of lncRNAs in the spinal cord of DNP mice
(Du et al., 2019). Bioinformatics analysis results have shown
that these lncRNA-related genes are involved in calcium ion
transport, which participates in neuropathic pain development
(Baba et al., 2016). However, the speculation that lncRNA exerts
an effect on the ion channel in DNP needs to be further
explored (Table 2).

Liu et al. (2018) identified the role of lncRNAs in DNP
by regulating transient receptor potential vanilloid type 1
(TRPV1) activation in the rat DRG. Using western blot
analysis, they found that high TRPV1 receptor expression in
DRG neurons of DNP rats could be substantially decreased
by lncRNA BC168687 siRNA, which could alleviate TRPV1-
mediated diabetic neuropathic pain (Zhang B.Y. et al., 2020),
indicating that lncRNA BC168687 may regulate the ion channel
of DRG neurons and participate in the development of DNP. In
addition, Liu et al. (2018) found that P2X7 receptor expression
was downregulated after BC168687 siRNA treatment. The P2X7
receptor is mainly expressed in satellite glial cells (SGCs) (Chen
et al., 2012; Puchałowicz et al., 2015), which tightly enwrap
the DRG (Costa and Moreira Neto, 2015). Previous studies
have suggested that SGC P2X7 receptors play an important
role in neuropathic pain (Kuan and Shyu, 2016; Bernier et al.,
2018). Liu et al. (2017) found that treatment with BC168687
siRNA decreased the serum level of oxidative injury factors (e.g.,
NO) released by SGCs in a DNP model. NO can strengthen
the sensitivity of neurons to noxious stimulation in the DRG
(Thippeswamy et al., 2005). NO has been reported to be involved

in the development of neuropathic pain (Rondón et al., 2018).
Thus, BC168687 may promote interaction with neurons and
glia in the DRG during DNP. These data indicate that lncRNA
BC168687 in DRG may participate in the development of DNP
by regulating the activation of both neurons and glia.

Long non-coding RNA NONRATT021972 has also been
validated to play an important role in the development of DNP
(Liu et al., 2016). Using lncRNA siRNA, P2X7 antagonist, and
electrophysiological recordings of neurons, this lncRNA was
found to regulate P2X7 receptor expression in the SGCs of the
DRG during DNP. Peng H. et al. (2017) explored the direct effect
of this lncRNA on DRG neurons. NONRATT021972 siRNA
inhibited the expression and activation of the P2X3 receptor
and its downstream ERK1/2-signaling pathway in neurons
and relieved DNP. The ERK1/2-signaling pathway is involved
in neuropathic pain transmission (Seino et al., 2006). These
results indicate that lncRNA NONRATT021972 in the DRG
may participate in the development of DNP by regulating the
activation of both neurons and glia.

Similarly, the P2X3 receptor and ERK1/2-signaling pathway
in the DRG are regulated by another lncRNA uc.48+ (Wang
et al., 2016). In addition, lncRNA uc.48+ siRNA can significantly
suppress the expression of calcitonin gene-related peptide
(CGRP), IL-1β, and TNF-α in the spinal cord (Xiong et al.,
2017). The expression of CGRP, IL-1β, and TNF-α in the spinal
cord may contribute to pain responses (Brown et al., 2008;
Hansen et al., 2016). Thus, lncRNA uc.48+ may participate
in the development of DNP by regulating the expression of
the three factors in the spinal cord. The findings from the
aforementioned studies suggest a role for lncRNA uc.48+ in
the progression of DNP and provide various lines of evidence
to explain the lncRNA-mediated mechanisms underlying the
development of DNP.

lncRNAs and Trigeminal Neuralgia
Trigeminal neuralgia is a common type of neuropathic pain,
and many treatments for TN, including medical therapy
and microvascular decompression, have been found to be
ineffective (Bick and Eskandar, 2017). Recently, lncRNA
Gm14461 expression has been found to be increased in the
trigeminal ganglia (TG) of TN mice (Xu et al., 2020). The
Gm14461 knockdown increased the mechanical withdrawal
threshold of TN mice, indicating that Gm14461 may play a
regulatory role in mechanical hyperalgesia in TN mice. Western
blot analysis results suggested that the Gm14461 knockdown
could downregulate the expression of CGRP and P2X3/7
receptors at the protein level in TN mice. The three proteins are
reported to participate in the development of neuropathic pain
(Hansen et al., 2016; Wu et al., 2021; Xia et al., 2021). Moreover,
Gm14461 upregulates the expression of TNF-α, IL-1β, and IL-6
(Xu et al., 2020). Another lncRNA uc.48+ interacts with the P2X7
receptor and promotes the expression of the P2X7 receptor in TG
(Xiong et al., 2019). Western blot analysis results suggests that
the ERK-signaling pathway may be involved in this interaction
between uc.48+ and P2X7 receptor. These findings suggest that
lncRNAs may play an important role in the development of TN
through various mechanisms.
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FIGURE 2 | Distribution of deregulated long non-coding RNAs (lncRNAs) with the respective associated mechanisms in peripheral nerve injury (PNI): lncRNAs can
participate in the development of PNI-induced chronic neuropathic pain (CNP) through various mechanisms. The same lncRNA displays different expressions in
different models or issues. Most lncRNAs can play an important role in the development of PNI-induced CNP in both female and male models. ACC, anterior
cingulate cortex; DRG, dorsal root ganglion; SC, spinal cord.

lncRNAs and Central Neuropathic Pain
Associated With Spinal Cord Injury
Chronic neuropathic pain is one of the most common
complications of SCI that severely influences the quality of life
of patients with SCI (Bouhassira et al., 2008). A bioinformatics
analysis was performed to determine the dysregulation of
lncRNA expression associated with pain transmission in blood
samples from patients with SCI (Zhao et al., 2021). Two
lncRNAs (Linc01119 and Linc02447) involved in the pain
pathway indicated that lncRNA-mediated pain transmission
may play a role in the development of SCI-induced CNP.
Xian et al. (2021) confirmed the role of lncRNAs in the
spinal cord of the CNP model. lncRNA NEAT1 expression was
increased in the spinal cord of SCI rats, and NEAT1 inhibition
alleviated SCI-induced CNP. miR-128-3p was downregulated
by NEAT1 overexpression, as it played the role of its ceRNA,
and the levels of AQP4, IL-6, IL-1β, and TNFα were increased
after miR-128-3p inhibition. Another study suggested that
upregulated lncRNA PVT1 could alleviate SCI-induced CNP by

targeting the miR-186-5p/CXCL13/CXCR5 axis (Zhang P. et al.,
2021). CXCL13, CXCR5, and AQP4 are vital regulators of the
inflammatory response in the nervous system (Liang et al., 2016;
Bu et al., 2019). Thus, these two studies indicated the role and the
mechanism of lncRNAs in the development of SCI-induced CNP,
including their interaction with miRNAs or indirect regulation of
the inflammatory response.

lncRNAs AND COMPLEX REGIONAL
PAIN SYNDROME-INDUCED
INFLAMMATORY PAIN

Complex regional pain syndrome (CRPS) is a chronic pain
disorder characterized by intense pain, inflammation, and altered
autonomic function (de Mos et al., 2007). The mechanism
underlying the development of CRPS remains unclear (Birklein
and Schlereth, 2015). Since women are about four times more
likely than men to develop CRPS (Schwartzman et al., 2009),
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TABLE 2 | lncRNAs and diabetic neuropathic pain.

Model lncRNAs Distribution Expression Mechanism References

DNP BC168687 DRG of male rat ↑ TRPV1, ERK1/2, p38, TNF-α, IL-1β Liu et al., 2018

DRG of male rat ↑ P2X7R, NO Liu et al., 2017

NONRATT021972 DRG of rat ↑ P2X7R, TNF-α, astrocyte Liu et al., 2016

DRG of male rat ↑ P2X3R, ERK1/2 Peng H. et al., 2017

Blood sample of male rat ↑ TNF-α Yu et al., 2017

uc.48+ DRG of male rat ↑ P2X3R, ERK1/2 Wang et al., 2016

SC of male rat ↑ CGRP, ERK1/2, p38 Xiong et al., 2017

DNP, diabetic neuropathic pain; ↑, upregulated expression.

Shenoda et al. (2018) investigated the role of lncRNA XIST
in the development of CRPS. XIST promotes and maintains
X-chromosome inactivation (Wang et al., 2021), which refers
to the random selection and transcriptional silencing of one of
the two X-chromosomes in females, indicating the association
of its effect with sex differences. RT-qPCR analysis results
suggested that the expression of XIST was increased, and
the upstream expression of miR-34a was decreased in the
blood samples of patients with CRPS (Shenoda et al., 2018).
As a role of a ceRNA, XIST in blood was identified to be
directly regulated by miR-34a in a complete Freund’s adjuvant
(CFA)-induced inflammatory pain model. The pro-inflammatory
transcription factor, Yin-Yang 1 (YY1), was found to participate
in miR-34a-mediated XIST expression. Thus, miRNA-mediated
downregulation of XIST expression in the blood may be a
potential strategy for relieving CRPS-induced inflammatory pain.
Another study found that XIST expression in the DRG was
increased in a CFA-induced inflammatory pain model, and
the XIST knockdown inhibited activated the Nav1.7 channel
and levels of IL-6 and TNF-α in the DRG and attenuated
inflammatory pain (Sun et al., 2018). These studies indicate
that XIST is regulated by miRNAs and mediates the release of
pro-inflammatory factors, participating in the development of
inflammatory pain, demonstrating a new mechanism underlying
inflammatory pain. However, the mechanism underlying CRPS-
induced inflammatory pain in male patients needs to be
further explored.

lncRNAs AND
OSTEOARTHRITIS-INDUCED
INFLAMMATORY PAIN

Osteoarthritis is one of the most common forms of arthritis
(Sellam and Berenbaum, 2010). Its clinical manifestations include
joint swelling, synovitis, and inflammatory pain, which cause
pain to the patient. Many studies have indicated the regulatory
role of lncRNAs in the inflammatory process of OA. Many
lncRNAs can attenuate OA through the interaction between
lncRNAs and miRNAs (Xie et al., 2020), MAPK pathway (Xiao
et al., 2019), and pro-inflammatory factors (Li et al., 2018a).
However, the role of lncRNAs in OA-induced inflammatory pain
remains unclear. This review focused on lncRNAs involved in
this type of pain. Similar to lncRNAs in the PNI model, various

lncRNAs may be differentially expressed and exert opposite
effects in the pathogenesis of OA (Abbasifard et al., 2020; Xie
et al., 2020). Li et al. (2018b) first found that the levels of lncRNA
MEG3 increased in the articular tissue of an OA model after
treatment with methylene blue, which improved pain sensitivity
and reduced inflammatory pain in the OA model. MEG3 has
been reported to play a protective role in chondrocytes against IL-
1β-induced inflammation in an OA model (Huang et al., 2021).
IL-1β, IL-6, and TNFα levels were decreased in a methylene blue-
treated OA model, and MEG3 siRNA increased the expression
of IL-1β, IL-6, and TNF-α reduced, following methylene blue
treatment (Li et al., 2018b), indicating that lncRNA MEG3
may alleviate OA-induced pain by regulating inflammation.
Subsequently, research was performed to investigate the effect of
lncRNAs on the nervous system (Yang et al., 2021). Umbilical
cord blood mesenchymal stem cells, which can release exosomes
containing lncRNA H19, were intravenously, intracavitary, or
intrathecally administered to an OA model, and all three types of
administrations improved the pain sensitization of advanced OA.
RT-qPCR analysis results suggested that serum IL-1α, IL-2, IL-6,
and TNF-αlevels were decreased by treatment with exo-lncRNA
H19. In addition, activation of the ERK-signaling pathway in
the spinal dorsal horn was inhibited by exo-lncRNA H19. These
results indicate that lncRNAs may regulate the development of
OA-induced pain via different mechanisms. Notably, different
lncRNAs may play opposite roles in the inflammatory process
of OA (Abbasifard et al., 2020; Xie et al., 2020); a similar
phenomenon may appear in the development of OA-induced
pain. The roles and mechanisms of different lncRNAs need
to be validated.

lncRNA AND CHRONIC
CANCER-RELATED PAIN

Chronic cancer-related pain, another type of chronic pain,
similarly deteriorates the quality of life of patients. It can be
caused by cancer itself (primary tumor or metastases) or by its
treatment (surgery, chemotherapy, and radiotherapy) (Bennett
et al., 2019). CCRP is characterized by symptoms of syndromes,
including neuropathic and musculoskeletal pain (Treede et al.,
2019). Many lncRNAs have been found to play a significant role
in cancer, cancer metastasis, and cancer-associated treatment (Li
et al., 2016, 2021; Peng W.X. et al., 2017). Recently, accumulating
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FIGURE 3 | Expression changes and mechanisms of long non-coding RNAs (lncRNAs) in CCRP: many lncRNAs are dysregulated by tumor metastasis and
chemotherapy treatment. lncRNA NONRATT021203.2 can exert its effect on BCP by mediating CXCL9 release. BCP, bone cancer pain; CCRP, chronic
cancer-related pain; CIPN, chemotherapy-induced peripheral neuropathy.

evidence has shown that lncRNAs are related to the development
of CCRP (Figure 3).

lncRNAs and Cancer-Induced Pain
More than 50% of patients with cancer experience cancer-
induced pain (CIP) (van den Beuken-van et al., 2016). Bone
cancer pain (BCP) is the most common type of CIP and is
mainly caused by metastatic tumors (Bennett et al., 2019).
Many studies have focused on the role of lncRNAs in tumor
metastasis (Weidle et al., 2017). This review focuses on the
latest research findings on the effect of lncRNAs on CIP and
identifies the roles of lncRNAs in metastatic tumor-induced
pain. Transcriptome sequencing and RT-qPCR validated the
change in the expression of 10 lncRNAs (five upregulated and
five downregulated) in the ipsilateral lumbar spinal cord in a rat
BCP model (Hou et al., 2020). Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis of the
dysregulated lncRNAs (NONRATT007487.2, NONRATT
003582.2, NONRATT026544.2, NONRATT004661.2,
NONRATT008764.2, MSTRG.12616.2, MSTRG.13351.2,
MSTRG.16194.3, MSTRG.16806.2, and MSTRG.29385.15)
indicated that they were mainly involved in inflammatory
and immunological responses. Inflammation in the nervous
system has been reported to play an important role in BCP,
and inhibiting this response could significantly attenuate
BCP (Song et al., 2015; Chen S.P. et al., 2019), indicating

the potential role of lncRNAs in the development of BCP.
Another study further confirmed the link between lncRNAs
and neuroinflammation in a BCP model (Sun et al., 2020). The
researchers relieved hyperalgesia in BCP rats by treatment with
lncRNA NONRATT021203.2 siRNA. In addition, the increased
expression of C-X-C motif chemokine ligand 9 (CXCL9) in the
DRG was inhibited by this siRNA. CXCL9 has been reported
to play a pro-neuroinflammation role in the nervous system
(Koper et al., 2018), and inhibiting CXCL9 expression could
relieve hyperalgesia in BCP rats (Sun et al., 2020), indicating that
NONRATT021203.2 could target CXCL9 and result in CIP in
the BCP model. The findings from the two studies indicate that
the lncRNA-neuroinflammation axis may be a potential target
for the treatment of CIP.

lncRNA and Chemotherapy-Induced Pain
Chemotherapy-induced peripheral neuropathy is a neurotoxic
adverse effect of many chemotherapeutic agents (Banach et al.,
2017). Chronic pain is a major symptom of chemotherapy-
induced peripheral neuropathy (CIPN) (Brewer et al., 2016).
The mechanism underlying chemotherapy-induced pain remains
unclear, and many medical treatments are usually insufficient for
pain management (Sisignano et al., 2014). In a recent study, RNA
sequencing (RNA-Seq) and bioinformatics analysis have been
performed to explore lncRNA expression profiles in the spinal
cord dorsal horn of rats treated with paclitaxel (Li et al., 2021),
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one of the most commonly used chemotherapeutic agents
(Mody et al., 2016). These results suggest that dysregulated
lncRNAs were primarily involved in the neurotrophin-signaling
pathway. Neurotrophin signaling could result in the recruitment
of signaling proteins (Scott-Solomon and Kuruvilla, 2018),
which activate downstream intracellular-signaling pathways,
including the ERK1/2 and NF-κB pathways. ERK1/2 and NF-
κB signaling have been found to participate in paclitaxel-
induced peripheral neuropathy (Wang G. J. et al., 2020;
Zhao et al., 2020). These two signaling pathways have been
identified downstream of lncRNAs (Peng H. et al., 2017; Zhao
et al., 2018). This study indicated that lncRNAs may play an
important role in the process of chemotherapy-induced pain by
mediating the two signaling pathways; however, this needs to be
further validated.

CONCLUSION

In recent years, an increasing number of studies have addressed
the change in expression of lncRNAs in humans with chronic
pain and preclinical pain models. The vital role of lncRNAs
in chronic pain, including CNP, inflammatory pain, and CCRP,
has been identified. These lncRNAs can participate in the
development of chronic pain by interacting with miRNAs,
regulating pro-inflammatory cytokine levels, and mediating
signaling pathways. However, the regulatory effects of lncRNAs
may be contradictory in different models or different issues.

Some lncRNAs, such as XIST, are associated with sex-related
differences. Thus, it is necessary to take these factors into
account while exploring strategies for alleviating chronic pain.
In addition, the same lncRNA could exert its effect on different
types of chronic pain, indicating the existence of a similar
mechanism underlying the development of different types of
pain. Although lncRNA-based clinical agents for chronic pain
have not been clearly determined, this preclinical exploration of
the mechanism may provide novel and evidential insights for
exploring effective strategies for lncRNA-based treatments for
chronic pain. However, the clinical efficacy and risks involved in
lncRNA therapy need to be systematically evaluated.
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