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Abstract: The treatments available for thalassemia are rapidly evolving, with major advances made
in gene therapy and the modulation of erythropoiesis. The latter includes the therapeutic potential
of hepcidin tuning. In thalassemia, hepcidin is significantly depressed, and any rise in hepcidin
function has a positive effect on both iron metabolism and erythropoiesis. Synthetic hepcidin and
hepcidin mimetics have been developed to the stage of clinical trials. However, they have failed
to produce an acceptable efficacy/safety profile. It seems difficult to avoid iron over-restricted
erythropoiesis when directly using hepcidin as a drug. Indirect approaches, each one with their
advantages and disadvantages, are many and in full development. The ideal approach is to target
erythroferrone, the main inhibitor of hepcidin expression, the plasma concentrations of which are
greatly increased in iron-loading anemias. Potential means of improving hepcidin function in
thalassemia also include acting on TMPRSS6, TfR1, TfR2 or ferroportin, the target of hepcidin. Only
having a better understanding of the crosslinks between iron metabolism and erythropoiesis will
elucidate the best single option. In the meantime, many potential combinations are currently being
explored in preclinical studies. Any long-term clinical study on this approach should include the
wide monitoring of functions, as the effects of hepcidin and its modulators are not limited to iron
metabolism and erythropoiesis. It is likely that some of the aspects of hepcidin tuning described
briefly in this review will play a role in the future treatment of thalassemia.
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1. Introduction

Thalassemia and Sickle Cell Disease (SCD) are among the most common inherited
disorders, affecting millions of people worldwide [1,2].

β-thalassemia is caused by mutations in the β-globin gene that lead to unbalanced
α- and β-chain production, with the expansion of abnormal erythroid precursors, maturation
blockage and increased apoptosis of late erythroblasts (Figure 1). This detrimental condition
of ineffective erythropoiesis (IE) is tightly linked to iron metabolism dysregulation with
hepcidin suppression, which predisposes patients to severe iron loading even in the absence
of transfusions [3]. Thalassemia is the prototype of the so-called iron-loading anemias.

The degree of anemia and IE influence different phenotypes. Thalassemia major (TM)
is defined as a severe form of anemia with early bone alterations and lifelong transfusion
need; thalassemia intermedia (TI) includes a broad spectrum of severity, from very mild
conditions to moderate ones with a high risk of clinical complications. Regarding basic
treatment, thalassemias are grouped as transfusion-dependent β-thalassemia (TDT) and
non-transfusion-dependent β-thalassemia (NTDT) [4]. The TM/TI and TDT/NTDT cat-
egories are not synonymous but complementary; experienced clinicians label a patient
permanently as TM or TI, according to the clinical presentation and the severity of ge-
netic defects. On the contrary, the TDT/NTDT label may vary according to local blood
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availability and individual clinical course. A significant proportion of TI patients move
sooner or later from NTDT to TDT due to worsening anemia or for preventing/controlling
complications. In general, both TDT and most NTDT patients suffer from iron overload,
which requires chronic iron chelation therapy to prevent iron-related complications, such
as endocrinopathies and liver and heart disease [4].
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Figure 1. Central role of ineffective erythropoiesis in hepcidin cascade in thalassemia
(ERFE = erythroferrone; EPO = erythropoietin; ROS = reactive oxygen species).

Sickle Cell Disease (SCD) is a monogenic disorder that results in progressive mul-
tiorgan disease due to intravascular hemolysis, acute vaso-occlusive crisis and chronic
inflammation. If, in SCD, on the one hand, anemia leads to the suppression of hepcidin, on
the other hand, inflammation and chronic hemolysis upregulate hepcidin. The final result
of these two patterns in each patient may vary widely, but a minority of SCD patients have
a pattern of iron-loading anemias [5].

2. Hepcidin–Ferroportin Axis

Hepcidin is a peptide hormone produced by the HAMP gene (19q13), initially asso-
ciated with in vitro antimicrobial activity only [6,7]. Then, hepcidin emerged as the key
hormone for iron homeostasis regulation [8]. Encoded as a pro-peptide by the cleavage
of two isoforms, hepcidin-25 represents the active one, with an N-terminal residue of five
amino acids that are crucial for iron regulation, inhibition of dietary iron absorption and
iron release from storage [9]. Hepcidin is primarily synthesized in the hepatocytes and, to
a lesser extent, by monocytes [10], macrophages [11], adipocytes [12], the kidneys [13], the
small intestine, the placenta [14], retinal cells [15] and cardiomyocytes [16]. Hepcidin is
upregulated by iron levels [17], inflammation and infection [18,19], while anemia, hypoxia,
iron deficiency, ineffective erythropoiesis and increased erythropoietin (EPO) levels are
down-regulating factors [19,20]. Hepcidin synthesis is mainly controlled throughout the
bone morphogenetic proteins BMP6 and, to a lesser extent, BMP2 produced by endothe-
lial cells, which activate signal transmission through SMAD proteins (Figure 1) [21–23].
Once secreted into the circulation, hepcidin binds to ferroportin (FPN), the only known
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cellular iron exporter in vertebrates, localized at the basolateral membranes of duodenal
enterocytes [24]. FPN is also abundantly expressed on cells that recycle iron from senescent
red blood cells, such as macrophages of the spleen, bone marrow and liver [24]. Hepcidin
binding to ferroportin is coupled to iron binding, with an 80-fold increase in hepcidin
affinity in the presence of iron [25]. Hepcidin binding occludes the central cavity of FPN,
interfering with iron export independently of endocytosis [26]. The iron-related differential
affinity for FPN has the important function of determining the inhibition of cells actively
involved in iron export, such as intestinal cells and macrophages [25]. After hepcidin
binding, FPN is internalized and degraded by lysosomes, requiring the resynthesis of
degraded ferroportin molecules. The final result is that the outflow of iron from cells is
reduced, and the intracellular storage increases [27]. Hepcidin’s effect lasts up to 48 h.

The massive erythron expansion of thalassemia requires up to 100-fold the physio-
logical daily iron amount [28,29]. This requirement is met by the increased expression
of erythroferrone (Erfe), a recently identified iron-regulatory hormone highly expressed
in erythroblasts in response to EPO stimulation [30]. Erfe-knockout mice are not anemic,
indicating that Erfe has a modest effect on hepcidin repression in steady state. However,
Erfe contributes to iron loading in mice with β-thalassemia [31]. Erfe acts as a potent
hepcidin suppression, thus enhancing duodenal iron absorption and iron mobilization
from stores. This favors iron availability for the increased erythropoietic demand. The
erythroid sensing, throughout Erfe, prevails over the iron sensing. This aspect is useful in
physiological conditions, but, in thalassemias, it is responsible for triggering iron overload,
both in NTDT and TDT patients [20,31–33].

The most potent Erfe inhibitor is the liver transmembrane serine protease TMPRSS6
(transmembrane serine protease 6) or matriptase-2 TMPRSS6, which is mutated in patients
with iron-refractory iron deficiency anemia (IRIDA) [34]. TMPRSS6 cleaves the BMP core-
ceptor hemojuvelin (HJV), thereby avoiding the overactivation of BMP/SMAD signaling
and hepcidin transcription [35].

The expansion of the erythropoietic compartment is backed by the expression of trans-
ferrin receptor 1 (TfR1) and transferrin receptor 2 (TfR2), which modulate the iron supply
to the erythron [36]. TfR1 is the most abundant cell membrane protein on erythroblasts and
is essential in mediating transferrin endocytosis.

Unfortunately, a simple and direct marker of erythropoiesis is lacking. This makes
intra- and interpatient comparisons, with or without treatment, challenging in thalassemia.
Recently, the ratio of sTfR1 plasma concentration (proportional to the volume of erythroid
tissue) divided by absolute reticulocyte count (proportional to effective erythroid output
from the bone marrow) has been proposed as the best index to quantify ineffective erythro-
poiesis [37]. In mouse models of beta-thalassemia, decreased expression of TfR1 has been
associated with improved iron metabolism and IE [38]. TfR2, a constitutive component of
the Epo receptor complex, is expressed during the differentiation of erythroid cells [39], but
its function has not been fully unveiled. Even so, TfR2 inhibition has potential therapeutic
implications as, in thalassemic mice, the knockout of TfR2 lowers Epo and Erfe levels,
increasing the proportion of mature precursors and hemoglobin [40].

Thalassemia is the prototype of iron-loading anemias. Urinary hepcidin levels are
suppressed in patients with NTDT not receiving transfusions. Hepcidin is also low, but to
a less pronounced extent, in patients on a regular transfusion program, even with more
severe iron overload [41]. This finding is not surprising, as transfusion improves anemia
and suppresses erythropoiesis, with an increase in hepcidin production [42]. However,
hepcidin concentrations progressively decrease in the intervals between transfusions [43,44].
In summary, any severe form of thalassemia, even on regular transfusion, should be
considered an iron-loading anemia.

3. Targeting the Hepcidin–Ferroportin Axis in Thalassemia

Restoration of hepcidin levels in thalassemia could reduce iron absorption, improve
ineffective erythropoiesis and possibly, in the long term, also reduce iron toxicity [45].
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Proof-of-principle studies indicate that a moderate increase in hepcidin expression reduces
tissue iron levels, with a beneficial effect on erythropoiesis, in an NTDT mouse model [46].

3.1. Hepcidin Mimetics

Two hepcidin mimetics (LJPC-401 and PTG-300, see Table 1) have been developed
independently and have demonstrated efficacy in preclinical models. Phase 1 studies on
humans showed a significant and long-lasting reduction in serum iron following their
administration [47]. LJPC-401 is a synthetic, full-length hepcidin mimetic with the mature
form of the human hepcidin. It reached a phase 2 study, primarily aiming at evaluating
its efficacy in cardiac iron reduction in adult TDT patients with myocardial iron overload
(NCT03381833). The study failed to produce an acceptable efficacy/safety profile and
further development was foregone. A slightly different approach was applied to synthesize
PTG-300, a hepcidin mimetic that shares only the N-terminal portion of the human peptide
sequence [48]. PTG-300 was investigated in a phase 2 clinical trial on TDT and NTDT
patients (NCT03802201) that confirmed its ability in reducing transferrin saturation and
serum iron [49]. Unfortunately, for PTG-300, injection site reactions have been a significant
limitation. The so-called mini-hepcidins are truncated hepcidin peptides based on the
N-terminal sequence of hepcidin and have several potential advantages, but, at present,
none has entered clinical development. However, preclinical results in an NTDT mouse
model are promising [50]. In addition, in a new mouse model with a severe transfusion-
dependent thalassemia disease phenotype, a mini-hepcidin (MH), combined with red blood
cell transfusion, ameliorated IE, splenomegaly and cardiac iron overload [51]. Recently, new
mini-hepcidins with improved drug-like properties have been designed using head-to-tail
cyclization and N-methylation [52].

Table 1. Treatments to increase hepcidin function in thalassemia (TD = transfusion-dependent; NTD
= non-transfusion-dependent; ERFE = erythroferrone; FPN = ferroportin; HSCT = hematopoietic stem
cell transplantation; TMPRSS6 = transmembrane serine protease 6; ASO = antisense oligonucleotide;
siRNA = small interfering RNA; NTBI = non-transferrin-bound iron; TfR2 = transferin receptor 2;
TfR1 = transferin receptor 1; BM = bone marrow).

Action Mechanism Compound/Model Thal Type CTs? Clinicaltrials.gov
or Key Reference

Hepcidin mimetic Hepcidin mimetics -Hepcidin LJPC-401
-Hepcidin PTG-300
-Hepcidin PTG-300
-Mini-hepcidin

TD
TD

TD/NTDT

YES
YES
YES
NO

-NCT03381833
-NCT03802201
-NCT04054921
-Goncalves, 2021

Hepcidin agonist

TMPRSS6 inhibition -by RNA ASO
-by siRNA

-Ionis-TMPRSS6-LRx
-SLN124

NTD
NTD

YES
YES

-NCT04059406
-NCT04718844

FPN inhibition VIT-2763 NTD YES -NCT04364269
ERFE inhibition N-Terminal ERFE Abs NO Arezes, 2020
TfR2 inactivation BM TfR2KO mice NO Artuso, 2018

Apotransferrin ↓ TfR1 expression
↓ NTBI

Human
apotransferrin

NTD YES -NCT03993613

3.2. Hepcidin Agonists

Another approach to the search for hepcidin agonist action is indirect, by inhibiting
the main regulators of hepcidin function, such as TMPRSS6 and Erfe, or by inhibiting the
hepcidin target ferroportin [23].

• TMPRSS6 inhibition

In an NTDT mouse model, loss of TMPRSS6 significantly attenuated the disease phe-
notype [53]. Two independent studies, using oligonucleotides such as antisense oligonu-
cleotides (ASO) or small interfering RNA (siRNA), have confirmed these findings, not
only decreasing iron loading but also improving erythropoiesis, splenomegaly and ane-
mia [54,55]. Two phase 2 clinical trials on NTDT patients are currently ongoing, using
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IONIS TMPRSS6-LRx (NCT04059406) and SLN124 (NCT04718844). Recently, the anti-
TMPRSS6 antibody MWTx-003 was presented as a promising therapy for iron overload
disorders where an iron restriction is beneficial (Bruxin, ASH 2021).

• Ferroportin inhibition

Advances in understanding the structure of hepcidin-bound ferroportin and its iron
homeostatic mechanisms [25] opened the door to a new approach: targeting ferroportin
directly. This offers great potential in tuning the restriction of cellular iron export. Many
compounds have been screened for this function. The first to enter development has been
vamifeport (VIT-2763), a small molecule orally administered, that acts as an inhibitor of
ferroportin, competing with hepcidin for binding to ferroportin [56]. In healthy volunteers,
a temporary decrease in mean serum iron levels, transferrin saturation and a shift in mean
serum hepcidin peaks followed the administration of VIT-2763 [57]. A phase 2 study of
VIT-2763 in NTDT (NCT04364269) is ongoing.

• Erfe inhibition

In theory, Erfe inhibition is the best approach to tune hepcidin function for iron-loading
anemias, because the function of Erfe is to tune hepcidin merely based on erythroid needs.
In a thalassemia mouse model, Erfe inhibition blocked its suppressive effects on hepcidin,
with amelioration of the phenotype [31]. Furthermore, due to its distribution and picomolar
concentration, Erfe is the ideal target for monoclonal antibodies. This approach, using
N-terminal neutralizing antibodies, has been recently applied with promising results in
thalassemia mice [58].

• TfR2 inactivation

The inactivation of the EPO receptor partner, TfR2, in a knockout thalassemia in-
termedia mouse model improved erythropoiesis and red blood cell morphology, as well
as anemia and iron overload [40]. However, the beneficial effects became attenuated
over time, possibly due to insufficient iron availability to sustain the enhanced erythro-
poiesis. Germline deletion of TfR2, including haploinsufficiency, has a similar impact in the
thalassemic model [40]. Data from TfR2-haploinsufficient thalassemic mice suggest that
TfR2-specific targeting by antisense oligonucleotides or small interfering RNAs has great
therapeutic potential in NTDT [59]. A better understanding of the TfR2–EPOR interaction
may lead to the design of interfering molecules, mimicking an erythroid-specific TfR2
depletion. Unlike erythropoiesis-stimulating agents, the TfR2 approach enhances EPO-
mediated effects exclusively in erythroid cells, with potential advantages for long-term
safety [59].

• Apotransferrin

In thalassemic erythropoiesis, iron is abundant due to the massive erythroid demand
and hepcidin suppression, but is underutilized due to the genetic defect of hemoglobiniza-
tion. As the iron turnover is high, the therapeutic use of apotransferrin has been hypothe-
sized. In NTDT mice, apotransferrin infusion improved anemia, splenomegaly and plasma
EPO, decreased membrane-associated α- globin precipitates and normalized the RBC half-
life [38]. In addition, a reduction in cardiosiderosis has also been observed [60]. A phase
2 clinical trial using i.v. infusion of apotransferrin every other week is currently being
performed in beta-thalassemia (NCT03993613).

3.3. Combination Therapy

The availability of several therapeutic tools targeting different pathways has allowed
the exploration of balanced combinations, searching for a potential additive or even syner-
gistic effect (Table 2). For example, in NTDT mice, TMPRSS6 inhibition (by TMPRSS6-ASO
or siRNA) combined with the iron-chelating agent deferiprone produced some additive
effects on the improvement of erythropoiesis and iron overload [61–63]. Another interesting
approach has been assessed by combining TMPRSS6 inhibition with EPO administration
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or removing a single TfR2 allele in the bone marrow of NTDT mice. Both combinations
were more effective than a single agent in ameliorating anemia and splenomegaly [59].
Moreover, the inhibition of both TMPRSS6 and TfR2 gave interesting results in Hbbth3/+
thalassemic mice: even with the iron overload due to the TfR2 double mutation, a therapeu-
tic effect on both erythropoiesis and anemia was obtained [64]. Another recent approach
combined a direct ferroportin inhibitor (VIT-2763) with an iron chelator (deferasirox) [65].
The promising results in NTDT herald potential clinical trials. Of many other possible
combinations, several are worthwhile at least in vitro testing, given the potentially strong
rationale, such as Erfe inhibition with iron chelation.

Table 2. Potential combination of treatments targeting hepcidin function (TD = transfusion-dependent;
NTD = non-transfusion-dependent; ERFE = erythroferrone; FPN = ferroportin; HSCT = hematopoietic
stem cell transplantation; TMPRSS6 = transmembrane serine protease 6; ASO = antisense oligonu-
cleotide; siRNA = small interfering RNA).

Combination
1 2 Condition Findings Ref.

TMPRSS6 inhibition Iron chelation
(Deferiprone) Hbbth3/+ mice ↓ Liver iron Vadolas J., 2021

TMPRSS6 inhibition
TfR2 inhibition
(Tfr2Y245X/Y245Xdouble
mutant)

Hbbth3/+ mice ↑ Hb
↓ Tissue iron Schmidt P.J., 2020

TMPRSS6 inhibition EPO Hbbth3/+ mice ↑ Hb
↓ splenomegaly Casu C., 2020

TMPRSS6 inhibition TfR2 single-allele
deletion Hbbth3/+ mice ↑ Hb

↓ splenomegaly Casu C., 2020

FPN inhibition Iron chelation
(Deferasirox) Hbbth3/+ mice ↑ Hb

↓ Liver iron Nyffenegger N., 2021

4. The Background of Treatment Options
4.1. Conventional Treatment

Severe thalassemia requires regular transfusions and daily iron chelation treatment,
accompanied by high-quality monitoring and follow-up. The latter is often enough in TI to
preserve good quality of life and prevent long-term thalassemia-related complications such
as bone alterations, hypersplenism, thrombotic events, leg ulcers and acquired elastopathy.
Where quality of care and patient adherence is kept optimal, the long-term results in terms of
survival and quality of life are good, with a life expectancy that approaches normality. How-
ever, many literature reports indicate the significant prevalence of long-term complications
due to poor adherence and consequent poor control of iron overload-related toxicity.

4.2. Stem Cell Transplantation

A standard approach to the conditioning regimen and immunosuppression has been
set for time in different risk classes [66,67]. The likelihood of success in the low-risk category
is more than 90% and, differently from the past, it is not limited to pediatric subjects.
Therefore, balanced counselling is important to weigh the advantages and disadvantages
of conventional treatment versus stem cell transplantation in each individual, especially in
the intermediate risk class and according to local health resources.

4.3. Gene Therapy

The gene therapy approach in hemoglobinopathies was introduced many years
ago [68], but only in recent times has it seen an impressive acceleration in terms of clinical
trials, up to the first approval by regulatory agencies [69]. Today, the classical gene addition
is performed by lentiviral vector insertion into stem cells after a myeloablative conditioning
regimen [70,71]. Impressive results regarding the efficacy [71] are counterbalanced by
long-term safety issues in the light of recent complications with cases of leukemia and
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myelodysplasia in an SCD trial [72]. The impact of disease-related rather than procedure-
related complications is still unclear. Recently, the hypothesis has emerged that the stress
hematopoiesis in transplanted cells may drive clonal expansion and the leukemogenic
transformation of preexisting premalignant clones [73]. At present, the authors of this
review believe that, with the exclusion of ongoing trials, the gene addition approach for
hemoglobinopathies will not experience significant development.

On the contrary, the genome editing approach is developing rapidly, with great ex-
pectations in many fields of medicine, including hemoglobinopathies. At present, for both
thalassemia and Sickle Cell Disease, rather than repairing the causative mutations, the sim-
pler approach of knocking out the lineage-specific regulatory element of the BCL11A gene
is under intense investigation. Suppressing BCL11A potently affects fetal hemoglobin reac-
tivation, mitigating or cancelling the pathological impact on both disorders. Among several
techniques, CRISPR-Cas9-based genome engineering is by far the most applied one. Several
clinical trials are ongoing in thalassemia (NCT03432364, NCT03655678, NCT04208529) and
SCD (NCT03745287, NCT04819841), with impressive preliminary results as regards the
efficacy. In terms of safety, even if several issues have been solved, concerns associated with
the nature of this technique (double strains cut and predisposition to deletions) are still
unresolved. It is likely that the full approval of the genome editing approach for treating
hemoglobinopathies will require several years of intensive research.

In general, in the case of potential access to gene therapy, the patient needs balanced
counselling that takes into account first the access to and quality of conventional treatment.
When full access and high quality are available, prudence is due. For a patient living
in a country with inadequate care, the likelihood of stem cell transplantation or a gene
therapy approach is balanced by the risk of poor conventional treatment. Obviously, these
considerations will remain theoretical if the high cost of gene therapy does not lower
consistently.

4.4. Modulation of Erythropoiesis and Erythrocyte Metabolism

Given the present limitations of conventional treatment, stem cell transplantation
and gene therapy described above, any intervention able to significantly ameliorate the
erythropoiesis in hemoglobinopathies is meaningful. Several potential new treatments
are emerging from advances in the pathophysiology of thalassemia targeting ineffective
erythropoiesis, iron or erythrocyte metabolism (Figure 2).
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• Mitapivat is an oral, small-molecule allosteric activator of pyruvate kinase in red blood
cells [74] that has been very recently approved as a treatment for hemolytic anemia
in adults with pyruvate kinase (PK) deficiency. PK is functionally normal but low in
thalassemic red blood cells, and mitapivat, in a mouse model of thalassemia, demon-
strated an interesting improvement in ineffective erythropoiesis and anemia [75].
A phase II study in beta and alpha thalassemia patients showed encouraging re-
sults [76]. A clinical trial is ongoing in TDT (NCT04770779). Etavopivat is an analogue
compound in development to treat SCD and thalassemia [77].

• Luspatercept has been recently approved for TDT patients in Europe, the United
States and other countries [78,79]. It acts as a trap of the soluble ligands of activin
receptor type 2, eventually resulting in more effective RBC differentiation (Figure 1).
The clinical result is a consistent reduction in the transfusion burden. Preliminary
results from ongoing trials in NTDT indicate a consistent increase in total hemoglobin
(NCT04064060).

5. Discussion

As hepcidin has a paramount role in iron homeostasis, its targeting has great potential,
especially in conditions where hepcidin is deeply suppressed, as in iron-loading anemias,
including thalassemias. As a small peptide, it appears natural to include hepcidin in
the long list of synthetic peptide hormones successfully developed and used today as
effective drugs in the clinical setting. At present, however, this does not appear likely
for hepcidin or hepcidin mimetics, due to challenges in achieving a stable compound,
the need for frequent subcutaneous injections and the frequency of site reactions. More
importantly, it is difficult to tune their effect, avoiding iron over-restricted erythropoiesis.
When the therapeutic window is narrow, the general rule is to turn to indirect tuning.
This has been the case for hepcidin agonists, with many studies and interesting results
presented regarding single agents and combinations. The first to be used in clinical trials
was TMPRSS6, and many other new entries can be expected. As the effects of hepcidin
and its modulators are not limited to iron metabolism and erythropoiesis, it is important
to develop long-term studies examining potential positive and negative consequences.
For example, the trend towards osteoporosis in thalassemia is well known and important.
Using hepcidin or Erfe in animals, there have been some negative findings on bone markers
that, if confirmed, pose a challenge for their long-term use. It is difficult today to define the
precise position of hepcidin tuning in the rapidly expanding pipeline of treatment options
for thalassemias. Excluding a curative effect, we can forecast a relevant role in lowering
the burden of the disease and improving the phenotype, as is happening for luspatercept,
alone and in combination.

6. Conclusions

Hepcidin tuning reached the phase of clinical development thanks to the progress
of our understanding on the crosslinks between iron metabolism and erythropoiesis. Ad-
vanced clinical trials on different aspects of hepcidin tuning are currently underway. It is
likely that this type of approach will play a role in the future treatment of thalassemia.
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