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ABSTRACT

An inherent goal of radiation therapy is to deliver
enough dose to the tumor to eradicate all cancer cells or
to palliate symptoms, while avoiding normal tissue in-
jury. Imaging for cancer diagnosis, staging, treatment
planning, and radiation targeting has been integrated in
various ways to improve the chance of this occurring. A
large spectrum of imaging strategies and technologies
has evolved in parallel to advances in radiation delivery.
The types of imaging can be categorized into offline im-
aging (outside the treatment room) and online imaging
(inside the treatment room, conventionally termed im-
age-guided radiation therapy). The direct integration of

images in the radiotherapy planning process (physically
or computationally) often entails trade-offs in imaging
performance. Although such compromises may be ac-
ceptable given specific clinical objectives, general re-
quirements for imaging performance are expected to
increase as paradigms for radiation delivery evolve to
address underlying biology and adapt to radiation re-
sponses. This paper reviews the integration of imag-
ing and radiation oncology, and discusses challenges
and opportunities for improving the practice of radi-
ation oncology with imaging. The Oncologist 2010;15:
338-349

INTRODUCTION

Shortly after the discovery of the x-ray in 1895, the potential
therapeutic benefits of the x-ray and possible toxicities were
realized. More than a century later, we continue to struggle
with how to balance the intensity of cancer treatment toward
increasing the chance of cure with the potential for normal tis-
sue toxicity. Imaging has improved our understanding of the
complexities of cancer biology, cancer diagnosis, staging, and
prognosis, and it is an essential component of present-day ra-
diation oncology practice. Progress in radiation oncology has
occurred in parallel to advances in imaging.

One advance in radiation oncology relates to x-ray
energy: from orthovoltage, with high skin doses, to
megavoltage (MV), associated with skin sparing, facili-
tating treatment of central tumors. The integration of
computed tomography (CT) imaging in the radiation pro-
cess allowed the benefits of high-energy radiation to be
exploited. CT imaging allows better knowledge of the
target volume and critical normal organ position, and it
serves as a platform upon which three-dimensional (3D)
dose calculations can be made, such that the dose distri-
bution throughout the entire irradiated volume may be
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RT dose in 6 fractions

Target volumes

Figure 1. Radiation therapy (RT) dose distribution, demonstrating high doses tightly conforming to the target liver metastases

volumes (shown in thick blue contours).

displayed. Only with this image-based process could ra-
diation field apertures be customized to conform to an in-
dividual patient’s target volumes (i.e., conformal
radiation therapy [CRT]). Figure 1 shows an example of
a CRT plan for a patient with liver metastases, in which
the high doses tightly conform to the target volumes. 3D
displays of target volumes and normal tissues are a pre-
requisite to more complex planning, for which the de-
sired dose distribution is defined and computer-aided
automated optimization is used to determine the beam
fluence intensities associated with optimal dose distribu-
tions (i.e., intensity-modulated radiation therapy
[IMRT]) (Fig. 2). An example of how advances in plan-
ning have improved patient outcomes is in head and neck
cancer, for which sparing of the dose to the salivary
glands has led to preserved salivary function and better
quality of life in these patients [1].

In addition to anatomical and structural imaging, imag-
ing more than anatomy is becoming established in cancer
care. The ability to spatially measure biological, metabolic,
or physiological processes provides exciting opportunities
for radiation therapy (RT), a therapeutic modality that fun-
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damentally performs best at the convergence of biology and
physics. Such advanced imaging performance may enable
radiation delivery to account for an individual’s variability
in tumor biology in a spatial- and time-responsive manner.
Similarly, functional imaging can inform on normal tissue
function, so that it can be considered in RT plan develop-
ment, to better preserve the most functional portions of nor-
mal tissues.

The integration of images in the RT planning process of-
ten entails trade-offs in imaging performance, because of
inherent limitations of integrated imaging and radiation
treatment systems and/or the desire to minimize the cumu-
lative dose delivered to patients from the frequent imaging
required during a course of RT. Such compromises may be
acceptable for some specific clinical objectives (e.g., reduc-
tion in geometric errors), but the requirements for imaging
performance (including spatial resolution and imaging con-
trast) are expected to increase as biology is considered in
RT planning and response monitoring. Figure 3 illustrates
this balance between imaging performance and integration
with the RT process.

The outer circle represents the fundamental objectives
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Figure 2. Intensity-modulated radiation therapy plan for a patient with a TAN1MO nasopharyngeal carcinoma, adjacent to critical
normal tissues (e.g., brainstem and optic tissues), treated to 70 Gy in 35 fractions.

of RT. Trade-offs among geometric integrity (for geometric
targeting and serial/multimodality registration accuracy),
tissue contrast (for target delineation, dose selection, and
response assessment), and spatial resolution (for high-pre-
cision delineation of subtarget boundaries) must be consid-
ered and goals must be prioritized, because concurrent
state-of-the-art spatial and temporal resolution is not clini-
cally feasible or time efficient. As volumetric image guid-
ance during radiation delivery begins to predominate over
conventional external landmark guidance techniques, the
focus on geometry (e.g., maintaining patient position with
rigid immobilization) is projected to diminish in contrast to
the emphasis on quantitative, high-performance imaging
with effective registration methods that may be used to
position patients for therapy. The future research in this
direction should target implementation of oncology-

specific imaging methods that can increase the quality
and performance of imaging in a manner specific to the
goals of RT.

RT PROCESS

The primary decisions that radiation oncologists make daily
are to decide who to treat, what to treat, what to avoid, and
how to deliver the intended doses safely. Imaging is con-
sidered in each of these decisions. Although the steps de-
scribed in sequence below often occur simultaneously, they
feed back to each other. Predictions about uncertainties and
response in a specific patient can be made from experience
in treating a population of similar patients or as more is
learned about the patients themselves (e.g., with imaging
obtained during therapy).

O%ecologist"
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Figure 3. Diagram depicting the importance of optimizing
imaging performance based on the fundamental objectives of
radiotherapy (outer circle). Trade-offs among geometric integ-
rity, tissue contrast, and spatial resolution must be considered
when designing time-efficient image acquisition protocols.

Decision to Treat

As imaging improves, our ability to stage patients, detect
occult metastatic disease, and better select patients for RT
improves. For example, fluorodeoxyglucose positron emis-
sion tomography (FDG-PET) has improved staging in non-
small cell lung cancer (NSCLC), which can impact
treatment decision making. In one study, PET detected oc-
cult metastases and prevented unnecessary surgery in 20%
of patients with suspected localized NSCLC [2]. Better
staging will help to define the most appropriate patients
who may benefit from RT.

RT Patient Model

CRT and IMRT plans are generally based on a CT image
obtained prior to RT delivery, to create a patient model for
planning. Because the CT “sample” of the patient is usually
acquired over 30—60 seconds on one instance, it is unlikely
to represent the patient and target geometry over the course
of RT. Thus, it is desirable to enable serial and or multimo-
dality imaging in the RT planning process. Greater use of
imaging in patients receiving RT (e.g., with repeat CT or
magnetic resonance imaging [MRI] scans) has increased
awareness of the geometric uncertainties that may occur
during a course of RT. Furthermore, the integration of mul-
timodality imaging in the patient model is beneficial be-
cause different imaging modalities can be complimentary
in the anatomical and functional information provided. For
example, MRI depicts soft tissue structure better than CT,
and has particular utility in aiding in target delineation in
some head and neck cancers, brain tumors, sarcomas, and
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soft tissue targets in the abdomen and pelvis. Its integration
with CT to augment the RT patient model is increasingly
becoming an essential step in the process of modern radia-
tion treatment planning [3-7].

Patients have historically been imaged in the treatment
position, which involves a flat tabletop and a customized
cradle or mask to attempt to keep the patient in the same
position during a course of RT. The driving motivation for
such strict (and often prohibitive) requirements on patient
position during imaging for RT planning stems from an era
prior to online image guidance, in which targeting accuracy
relied exclusively on recreating the geometry of the patient
model through immobilization devices and external refer-
ences. A second motivation in the modern era is to improve
the accuracy of multimodality or serial image registration,
in the absence of robust deformable registration software
tools.

With image-guided radiation therapy (IGRT) and future
robust deformable image registration tools [8, 9], more day-
to-day (or crossmodality) variations in position may be per-
mitted, which may improve patient comfort and stability,
translating to less variation in position during radiation de-
livery. This may also improve imaging performance (tissue
contrast and spatial resolution) by applying imaging de-
vices, such as receiver MRI coils, closer to the patient.

Target Delineation

How to define the gross tumor volume and volumes at risk
for containing microscopic disease (clinical target volumes
[CTVs]) is not an easy task. Different imaging tools dem-
onstrate inherently different representations of the tumor,
as shown in Figure 4. Because the tumor stem cells required
to be eradicated cannot yet be imaged in vivo, a model of
the tissue target to be eradicated needs to be developed.
Most often, all gross disease (or visible enhancing tumor) is
chosen as the target volume to be irradiated to high doses,
but pathological-radiological correlative studies are re-
quired to determine which imaging modality may be best
correlated with pathological gross tumor [10].

Delineation of microscopic disease is also challenging,
and for the most part, in vivo imaging resolution is not suf-
ficient to see microscopic foci of tumor. Conglomerates of
<100,000 cancer cells cannot reliably be imaged. Imaging
surrogates may inform us about volumes at risk for micro-
scopic disease involvement. Pathologic—radiologic correl-
ative studies can also help in CTV definition. For example,
the outer enhancing rim around liver metastases on venous-
phase CT scans may represent vascular changes around the
gross tumor, a volume that is itself at risk for microscopic
extension from the liver metastases. How we understand
and define the spatial boundaries and dose objectives of tar-
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Figure 4. Multimodality contrast imaging to aid in liver metastasis delineation. Both computed tomography (CT) and magnetic
resonance (MR) imaging are done in an exhale breathhold to minimize differences in the liver shape and aid in fusion. The liver
contour from the planning CT (in blue) is overlaid on the MR image, demonstrating excellent liver-to-liver registration.

gets for RT remain fundamentally unanswered, and man-
date judicious investigation. High-performance imaging, in
the context of high-precision radiation delivery, will enable
this important research.

Motion Assessment
Despite interventions to immobilize patients, residual un-
certainties in the position of the tumor and normal tissues
persist. The conventional method to account for these un-
certainties is to increase the irradiated volume around the
tumor to ensure that the tumor receives the intended dose
(referred to as a planning target volume [PTV]). The mag-
nitude of the PTV around the tumor site, patient body hab-
itus, position, immobilization, and motion management
strategy determine the image guidance strategy used.
Tumor and normal tissue motion resulting from breath-
ing can be substantial (up to 3 cm) [11]. Motion needs to be
reduced and/or considered at the time of RT planning to en-
sure that the tumor isn’t missed. Before motion manage-

ment can be implemented, knowledge of an individual
cancer patient’s breathing motion is required. Breathing
motion can be measured using kV fluoroscopy, cine MR, or
respiratory-sorted CT (or 4DCT) (Fig. 5). With 4DCT, mul-
tiple representations at different breathing phases can be
used in the patient model to represent geometric changes
that may occur during breathing. With more imaging in the
treatment room, variability in the amplitude of motion and
other changes (e.g., shifts in tumor position relative to ver-
tebral bodies) can be quantified [12]. Imaging obtained in
the treatment room can also inform on population setup er-
ror, and how it varies depending on the type of immobili-
zation used, length of treatment delivery, etc. [13].

Determining Planned Doses

The appropriate doses to be delivered to the targets and nor-
mal tissues are obtained from clinical trials, ideally pro-
spective trials that compare different doses with local
control and normal tissue toxicity. There is much uncer-
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A. Respiratory correlated CT

Exhale

B. Cine MR

0 sec (exhale)

3 sec (inhale)

6 sec (exhale)

Figure 5. Imaging for motion assessment of liver cancer to determine the margin around the tumor required to be irradiated to
account for breathing motion. (A): Respiratory-correlated computed tomography (CT) scan showing tumor (red contour) in the
exhale and inhale phases of CT. The blue contour shows the volume to be irradiated to ensure the tumor is irradiated in all phases
of respiration. (B): Coronal cine magnetic resonance (MR) images showing the change in liver position from the exhale to the

inhale phases.

tainty in the actual doses required to control many tumors
and in our understanding of the partial volume tolerance of
many normal tissues to irradiation. This is partially because
much uncertainty has existed historically in the actual doses
delivered to patients.

Because image-guidance technologies provide confi-
dence in dose placement, there is less uncertainty in deliv-
ered doses with IGRT and less variability in delivered doses
across a population. Thus, in future clinical trials for which
IGRT is mandated, understanding of dose—toxicity rela-
tionships should improve and the benefits of dose escala-
tion, hypofractionation, and combined modality therapy
should be easier to measure, because the accuracy and pre-
cision of RT should be improved with IGRT.

IGRT

Historically, patients were positioned for RT by inferring
the location of the internal anatomy from the surface anat-
omy. However, the internal anatomy is not generally well
correlated with the surface anatomy, providing a need for
imaging at the time of RT delivery. Furthermore, large PTV
margins to account for geometric uncertainties and organ
motion are undesirable because they may increase the risk
for normal tissue toxicity. A better strategy is to measure
changes during the RT course with frequent imaging ob-
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tained in the treatment room, and to reduce residual uncer-
tainties by repositioning the patient (e.g., with IGRT).

Images produced using the MV treatment x-ray beam it-
self have been used to image internal anatomy to position
patients or to verify the position, following setup, with the
external anatomy. Machine- and room-mounted kV x-ray
tubes and detectors have also been used for this purpose. kV
fluoroscopy has been used to image radio-opaque markers
prior to each radiation fraction [14, 15], or throughout radi-
ation delivery [16]. The combination of fluoroscopy and
markers enables real-time tumor tracking [16], in which ra-
diation delivery only occurs when the markers (surrogates
for the target volume) are in a predefined volume. Other im-
age-based strategies to account for tumor motion include
tracking the tumor with moving collimators [17] or moving
the couch or the accelerator to follow the tumor (e.g., Cyber-
Knife; Accuray Inc., Sunnyvale, CA [18-20]). Inserted ra-
dio-opaque markers have been used to localize prostate [21,
22], lung [16], pancreatic [19], paraspinal [19] and liver
[23, 24] cancers.

In-room volumetric imaging has been developed to al-
low soft tissues to be localized at the time of RT delivery.
Ultrasound [25-30] and in-room CT scanners [31-33] were
the first volumetric imaging strategies used in the treatment
room (e.g., Primatrom; Siemens, Concord, CA and ExaCT;
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sagittal

Figure 6. Example of verification imaging (kilovoltage cone beam computed tomography [CT]) obtained in the radiation therapy
treatment room, used to position a patient with liver cancer prior to conformal radiation therapy delivery. The pink contour, rep-
resenting where the liver should be positioned (obtained from the planning CT), is overlaid on the verification cone beam CT

image.

Varian Medical Systems, Palo Alto, CA) [34, 35]. Helical
MYV CT scans can be obtained using an integrated treatment
unit (Tomotherapy, Madison, WI) that allows the MV treat-
ment beam to rotate around the patient while the couch
moves, creating volumetric MV images [36—40]. kV cone-
beam CT systems integrate a kV tube and a flat panel de-
tector mounted on a linear accelerator (e.g., Synergy;
Elekta Oncology, Stockholm, Sweden; On Board Imager;
Varian Medical Systems, Palo Alto, CA; Artiste; Siemens,
Concord, CA) [41] to obtain a reconstruction from a series
of 2D radiographs acquired over 30—240 seconds as the
gantry rotates around the patient [42-50]. Ring-gantry sys-
tems have also been developed to offer cone-beam CT im-
aging as well as a tilting treatment head for tumor tracking
with kV fluoroscopy [51]. MR-guided RT systems are also
being developed [52].

With in-room imaging systems, images acquired imme-
diately before or during RT delivery can be compared with
reference images (from the planning CT) to better position
the patient, as show in Figure 6. This can occur using man-
ual or automated image registration. With image guidance,
weight loss, tumor shrinkage, or organ deformation may
be visualized, and the doses delivered in the presence of
such changes can be measured. Sometimes these changes
may trigger a need for replanning, referred to as adaptive
RT [53, 54].

Response Monitoring

The development of early imaging surrogates for tumor
control and normal tissue toxicity are of interest, because
they may allow a change in treatment to occur before com-
pletion of the prescribed therapy, maximizing the patient’s
therapeutic ratio. Measurable responses in tissue structure
often occur late in the course of RT, at which time options

for adapting therapeutic interventions are limited. Func-
tional imaging has the potential to detect individual tumor’s
response to RT earlier in the course of treatment. One of the
first examples of this potential was observed in patients
with malignant gliomas, whereby changes in the apparent
water diffusion coefficient measured with MRI midway
through a course of RT were highly predictive of outcome
[55]. This exciting field of research continues to pursue the
discovery of imaging biomarkers that capture measurable
and early response to RT, predictive of clinical outcome,
and that will guide adaptive strategies in therapy.

The impact of the dose delivered on functional imaging
surrogates, tumor control, and regional normal tissue injury
requires a detailed knowledge of the 3D dose distribution.
Thus, mapping back where recurrences occur relative to the
treatment plan and baseline images can be informative
about how changes in RT planning could reduce the risk for
future recurrences. Furthermore, knowledge of the doses
associated with normal tissue subregional injury may help
in predicting organ injury from RT. These tasks require de-
formable image registration for the most accurate mapping
of dose to spatial imaging change.

ILLUSTRATING THE BENEFITS OF IMAGING IN RT
FOR PROSTATE CANCER

Example 1: External-Beam RT

In regard to prostate cancer, when patients are set up for RT
using skin marks and room lasers to position them, offsets
in the prostate position >10 mm have been seen, and these
are more common in patients with a larger body surface
area, providing strong rationale for IGRT to reduce setup
error [56]. Perhaps the historic challenges in demonstrating
the benefits of RT in prostate cancer and the unclear evi-
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dence for the use of pelvic irradiation for prostate cancer
relate in part to the fact that the intended doses to the pros-
tate were not delivered as planned in some patients.

The potential benefits of IGRT in prostate cancer have
been modeled. An average increase in dose of 13% was pre-
dicted with the use of IGRT, with the same risk for rectal
toxicity [57], with larger gains for some patients. Clinical
data also support superior outcomes with IGRT for prostate
cancer. Rectal size at the time of RT planning in prostate
cancer patients treated without IGRT was found to be a
prognostic factor for prostate-specific antigen (PSA)-free
survival in one series [58]. The 6-year PSA-free survival
rates of patients with full and empty rectums were 65% and
80%, respectively (hazard ratio, 3.89; 95% confidence in-
terval, 1.58-9.59; p = .003). This change in outcome is
likely related to the fact that a distended rectum at planning
(because of gas or feces) is less likely to be distended during
treatment, and the prostate may move posteriorly during
RT, out of the high-dose volume. This hypothesis is sup-
ported by the fact that the rectal volume at planning was not
a prognostic factor in studies of prostate cancer in which
IGRT was mandated [59].

Example 2: Brachytherapy
The history of prostate brachytherapy illustrates a clear
benefit to image guidance [60, 61]. Since Pasteau’s publi-
cation in 1913 [62], describing insertion of a radium cap-
sule into the prostatic urethra to treat carcinoma of the
prostate, various techniques have been employed with un-
satisfactory results. In 1917, Barringer first performed
transperineal brachytherapy under transrectal tactile guid-
ance [63]. Decades later, in the early 1970s, Whitmore et al.
[64] described open retropubic implantation guided by both
direct intraoperative visualization of the prostate and trans-
rectal palpation. Poor long-term outcomes were attributed
to freehand source placement and inadequate dosimetry. In
fact, dosimetry was largely calculated from radiographs, as-
suming that the target tissue was accurately encompassed
by the implant [65]. The advent of transrectal ultrasound
(TRUS), which permitted direct visualization of needles in
relation to prostatic boundaries [66], revolutionized
brachytherapy for prostate cancer. Prostate brachytherapy
is now considered a standard care therapeutic option for the
majority of patients with newly diagnosed prostate cancer.
Disappointment with early historical results and the
subsequent success of permanent seed prostate brachyther-
apy with the advent of TRUS and image-based planning
demonstrate the impact of image guidance on clinical out-
comes for prostate cancer. Greater freedom from biochem-
ical failure has been shown with technical maturation and
the implementation of CT-based postbrachytherapy plan-
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ning dosimetry [67]. Most modern publications in this field
demonstrate better dosimetry with further advances in im-
age guidance [68—78]. However, the relationship between
dosimetry and clinical outcomes has yet to be fully defined.
It is important to recognize that the accuracy of dose report-
ing is highly dependent on the accuracy of target delinea-
tion, and uncertainties in this regard may have contributed
to inconsistencies in the observed dose—response relation-
ship [79—-281]. This problem also holds true for our under-
standing of the relationship between critical organ dose and
subsequent toxicity [82, 83]. Image guidance in prostate
brachytherapy has evolved in recent decades from US to CT
to MRI (Fig. 7).

OPPORTUNITIES IN IMAGING:

DOSE-PAINTING EXAMPLE

Functional imaging modalities such as PET, single photon
emission CT, and functional MRI are becoming more valuable
for diagnosis, staging, describing the tumor and normal tissue
biology, and assessing response. Variations in the tumor, the
tumor microenvironment, or cellular phenotypes that may
modulate the effect of radiation can now be mapped in 3D and
over time. A simple example of functional imaging is '*F-
FDG-PET scanning, which may be used to measure glucose
metabolism as a surrogate for tumor burden. Examples of
other high-risk characteristics that may be measured by func-
tional imaging include hypoxia, which can be measured using
'8F_fluoromisonidazole-PET, ®’Cu-diacetyl-bis N(4)-methyl-
thiosemicarbazone (ATSM)-PET, or blood oxygen level—
dependent imaging MRI, and proliferation, measured with
'8F-fluorothymine-PET. Other processes that may be imaged
and quantified include clonogen density, angiogenesis, blood
flow, vascular permeability, epidermal growth receptor ex-
pression, etc.

There is an opportunity to tailor RT plans for each pa-
tient to account for individual biological variations. Fur-
thermore, because individual variability can be measured,
there is the opportunity to tailor the radiation dose distribu-
tion to the variability in cellular or molecular processes, as
measured using functional imaging. This has been referred
to as theragnostic imaging, described by Bentzen as “a
method by which the radiation dose can be delivered in the
four dimensions of space and time to achieve the optimum
outcome after radiation therapy” [84]. The feasibility of this
approach—to increase the intensity of the dose to high-risk
tumor subregions—was demonstrated by Chao et al. [85],
who used ®*Cu (II) ATSM-PET scans in head and neck can-
cer patients to measure tumor hypoxia and boosted the dose
to hypoxic regions (from 70 Gy to 80 Gy in 35 fractions),
without increasing the dose to normal tissues. Challenges
with this theragnostic approach include verifying that the
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Figure 7. Images acquired after the placement of high-dose rate (HDR) brachytherapy catheters and prior to radiation delivery in
one patient demonstrating the superiority of magnetic resonance imaging (MRI) in depicting both the catheters and prostatic anat-
omy. (A): Transrectal ultrasound. (B): Computed tomography. (C): MRI. The tumor visualized in the left peripheral zone (arrow)
can be specifically targeted for dose intensification during brachytherapy planning (D).

imaging measures the intended biologic process accurately,
that the process is temporally stable, and that adaptive in-
terventions are effective. Also, many of the functional im-
aging tools do not have sufficient spatial resolution, and
artifacts exist, making selective boosting of high-risk tumor
subvolumes or “painting by numbers” (voxel intensity—
based dose boosting) not ready for large-scale trials. How-
ever, as the sensitivity and specificity (accuracy) of
functional imaging improves, and the spatial resolution im-
proves, the potential to “dose paint” becomes more real.

FUTURE: IMPROVED INTEGRATION OF IMAGING
SCIENCE IN RADIATION ONCOLOGY

As imaging becomes increasingly integrated into the prac-
tice of radiation oncology, there is a need to develop a
deeper understanding of the truth underlying the image.
Our field must develop expertise in imaging science, such
that the metric reported in a target voxel can be interpreted

in the context of technical biases and factors of biological
origin that may or may not be relevant to the radiation ob-
jective. Radiation oncologists and imaging scientists must
participate in the process of validating images at the clini-
cal, histopathological, and molecular levels. A better under-
standing of both the tools and objectives of imaging in
radiation oncology will likely have a high clinical impact.

An example of this potential contribution is a new empha-
sis on quantitative imaging, as opposed to qualitative diagnos-
tic images interpreted largely for disease classification. The
shift toward evidence-based medicine demands that out-
comes be measurable, and imaging is intrinsically quanti-
tative. Radiation oncology fundamentally understands the
process of administering energy of a known quantity and
distribution to a living organism. Measuring the energy that
is emitted, transmitted, or reflected (i.e., imaging) lends it-
self to quantitative interpretation [86].

In the modern era of high-precision image-based RT, ra-
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diation oncology departments need to invest in imaging. A
stronger education on the fundamentals of imaging is re-
quired, at least with respect to tumor and normal tissue def-
inition. This may be feasible through several means: by
collaboration with imaging scientists and radiologists, by
developing imaging expertise in radiation oncology
through self-education (radiation oncologist), and by at-
tracting imaging scientists into the field. At the very least,
the formal imaging education in radiation oncology training
programs needs to improve substantially. Radiation on-
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cologists cannot move forward without considering imag-
ing and how it impacts the radiation oncology process.
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