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Osteosarcoma is one of the most aggressive malignant bone tumors worldwide.
Although great advancements have been made in its treatment owing to the advent
of neoadjuvant chemotherapy, the problem of lung metastasis is a major obstacle
in the improvement of survival outcomes. Thus, the aim of the present study is to
screen novel and key biomarkers, which may act as potential prognostic markers and
therapeutic targets in osteosarcoma. We utilized the robust rank aggregation (RRA)
method to integrate three osteosarcoma microarray datasets downloaded from the
Gene Expression Omnibus (GEO) database, and we identified the robust differentially
expressed genes (DEGs) between primary and metastatic osteosarcoma tissues. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses were performed to explore the functions of robust DEGs. The results of
enrichment analysis showed that the robust DEGs were closely associated with
osteosarcoma development and progression. Immune cell infiltration analysis was also
conducted by CIBERSORT algorithm, and we found that macrophages are the most
principal infiltrating immune cells in osteosarcoma, especially macrophages M0 and
M2. Then, the protein–protein interaction network and key modules were constructed
by Cytoscape, and 10 hub genes were selected by plugin cytoHubba from the
whole network. The survival analysis of hub genes was also carried out based on
the Therapeutically Applicable Research to Generate Effective Treatments (TARGET)
database. The integrated bioinformatics analysis was utilized to provide new insight into
osteosarcoma development and metastasis and identified EGR1, CXCL10, MYC, and
CXCR4 as potential biomarkers for prognosis of osteosarcoma.
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INTRODUCTION

Osteosarcoma is one of the most aggressive malignant tumors
in the bone (1), which derived from mesenchymal tissue and
showed osteoblastic differentiation (2). Annually, the incidence
rate of osteosarcoma is approximately four to five cases per
million (3). In addition, osteosarcoma is most prevalent in
children and adolescents (4), and 15–20% of osteosarcoma
patients have lung metastasis at the initial diagnosis (5, 6). With
the assistance of neoadjuvant chemotherapy, the treatment of
osteosarcoma has been greatly improved, but the overall survival
of patients with lung metastasis or relapse has not improved
and remains low at approximately 20% (7, 8). Therefore, it
is extremely necessary to seek novel prognostic factors and
therapeutic targets for osteosarcoma.

In recent years, public databases including Gene Expression
Omnibus (GEO), The Cancer Genome Atlas (TCGA), and
Therapeutically Applicable Research to Generate Effective
Treatments (TARGET) are widely used to explore diagnostic
and prognostic biomarkers in osteosarcoma. In the previous
studies, the limited number of samples and inappropriate analysis
methods of multiple datasets led to deviation of the results.
Zhang et al. (9) and Diao et al. (10) described the role of
gene copy number alterations and methylation changes in the
malignant progression of osteosarcoma using bioinformatics
analyses, respectively. However, these studies were only based
on single datasets and had a limited sample size, which may
have biased the final results. To analyze more samples and avoid
the sample heterogeneity of each independent experiment and
the error caused by different technology platforms and different
data processing methods, we used the robust rank aggregation
(RRA) method to obtain robust differentially expressed genes
(DEGs). RRA was used to compare the ranking of multiple
gene lists. If a gene ranked the highest in all gene lists, then
the smaller its calculated P-value is, the more likely it is to
be a robust DEG (11). This method has been widely used in
integrated analysis of multiple datasets, and it is robust to errors
and noise (12–14). There have been no reports of the use of RRA
in osteosarcoma.

In our study, microarray datasets GSE14827, GSE21257,
and GSE32981 from GEO database were downloaded and
analyzed by RRA method to identify robust DEGs between
primary and metastatic osteosarcoma tissues. A total of 524
robust DEGs were determined, including 272 upregulated
and 252 downregulated genes. Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses were performed to explore the functions
of robust DEGs. Immune cell infiltration analysis was also
conducted by CIBERSORT algorithm. In addition, we also
constructed the protein–protein interaction (PPI) network
and key modules, and finally 10 hub genes were selected
by plugin cytoHubba from the whole network. Survival
analysis of hub genes was carried out using R packages.
In conclusion, the integrated bioinformatics analysis was
utilized to identify the significant robust DEGs and hub genes,
which may act as novel and potential prognostic biomarkers
in osteosarcoma.

MATERIALS AND METHODS

Data Collection and Data Processing
We selected three gene chips of osteosarcoma from GEO
database1, including GSE14827, GSE21257, and GSE32981. The
selection criteria were as follows: (1) inclusion of primary and
metastatic osteosarcoma tissue samples; (2) expression profiling
by array as the experiment type; (3) Homo sapiens; and (4) 20
samples as the minimal size. Among them, GSE14827 contained
18 primary samples and 9 metastatic osteosarcoma samples.
GSE21257 contained 19 non-metastatic and 34 metastatic
osteosarcoma samples. The GSE32981 dataset contained 23
samples. One sample was not available and was excluded.
Twenty-two samples were selected for further study including
four primary and 18 metastatic samples. The matrix files and
platform annotation document of three microarray datasets were
downloaded. The names of microarray probes were converted
to the gene symbols by Perl. The DEGs were identified between
primary and metastatic osteosarcoma samples in each dataset by
limma package in R (15) with the cutoff criteria of |log2 fold
change (FC)| > 0.585 and P-value < 0.05.

Robust Rank Aggregation Analysis
To integrate the three microarray datasets, RRA method was used
to determine the robust DEGs (16), which is a standard method
to minimize the bias and errors among several datasets. Before
RRA analysis, the upregulated and downregulated genes were
ranked by their FC in each dataset. Then, the RobustRankAggreg
R package was performed to get robust DEGs on the basis of
the ranked genes in the three datasets. Genes with FC > 1.3 and
P-value < 0.05 were considered as the significant robust DEGs.

Gene Ontology Function and Kyoto
Encyclopedia of Genes and Genomes
Pathway Enrichment Analyses
To identify the functional roles of the robust DEGs indicated
above, GO enrichment results of biological process (BP), cellular
component (CC), and molecular function (MF) were obtained
using the R package “clusterprofiler.” The KEGG pathway
analysis of robust DEGs was also conducted using the R package
(17). P < 0.05 was considered statistically significant.

Immune Infiltration by CIBERSORT
Analysis
The CIBERSORT algorithm is commonly used to predict the
infiltration of 22 types of immune cells in each tissue sample
(18). The 22 kinds of immune cells include seven types of
T cells [CD8+ T cells, naïve CD4+ T cells, resting memory
CD4+ T cells, activated memory CD4+ T cells, follicular
helper T cells, regulatory T cells (Tregs), gamma delta T
cells], three types of macrophages (M0, M1, and M2), naïve
B cells, memory B cells, plasma cells, resting natural killer
(NK) cells, activated NK cells, monocytes, resting dendritic
cells, activated dendritic cells, resting mast cells, activated mast

1https://www.ncbi.nlm.nih.gov/geo/
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FIGURE 1 | Study workflow. GEO, Gene Expression Omnibus; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; RRA, robust rank
aggregation; TARGET, Therapeutically Applicable Research to Generate Effective Treatments.

cells, eosinophils, and neutrophils. Normalized gene expression
matrix was converted to 22 types of immune cell matrix
by the CIBERSORT algorithm. The immune cell matrix was
filtered according to the criteria of P < 0.05, and then the
relative expression of 22 types of immune cells was identified
between primary and metastatic osteosarcoma samples by R
packages. The principal component analysis (PCA) was also
performed to determine the difference between primary and
metastatic samples.

Protein–Protein Interaction Network
Construction and Module Analysis
We uploaded the robust DEGs to the STRING online database2,
and we chose confidence >0.9 as the screening criteria. The
visualized PPI network was performed by Cytoscape (version

2http://www.string-db.org/

3.6.1) software3. Cytoscape plugin-MCODE was used to screen
the significant modules in the PPI network.

Hub Gene Identification
cytoHubba, a plugin of Cytoscape, provides several topological
analysis algorithms, including Degree, Edge Percolated
Component (EPC), Maximum Neighborhood Component
(MNC), Density of Maximum Neighborhood Component
(DMNC), Maximal Clique Centrality (MCC), and six centralities
that include BottleNeck, EcCentricity, Closeness, Radiality,
Betweenness, and Stress. These algorithms can be used to
identify hub genes (19).

Survival Analysis
The RNA-seq-FPKM data and prognostic information of
osteosarcoma patients were downloaded from TARGET

3https://cytoscape.org
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FIGURE 2 | Identification of DEGs and robust DEGs. Volcano plots of the distribution of DEGs in GSE14827 (A), GSE21257 (B), and GSE32981 (C). Red and green
dots represent the upregulated and downregulated genes, respectively. (D) The heatmap of top 20 upregulated and downregulated robust DEGs identified by RRA
method. Red represents high expression robust DEGs, while blue represents low expression robust DEGs. DEG, differentially expressed gene; RRA, robust rank
aggregation.

database4. TARGET is a database that only includes children’s
tumors. Presently, TARGET database contains six kinds of
tumors, including ALL (Acute Lymphoblastic Leukemia), AML
(Acute Myeloid Leukemia), KT (Kidney Tumors), MDLS (Model
Systems), NBL (Neuroblastoma), and OS (Osteosarcoma).
The survival analyses of hub genes were conducted by R
package survival and survminer. P < 0.05 was considered to be
statistically significant.

4https://ocg.cancer.gov/programs/target

RESULTS

Identification of Differentially Expressed
Genes in Each Dataset
In the present study, the biological characteristics of DEGs
were identified by integrated bioinformatics analysis. The overall
workflow of this study is showed in Figure 1. The osteosarcoma
microarray data GSE14827, GSE21257, and GSE32981 were
selected and analyzed using limma package in R. A total of 102
osteosarcoma samples including 41 primary and 61 metastatic

Frontiers in Oncology | www.frontiersin.org 4 August 2020 | Volume 10 | Article 1628

https://ocg.cancer.gov/programs/target
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-01628 August 19, 2020 Time: 20:15 # 5

Niu et al. Therapeutic Targets in Osteosarcoma

FIGURE 3 | Functional enrichment analysis of robust DEGs. GO enrichment analyses of upregulated robust DEGs (A) and downregulated robust DEGs (B) in three
parts: BP, CC, and MF. (C) KEGG pathway enrichment analysis of robust DEGs. DEG, differentially expressed gene; GO, Gene Ontology; BP, biological process; CC,
cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.

tissues were identified in our study. According to the cutoff
criteria of | log2 FC| > 0.585 and P < 0.05, there were 83 DEGs
in GSE14827 including 23 upregulated and 60 downregulated
genes. A total of 464 DEGs were screened from the GSE21257
dataset, including 247 upregulated and 217 downregulated genes.
Additionally, a total of 650 DEGs were selected in GSE32981,
including 299 upregulated and 351 downregulated genes. The
distribution of DEGs is shown in volcano plots (Figures 2A–
C), where the red and green dots represent the upregulated and
downregulated genes, respectively.

Identification of Robust Differentially
Expressed Genes by Robust Rank
Aggregation Method
To integrate the three datasets with minimal bias, the RRA
method was used. A total of 524 robust DEGs were determined,
including 272 upregulated and 252 downregulated genes
(Supplementary Table S1). According to the P-value of robust

DEGs, we assigned the top 20 upregulated and downregulated
robust DEGs in the visualized heatmap (Figure 2D).

Functional Enrichment Analyses of
Robust Differentially Expressed Genes
To explore the functions of robust DEGs, the GO and
KEGG enrichment analyses were conducted by R packages.
The results of GO analysis included three categories: BP,
CC, and MF. For BP, the upregulated robust DEGs were
mainly enriched in embryonic organ development, multicellular
organismal homeostasis, and transmembrane receptor protein
serine/threonine kinase signaling pathway. In the CC part, the
upregulated genes were particularly enriched in lamellar body,
cell–cell junction, and cell–cell adherens junction. The top three
significantly enriched terms were DNA-binding transcription
activator activity, growth factor receptor binding, and cell
adhesion molecule binding in the MF group (Figure 3A and
Supplementary Table S2). Moreover, the most significantly
enriched GO BP terms of downregulated genes were extracellular
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FIGURE 4 | Immune cells infiltration analysis. (A) The distribution of 22 types of immune cells between primary and metastatic osteosarcoma tissues. (B) The
difference of immune cells infiltration between primary and metastatic osteosarcoma tissues visualized by heatmap. (C) Violin plot visualizing the differentially
infiltrated immune cells (P < 0.05). (D) PCA performed on all osteosarcoma tissues. The two principal components showed nothing significant variation. PCA,
principal component analysis.

matrix (ECM) organization, extracellular structure organization,
and regulation of cellular response to growth factor stimulus.
For CC category, the downregulated genes were enriched
in collagen-containing ECM. In addition, the downregulated
DEGs were mainly enriched in ECM structural constituent
conferring compression resistance, ECM structural constituent,
and glycosaminoglycan binding in the MF group (Figure 3B
and Supplementary Table S3). The above results indicated
that the robust DEGs were mostly associated with cancer-
related functions.

The result of KEGG pathway enrichment analysis is also
shown in Figure 3C. TGF-beta signaling pathway, wnt signaling
pathway, and IL-17 signaling pathway were highly associated
with tumor progression.

Immune Cell Infiltration Analysis
With the use of CIBERSORT algorithm, the infiltration of 22
kinds of immune cells in 102 osteosarcoma tissues is shown in
Figure 4A. There was no significant difference in the infiltration
of immune cells between primary and metastatic osteosarcoma
tissues. However, compared with other immune cells, such as
T cells and B cells, macrophage infiltration dominated, whether
in primary or metastatic osteosarcoma tissues (Figure 4B).
The above results demonstrated that macrophages may play
an important role in the development and progression of
osteosarcoma. The visualized violin plot was also constructed to
prove the above findings (Figure 4C). The PCA of Figure 4D

showed nothing individual difference between primary and
metastasis samples.

Protein–Protein Interaction Network
Construction and Module Analysis
To further study the interaction of robust DEGs, we constructed
the PPI network by STRING database. With the confidence >0.9
and hiding the disconnected nodes, a visualized PPI network was
created by Cytoscape (Figure 5A). In the final network, there
were 148 nodes and 302 edges, including 84 upregulated and
64 downregulated genes. By using MCODE plugin, three key
modules were screened from the whole network (Figures 5B–
D). The robust DEGs in module 1 were mainly enriched in type
I interferon signaling pathway. BP of genes in module 2 was
particularly enriched in chemokine-mediated signaling pathway.
In addition, genes in module 3 were mainly enriched in cell–cell
adhesion mediated by cadherin, cell–cell junction assembly, and
adherens junction organization (Supplementary Table S4).

Hub Gene Identification
cytoHubba is a Cytoscape plugin that allows the use several
topological analysis algorithms, including MCC, DMNC, MNC,
Degree, EPC, BottleNeck, EcCentricity, Closeness, Radiality,
Betweenness, and Stress. These approaches can be used to
predict and explore important nodes in PPI networks. Scores
from topological algorithms are assigned to each node in a PPI
network. According to the gene score, the top ranked genes
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FIGURE 5 | Construction of PPI network, analysis of key modules, and identification of hub genes. (A) The whole PPI network. Upregulated genes are marked in
red, while the downregulated genes are marked in green. (B) PPI network of module 1. (C) PPI network of module 2. (D) PPI network of module 3. (E) Hub genes
were identified by intersection of 50 genes from 10 algorithms including MCC, DMNC, MNC, Degree, EPC, BottleNeck, EcCentricity, Closeness, Radiality, and
Betweenness. PPI, protein–protein interaction.
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TABLE 1 | Description of the 10 hub genes.

Gene Full name Synonyms Function

POMC Pro-opiomelanocortin Regulation of cytokine-mediated pathway and signal
transduction

EGR1 Early growth response protein 1 KROX24, ZNF225 Transcriptional regulator. Regulation of cell survival,
proliferation and cell death

CXCL10 C-X-C motif chemokine 10 INP10, SCYB10 Pro-inflammatory cytokine that is involved in a wide
variety of processes such as chemotaxis, differentiation,
and activation of peripheral immune cells

SERPINA1 Alpha-1 antitrypsin AAT, PI Inhibitor of serine proteases

OAS1 2′-5′-oligoadenylate synthase 1 O1AS Regulation of interferon-gamma-mediated pathway

MYC Myc proto-oncogene protein BHLHE39 Activating the transcription of growth-related genes

CXCR4 C-X-C chemokine receptor type 4 Enhancing MAPK1/MAPK3 activation and involving in
the AKT signaling cascade

CXCL2 C-X-C motif chemokine 2 GRO2, GROB, MIP2A, SCYB2 Chemokine-mediated signaling pathway

CHRDL1 Chordin-like protein 1 NRLN1 Cell differentiation and negative regulation of BMP
signaling pathway

GNAI1 Guanine nucleotide-binding protein G(i) subunit
alpha-1

GTPase activity and regulation of cell cycle and cell
division

can be considered as the hub genes. In the present study, we
used 10 topological analysis algorithms (MCC, DMNC, MNC,
Degree, EPC, BottleNeck, EcCentricity, Closeness, Radiality, and
Betweenness) to rank the top 50 genes of the whole network. The
intersection of these 50 genes from the 10 algorithms revealed
the 10 hub genes: POMC, EGR1, CXCL10, SERPINA1, OAS1,
MYC, CXCR4, CXCL2, CHRDL1, and GNAI1 (Figure 5E). The
description of the 10 hub genes is shown in Table 1, including
full names, synonyms and primary functions.

Survival Analysis
Association between 10 hub genes and the overall survival of
osteosarcoma patient were analyzed using R package. Based
on each hub gene’s best-separation cutoff value, osteosarcoma
patients’ samples within the TARGET-osteosarcoma dataset were
divided into two groups to get the Kaplan–Meier (K-M) survival
curves. The results demonstrated that gene changes of CXCL10
(P = 0.044), GNAI1 (P = 0.048), MYC (P = 0.011), and OAS1
(P = 0.0091) were significantly correlated with the overall survival
of osteosarcoma patients (Figure 6).

DISCUSSION

More and more research based on public database such as
GEO and TARGET database has been done to determine
biomarkers in osteosarcoma. For example, Wang et al. (20)
used the microarray data of 42 different age groups (<20- and
>20-year-old) osteosarcoma samples from GSE39058 to find
2113 DEGs, including 1476 upregulated and 637 downregulated
genes. Similarly, they also identified 15 differentially expressed
miRNAs (DEMs) in GSE39040, and functional enrichment
analysis showed that upregulated DEMs were mainly enriched in
cell growth and response to growth factor, and downregulated
DEMs were involved in cytokine receptor activity. Moreover,
using GEO database, Dai et al. (21) screened candidate genes
for predicting the response to chemoresistance in osteosarcoma

by miRNA–mRNA network. However, the differentially selected
genes in these studies are all based on a single dataset,
and the small size of samples will cause the instability of
results. We integrated three datasets using RRA method,
which is standard and robust, compared with other studies
on osteosarcoma.

In our study, a total of 524 robust DEGs were determined by
RRA method, including 272 upregulated and 252 downregulated
genes. The results of GO and KEGG pathway enrichment
analyses indicated that the robust DEGs were significantly
correlated with ECM organization, cell adhesion molecule
binding, cell–cell adherens junction, collagen-containing ECM,
and TGF-beta signaling pathway, which were associated with
tumorigenesis and metastasis. Through immune cell infiltration
analysis, we compared the infiltration of immune cells in primary
and metastatic osteosarcoma specimens. We also constructed the
PPI network by STRING database and module analysis; finally,
we screened 10 hub genes by cytoHubba including POMC, EGR1,
CXCL10, SERPINA1,OAS1,MYC,CXCR4,CXCL2,CHRDL1, and
GNAI1. Survival analysis of hub genes based on the TARGET
database was also performed in our study.

Based on the results of enrichment analyses, the GO
terms and KEGG pathways were explored in osteosarcoma.
A substantial body of studies indicated that epithelial-to-
mesenchymal transition (EMT) is a process needed for
metastasis, during which the loss of cell–cell junction such
as adherens junctions, allows tumor cells dissociate from the
primary site and acquire the motility to invade stroma (22–
25). EMT is also reported to confer resistance to anoikis,
which is necessary to survive in the circulation (26). In
addition to the involvement of EMT process, the tumor-
related ECM is also a key factor in tumor progression. In fact,
ECM re-organization such as collagen deposition mediated by
collagen-binding integrins may be a general cue for prognosis
of tumors (27). Consistent with the above conclusions, the
results of GO enrichment analysis, such as ECM organization,
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FIGURE 6 | Survival analysis. Gene changes of CXCL10 (A), GNAI1 (B), MYC (C), and OAS1 (D) were significantly correlated with the overall survival of
osteosarcoma patients (P < 0.05).

cell adhesion molecule binding, cell–cell adherens junction,
and collagen-containing ECM, indicate their involvement in
the progression of osteosarcoma. Additionally, enrichment of
robust DEGs in some KEGG pathways, including TGF-beta
pathway and wnt pathway, also demonstrates their relationship
with osteosarcoma development. The overexpression of TGF-
βs is related with the presence of lung metastasis (28) and
is associated with high-grade osteosarcoma (29). Inhibition
of wnt pathway can reduce osteosarcoma invasiveness by
reversing the EMT (30). On the basis of the above results,
we showed that the robust DEGs were highly associated with
pathogenesis and progression of osteosarcoma. Furthermore,
on the basis of the analysis of modules, we found that
three key modules are mainly related to type I interferon
signaling pathway, chemokine-mediated signaling pathway, and

cell–cell adhesion functions. In the type I interferon pathway,
interferon-α has been widely studied. Interferon-α reportedly
enhanced the apoptosis of osteosarcoma cells mediated by
etoposide (31) and doxorubicin (32). Whether the weakening
of interferon signaling pathway plays an important role in the
development and metastasis of osteosarcoma deserves further
study. It has been reported that chemokine-mediated pathways
induce the metastasis of primary tumors to distant target
organs. In osteosarcoma, the interaction between chemokine
CXCL12 and its receptor CXCR4 drives the metastasis of
osteosarcoma cells to the lung (33). CXCR3 and its ligands have
the same role in promoting lung metastasis of osteosarcoma
(34). In addition, the CXCR7 receptor promotes osteosarcoma
lung metastasis (35) and has been recognized as a second
receptor with high affinity to CXCL12 (36). The interaction of
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CXCR7/CXCL12 in the progression of osteosarcoma needs to be
further investigated.

In the past few decades, accumulating evidence has indicated
that cancer initiation and progression are related with not only
cancer itself but also tumor microenvironment (TME) (37, 38).
TME is a complex including ECM, exosomes, and stromal
cells (39). Among stromal cells, tumor-associated macrophages
(TAMs), namely, the M2 type macrophages, have been reported
to promote angiogenesis, matrix remodeling (40) and are
closely associated with osteosarcoma progression and prognosis
(41). In our study, we found that macrophages are the most
principal infiltrating immune cells in osteosarcoma including
undifferentiated macrophage M0 and macrophage M2; thus, the
role of macrophages, especially M2 type macrophages, in the
microenvironment of osteosarcoma needs to be further clarified.

Based on the PPI network construction, 10 hub genes were
identified. Among these hub genes, six key genes were screened to
explore their roles. Serpin peptidase inhibitor clade A member 1
(SERPINA1), a protease inhibitor, was reported to be a predictor
in breast cancer (42) and colorectal cancer (43). However, the
diagnostic and prognostic roles of SERPINA1 in osteosarcoma
were still obscure. Chemokine CXCL2 was reported to be
related with prognosis of bladder cancer (44), but its role in
the progression of osteosarcoma was still unclear. Early growth
response protein 1 (EGR1), a zinc-finger transcription factor,
was reported to be involved in cell proliferation and migration
(45, 46). And an increasing number of studies have shown
that EGR1 is highly associated with cancer development and
progression. Liu et al. reported that EGR1 was essential for
HNF1A-AS1-mediated cell growth and invasion of gastric cells
(47). EGR1 was also reported to promote prostate cancer bone
and brain metastasis, as demonstrated by the reduction of blood
vessel density in brain and bone caused by decreased EGR1
expression (48). In our study, the expression of EGR1 was higher
in metastatic osteosarcoma tissues than primary tissues, but its
role in osteosarcoma remained unclear. C-X-C motif ligand 10
(CXCL10) is a member of the CXC subfamily of chemokines and
acts through CXC receptor 3 (CXCR3) (49, 50). The prognostic
role of serum CXCL10 was proved by Yu et al. in colorectal
cancer, and the authors also indicated that the high levels of
serum CXCL10 were highly related with liver metastasis (51).
Similarly, a study was also reported that high circulating levels
of CXCL10 are a biomarker for worse survival in osteosarcoma
(52). According to our result, high expression of CXCL10 in
osteosarcoma tissues predicted a better survival. The differences
in the above conclusions may be due to the different sources
of CXCL10; the association between the CXCL10 expression
in tissues and overall survival of osteosarcoma patients need
to be further studied. Genetic mutations of tumor suppressor
such as TP53 and RB1 are highly associated with osteosarcoma
development (53, 54). In addition, the mis-regulated expression
of oncogene MYC is often found in osteosarcoma patients (55).
A study indicated that the overexpression of c-myc promoted
osteosarcoma cells invasion through MEK-ERK pathway (56).
Consistent with above result, the expression of MYC was higher
in metastatic osteosarcoma tissues compared with the primary
tissues, and the low expression of MYC predicted a better

overall survival in our study. In a word, the MYC expression
may act as a biomarker in osteosarcoma metastasis. Chemokine
receptor 4 (CXCR4), a seven-transmembrane G protein, has
been implicated to mediate the metastasis of several tumors and
has become a potential target for tumor therapy (57). Several
studies highlighted that the overexpression of CXCR4 potentiated
osteosarcoma growth and lung metastasis (58–60). The CXCR4
antibody (61) and antagonist AMD3100 (62) were reported to
suppress osteosarcoma cell invasion and lung metastasis, and it
revealed that CXCR4 may act as a therapeutic agent to inhibit
osteosarcoma progression.

CONCLUSION

In conclusion, by using integrated bioinformatics analysis such
as RRA method, we identified the significant robust DEGs and
gene modules in osteosarcoma. The enrichment analyses of DEGs
showed that they were closely associated with osteosarcoma
development and progression. We not only identified immune
cell infiltration in osteosarcoma tissues, but we also screened
10 hub genes. After the above discussion, we found that genes
EGR1, CXCL10, MYC, and CXCR4 may be considered as novel
biomarkers of osteosarcoma, and more studies need to be done
to illuminate their contribution in the diagnosis and prognosis
of osteosarcoma.
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