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Abstract 

The phyllosphere is colonized by a wide variety of microorganisms including epiphytes, plant-pathogenic fungus, 
bacteria, as well as human or animal pathogens. However, little is known about how microbial community composi‑
tion changes with the development of angular leaf-spot of cucumber. Here, 18 mixed samples were collected based 
on the lesion coverage rate (LCR) of angular leaf-spot of cucumber from three disease severity groups (DM1: sympto‑
matic-mild, DM2: symptomatic-moderate, DM3: symptomatic-severe). In our study, the microbial community struc‑
ture and diversity were examined by Illumina MiSeq sequencing. A significant differences was observed in α diversity 
and community structure among three disease severity groups. The phyllosphere microbiota was observed to be 
dominated by bacterial populations from Proteobacteria, Actinobacteria, and Firmicutes, as well as fungal species 
from Ascomycota and Basidiomycota. In addition, some plant-specific microbe such as Sphingomonas, Methylobac-
terium, Pseudomonas, and Alternaria showed significant changes in their relative abundance of population. The LCR 
was correlated negatively with Sphingomonas, Methylobacterium, Quadrisphaera, and Lactobacillus, whereas corre‑
lated positively with Pseudomonas and Kineococcus (p < 0.05). The LCR was negatively correlated with Alternaria and 
Arthrinium of the fungal communities (p < 0.05). Molecular ecological networks of the microbial communities were 
constructed to show the interactions among the OTUs. Our current results indicated that the competitive relation‑
ships among species were broken with the development of angular leaf-spot of cucumber. The microbial community 
composition changed over the development of angular leaf-spot of cucumber. The result of molecular ecological 
networks indicated that the overall bacterial community tends toward mutualism from the competition. The develop‑
ment of angular leaf-spot of cucumber affected the ecosystem functioning by disrupting the stability of the microbial 
community network. This work will help us to understand the host plant-specific microbial community structures and 
shows how these communities change throughout the development of angular leaf-spot of cucumber.
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Introduction
Vegetables not only act as energy regulators for human, 
but also a major part of the human diet with great nutri-
tive values. More than a decade ago, cucumbers were 
planted in an area of around 156,300  ha around the 
world with a total production of 26,582 tons (Ram 2002). 
Cucumber yield and quality are affected by many fun-
gal, bacterial and viral diseases. The angular leaf spot 
caused by Pseudomonas syringae pv. lachrymans (Young 
et  al. 1978), is distributed worldwide and caused heavy 
economic losses under favorable climatic conditions by 
decreasing the yield as well as the quality of the cucum-
ber (Pohronezny et al. 1977).

The phyllosphere is colonized by specific microbial 
communities as a vital plant-associated habitat (Vorholt 
2012; Bringel and Couée 2015). Leaves of plant are col-
onized by potential microbial communities including 
bacteria, fungi, protists, and viruses. There are num-
bers of bacteria colonizing in leaf surface ranging from 
106 to 107 per cm2 (Vorholt 2012). The phyllosphere 
may form complex microbial consortia that can be ben-
eficial, pathogenic, or antagonistic for the host plant, 
and contribute greatly to plant health and yield through 
complex plant-microbial interactions (Vorholt 2012; Bul-
garelli et  al. 2013; Brader et  al. 2017). The phyllosphere 
microbial community structure were affected strongly 
due to changes in the relative abundance of those “key” 
microbes induced by abiotic or biotic factors. For exam-
ple, it can be influenced by the plant species, season, 
geographical location, and different environmental con-
ditions (Whipps et  al. 2008; Knief et  al. 2010; Wellner 
et al. 2011; Rastogi et al. 2012; Copeland et al. 2015; Ding 
and Melchner 2016).

Phyllosphere microbes can affect host fitness through 
the production of plant hormones and protection 
from pathogen colonization (Innerebner et  al. 2011; 
Ritpitakphong et  al. 2016). In order to adapt to host 
plants, phyllosphere microorganisms can affect com-
munity diversity and plant population (Clay and Holah 
1999; Bradley et  al. 2008), as well as ecosystem func-
tions (Rodriguez et  al. 2009; McGuire and Treseder 
2010; Allison and Treseder 2011). The pathogens are 
expected to compete with native plant-associated 
microbes when they reach plant surfaces (Brandl et al. 
2013). At the same time in the phyllosphere, these 
microbes will also face harsh environmental conditions 
including nutrient limitations, UV radiation, as well 
as lack of free water availability (Colla et al. 2017). All 
host plants are capable of activating an effective generic 
defense response against a wide range of microbes 
(Pieterse et  al. 2014). Consequently, microbes usually 
have specialized structure to help them move towards 
the plant surfaces. Although the microbial community 

structure in the leaves has been elucidated, there is 
still a lack of knowledge about microbial interactions 
among microbial composition (Hacquard and Schadt 
2015). In particularly, it remains unclear that how the 
establishment of microbial community were affected 
by competition and mutualism among microbes. It is 
likely that members of the microbial communities asso-
ciated with plant have evolved complex strategies for 
interacting in complex microbial communities to main-
tain specific host niches.

At present, the research is mainly focused on the cul-
turable part of leaf microflora but it is limited on the 
understanding of the functional traits of phyllosphere 
microbes. With the development of next-generation 
sequencing technology and related computational analy-
sis tools, we can now perform the further investigations 
(Bulgarelli et  al. 2012; Lundberg et  al. 2012). The previ-
ous studies indicated that the bacterial communities of 
different plant species are plant-host dependent (Knief 
et al. 2010; Redford et al. 2010; Vorholt 2012). These find-
ings suggested that the plant host and colonizers might 
have a selection for each other. However, the underlying 
processes of microbial population dynamics remain to 
be elucidated. In this study, our aim was to (1) compare 
the inter-individual and inter-specific variation of phyl-
losphere microbial communities; (2) characterize the 
composition of phyllosphere microbial communities at 
different disease severities of angular leaf-spot of cucum-
ber; and (3) determine the correlation between disease 
severity of angular leaf-spot of cucumber and phyllo-
sphere population.

Materials and methods
Experimental design
The experiment was performed in the base of LangLi 
town, Changsha, Hunan Province, China (28°16′92″N, 
113°14′29″E) during June 2016. The cucumber (Suyan 
10) was planted in six adjacent greenhouses, dam-
aged by angular leaf-spot of cucumber for a long time. 
Leaf samples were collected from cucumber (Suyan 10) 
plants based on the proportion of lesion area of angular 
leaf-spot of cucumber (0 < DM1 < 30%, 30% < DM2 < 50% 
and DM3 > 50%). The applied classification method of 
disease severity was according to the National standard 
in China (GB/T 17980.30-2000) with slight modifica-
tions. According to three different disease severities, 10 
cucumber leaves of same disease severity with the same 
size at the fruiting stage were collected by five-point 
sampling method in each greenhouse, respectively. Then 
the leaf samples of same disease severity from the same 
greenhouse were mixed and transferred to the labora-
tory at refrigerated temperature. For each leaf, sampling 
was done by using five-point sampling within an area 
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of 40  m2. Every sterile bag contained 10 leaves which 
were cut into tiny pieces and mixed before subsequent 
processing. The phyllosphere microbes were collected 
as described by Xie et al. reported (Xie et al. 2015; Del-
motte et  al. 2009; Redford and Fierer 2009), with slight 
modifications. In brief, 10 g of leaves were submerged in 
a 250  mL sterile conical flask with 100  mL of PBS con-
taining 0.01% Tween-80. The flask was then shaken at 
250 rpm for 30 min at 28 °C, and subjected to ultrasonic-
solid for 10 min. The microbes were filtered by a 0.22 μm 
filter microfiltration membrane using the air pump fil-
tration, and were stored at − 80 °C for subsequent DNA 
extraction.

DNA extraction and purification
DNA was extracted from phyllosphere samples according 
to the manufacturer’s protocol using the MP FastDNA® 
SPIN Kit for soil (MP Biochemicals, Solon, OH, USA). 
PCR amplicon libraries concentration were diluted to 
30 ng/μL for each sample. The V5–V6 region of the bac-
terial 16S rRNA gene was amplified by using the spe-
cific primer 799F (AACMGGA​TTA​GAT​ACC​CKG) and 
1115R(AGG​GTT​GCG​CTC​GTTG). The eukaryotic 
primers gITS7 (5′-GTG​ART​CAT​CGA​RTC​TTT​G-3′) 
(Ihrmark et  al. 2012) and ITS4 (5′-TCC​TCC​GCT​TAT​
TGA​TAT​GC-3′) (White et  al. 1990) with a unique 6 nt 
barcode were included as the modification in the forward 
and reverse primer, respectively. The bacterial and fun-
gal ITS regions were amplified as previously described 
by Kong et al. (2018, 2019). PCR products were purified 
with an E.Z.N.A.® Gel Extraction Kit, pooled in equi-
molar amounts using Qubit (CA, USA). And mixed PCR 
products were sequenced (2 × 250  bp) on an Illumina 
MiSeq platform by ANNOROAD Gene Technology Co., 
Ltd. (Beijing, China) according to standard protocols.

Processing of sequencing data
Raw sequence data reads were processed with an in-
house pipeline (http://mem.rcees​.ac.cn:8080) which 
includes a series of bioinformatics tools. In brief, a sepa-
rate sample was generated according to different 12-bp 
barcodes and primers, allowing for one mismatch. Paired-
end reads with at least 30 bp overlap were combined by 
the FLASH program (Magoc and Salzberg 2011). The 
combined sequences (quality score < 20) were filtered by 
Btrim program (Kong 2011). Then the sequences with 
either an ambiguous base or < 200  bp were discarded. 
The UPARSE algorithms were used to detect and remove 
chimera sequences (Edgar 2013). Low abundance OTUs 
(≤ 1 count) were eliminated from the OTU table which 
was clustered and generated at a 97% similarity from all 
sequences. The microbial representative sequences for 
each OTU were assigned to taxonomic groups using the 

RDP Classifier database (Silva database 132 version) and 
UNITE database (Version 12.01.2017) (Abarenkov et  al. 
2010), respectively. The data were resampled randomly 
with the lowest sequence number (10,217 for bacteria 
and 13,342 sequences for fungi). The resampled OTU 
table was used for the subsequent analysis. In this study, 
all the microbial raw sequences were deposited in the 
SRA database short-read archive PRJNA503587.

Network construction and analysis
Phylogenetic molecular ecological networks (pMENs) 
of the three groups (DM1, DM2 and DM3) were con-
structed based on the Spearman rank correlation matrix 
using by molecular ecological network analysis pipeline 
(MENA, http://ieg4.rccc.ou.edu/mena/login​.cgi) (Deng 
et al. 2012; Zhou et al. 2010a, b, 2011). The process was 
described as Deng et al. (2012) reported. Firstly, only the 
OTUs appeared in more than half samples for each group 
were kept without log-transferring prior to obtaining the 
Spearman rank correlation matrix with a series of thresh-
olds from 0.01 to 0.95 with 0.01 interval. Then only the 
correlations above a specific threshold (0.86 for bacteria 
and 0.92 for fungi) were kept for calculating the network 
eigenvalues. The network plots were visualized with the 
software Cytoscape 3.6.0.

Statistical analysis
The difference between α diversity indices (Shannon 
index, inverse Simpson index, richness (observed_rich-
ness), Chao’s estimated richness (Chao1) and relative 
abundance of the taxonomic subgroups) was assessed 
by performing a one-way ANOVA followed by Dun-
can’s multiple range test (p < 0.05). Correlation analy-
sis between lesion coverage rate (LCR) and α diversities 
along with some special genera analysis was also ana-
lyzed with Pearson, Kendall, and Spearman method. The 
above statistical analyses were performed using the soft-
ware IBM SPSS (Version 21.0) for Windows.

Detrended correspondence analysis (DCA) were per-
formed in subsequent analysis to compare the micro-
bial community composition difference between two 
groups. Venn diagram analysis showed the shared and 
united OTU among three groups. The microbial com-
munity composition difference between two groups 
were evaluated by using Nonparametric multi-response 
permutation procedures (MRPP), analysis of similari-
ties (ANOSIM) and Non-parametric permutational 
multivariate analysis of variance of the Adonis function 
(ADONIS) (Anderson 2001; Dixon 2003). The above 
analysis was performed using vegan package in R pack-
age (v.3.2.5). Analysis of fungal trophic modes anno-
tation was performed with FunGuild (Nguyen et  al. 
2016).

http://mem.rcees.ac.cn:8080
http://ieg4.rccc.ou.edu/mena/login.cgi
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Results
The α diversity and community structure of microorganism 
under different disease severities
In this study, 18 mixed phyllosphere samples were col-
lected and sequenced. A total of 883,665 bacterial and 
657,814 ITS raw sequences were obtained from the high-
throughput sequencing. After completed data analysis, 
these high-quality sequences were classified into 404 bac-
terial and 948 ITS operational taxonomy units (OTUs) at 
a 97% similarity level, respectively. The rarefaction curves 
indicated that the number of sequences for all samples 
reached the sequencing depths (Additional file 2: Figure 
S1). The α diversity indices including observed_rich-
ness, Chao1, Shannon index and Inverse Simpson index 
were shown in Fig. 1. For bacterial α diversity, Shannon 
and Inv_simpson index first increased then decreased 
from DM1 to DM3, while richness and Chao1 index 
first decreased then increased significantly. For fungal 
α diversity, all diversity indices increased from DM1 to 
DM2 and then decreased from DM2 to DM3; while the 
DM2 group showing lowest fungal diversity.

The detrended correspondence analysis (DCA) was 
used to measure the dissimilarity of microorganism com-
munities among all groups (Fig. 2). In general, the micro-
organism community within the phyllosphere samples 
were clearly separated under different disease severity. 
In addition, the dissimilarity test also showed that differ-
ences in the phyllosphere communities among the three 
groups were significantly different (p < 0.05) (Additional 
file 1: Table S1).

The population analysis under different disease severities
The shared and unique OTU numbers are shown in the 
Venn diagram (Additional file 2: Figure S2). These shared 
OTUs accounted for more than half the total OTUs in 
bacteria (232, 57.43%) and fungi (514, 54.22%). The DM3 
and DM1 group had the highest number of unique OTUs 
in bacterial (14.36%) and fungal (8.54%) microbial com-
munities, respectively.

In totally, 13 bacterial phyla and 4 fungal phyla were 
detected (Additional file  2: Figure S3). Proteobacte-
ria, Actinobacteria, and Firmicutes accounted for more 
than 98% of all high-quality bacterial sequences in DM1 
(98.98%), DM2 (99.34%) and DM3 (99.17%). While in 
case of fungal phyla, members from Ascomycota and 
Basidiomycota accounted for 89.67% (DM1), 97.06% 
(DM2) and 87.33% (DM3), respectively (Additional file 2: 
Figure S3). At the class level, a total of 25 bacterial and 24 
fungal classes were detected (Additional file 2: Figure S4).

Microbial genera with relative abundance greater than 
1% are shown in Additional file  1: Table  S2 and main 
genera are shown in Additional file  2: Figure S5. At the 

bacterial genus level, it was observed that the relative 
abundance of Quadrisphaera decreased significantly 
from DM1 to DM2 and then kept stable. Relative abun-
dance of Sphingomonas and Microbacterium increased 
from DM1 to DM2 and then decreased from DM2 to 
DM3. Relative abundance of Pseudomonas increased 
while Methylobacterium and Curtobacterium decreased 
from DM1 to DM3. Relative abundance of Kineococcus 
kept stable from DM1 to DM2 and then increased sig-
nificantly from DM2 to DM3. At the fungal genus level, 
it was observed that the relative abundance of Phoma 
and Davidiella increased slightly from DM1 to DM3 
while the relative abundance of Alternaria decreased. 
Relative abundance of Sporobolomyces, Pseudozyma, and 
Aureobasidium increased from DM1 to DM2 and then 
decreased from DM2 to DM3.

Correlation analysis between lesion coverage rates (LCR), α 
diversities index and dominant genera
In case of the bacterial community, the LCR had a sig-
nificant positive correlation with Observed_richness 
(p < 0.05, Table 1) while had no correlation with Shannon 
index, Inv_Simpson index and Chao1 (p > 0.05, Table 1). 
There was no correlation between LCR and fungal diver-
sity indices under different disease severities (p > 0.05, 
Table 2). The LCR had a significant negative correlation 
with Sphingomonas, Methylobacterium, Quadrisphaera, 
Lactobacillus, whereas significant positive correlation 
with Pseudomonas and Kineococcus of the bacterial pop-
ulation (p < 0.05, Table 1). Meanwhile, the LCR was nega-
tively correlated with fungal populations of Alternaria 
and Arthrinium (p < 0.05, Table 1).

Molecular ecological networks under different disease 
severities
The phylogenetic molecular ecological networks 
(pMENs) of the bacterial and fungal communities con-
structed in our study to show the interactions among the 
OTUs are summarized in Table  3. The result suggested 
that many of the microbes had a few connections while 
only few had many connections with others. For bacte-
rial communities, the group DM3 had the highest aver-
age connectivity (avgK:9.239) while the group DM1 had 
the lowest average connectivity (avgK:4.382). For fun-
gal communities, the highest average connectivity was 
observed in the group DM1 (avgK:5.941) and lowest 
average connectivity in the group DM3 (avgK:4.432). The 
overall pMENs of the three groups can be visualized in 
Figs. 3 and 4, respectively. Modules were identified using 
fast greedy modularity optimization. A total 3, 8, 6 and 
11, 7, 8 modules with > 5 nodes were obtained for DM1, 
DM2, and DM3 group in bacterial and fungal compo-
sitions, respectively. The nodes and links for all three 
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Fig. 1  Summary of α diversity indices under different disease severities. The α diversity indices including shannon, Inv_simpson indice, Observed_
richness and Chao1 in bacteria (a) and fungi (b). The data were analyzed based on a one-way ANOVA followed by Duncan’s multiple range test at 
p < 0.05. DM1, DM2 and DM3 represent the three disease severities of angular leaf-spot of cucumber, respectively. DM1 symptomatic-mild, DM2 
symptomatic-moderate, DM3 symptomatic-severe



Page 6 of 13Luo et al. AMB Expr            (2019) 9:76 

groups i.e. DM1 (306, 909), DM2 (180, 432), and DM3 
(296, 656) were obtained in this study.

For bacterial communities, the number of the nodes in 
three networks belonged to phylum Actinobacteria and 
Proteobacteria. And most of the nodes were from Asco-
mycota, Basidiomycota, and some unidentified species of 
the fungal population. Most of the interactions between 
the OTUs were positive (42.16–74.4%), and the number 
of positive interactions increased from DM1 to DM3 in 
bacteria composition. At same time, a number of nega-
tive interactions (55.1–63.26%) were observed among 
fungal populations.

The topological roles of the OTUs identified in three 
networks are visualized in Fig. S6. The numbers of the 
OTUs (97.84%) were peripherals whose links mainly 
stayed within their respective modules. The OTUs of 
bacteria (2.09%) and fungi (2.22%) were observed to be 
generalists. From bacterial communities, 0.17% of OTUs 
were module hubs (nodes that are connected with nodes 
within their modules, Zi > 2.5) and 1.92% of OTUs that 
were connectors (nodes that connected with several 
modules, Pi > 0.62). In the fungal communities, 0.42% 

Fig. 2  Detrended correspondence analysis (DCA) under different 
disease severities. DM1, DM2 and DM3 represent the three 
disease severities of angular leaf-spot of cucumber, respectively. 
DM1 symptomatic-mild, DM2 symptomatic-moderate, DM3 
symptomatic-severe

Table 1  Correlation analysis between lesion coverage rate 
(LCR) and α diversities index and main genera of bacterial 
communities

* p < 0.05, ** p < 0.01

Factors Pearson Spearman Kendall

α Diversity

 Shannon 0.0259 0.144 0.0528

 Inv_Simpson − 0.0354 0.03 0.0264

 Observed_richness 0.62** 0.592** 0.447*

 Chao1 0.337 0.27 0.211

Main bacteria genera

 Sphingomonas − 0.513* − 0.562* − 0.396*

 Microbacterium 0.103 0.156 0.0924

 Methylobacterium − 0.693** − 0.741** − 0.568**

 Curtobacterium − 0.461 − 0.361 − 0.277

 Pseudomonas 0.573* 0.508* 0.383*

 Kineococcus 0.623** 0.673** 0.436*

 Aureimonas − 0.289 − 0.248 − 0.146

 Quadrisphaera − 0.483* − 0.535* − 0.391*

 Novosphingobium 0.761** 0.581* 0.417*

 Hymenobacter − 0.269 − 0.225 − 0.154

 Bacillus 0.339 0.131 0.0867

 Lactobacillus − 0.616** − 0.718** − 0.539**

Table 2  Correlation analysis between lesion coverage rate 
(LCR) and  α diversities index and  main genus of  fungal 
communities

* p < 0.05, ** p < 0.01

Factors Pearson Spearman Kendall

α Diversity

 Shannon − 0.161 − 0.334 − 0.224

 Inv_Simpson 0.186 − 0.0445 − 0.0396

 Observed_richness − 0.0474 − 0.202 − 0.126

 Chao1 0.191 0.183 0.172

Main fungal genera

 Sporobolomyces 0.23 0.377 0.198

 Davidiella 0.396 0.522 0.37

 Phoma 0.363 0.299 0.211

 Alternaria − 0.564** − 0.624** − 0.444*

 Pseudozyma 0.238 0.402 0.251

 Aureobasidium − 0.384 − 0.457 − 0.298

 Ascomycota_unidentified_1_1 0.136 − 0.133 − 0.066

 Periconia 0.368 0.312 0.179

 Exobasidiomycetes_unidentified_1 − 0.229 − 0.0372 − 0.0331

 Pleosporales_unidentified_1 − 0.327 − 0.432 − 0.311

Tremellomycetes_unidentified_1 − 0.228 − 0.406 − 0.298

 Chaetothyriales_unidentified_1 − 0.382 − 0.363 − 0.192

 Arthrinium − 0.624** − 0.613** − 0.444*
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and 1.79% of OTUs were module hubs and connectors, 
respectively. In addition, all the module hubs were from 
DM2 and DM3 while all connectors were from all three 
groups. These OTUs associated with module hubs and 
connectors are shown in Additional file 1: Table S3.

Discussion
The phyllosphere is colonized by a wide variety of micro-
organisms including plant pathogenic microbes and 
other kinds of pathogens (Lindow and Brandl 2003). The 
colonization of phyllosphere by microbes is controlled by 
many factors such as factors from plants, microbes and 
natural environment. And these microbes can deposit 
on the surfaces of the leaf by means of many pathways. 
The microbes colonizing the leaves serving as patho-
gens or growth promoters may have the neutral, nega-
tive, or positive impact on their host plants (Kinkel 1997; 
Whipps et al. 2008). Therefore, it is crucial to study the 
effect of pathogens from the phyllosphere microbial com-
munities, especially from the dominant microbiome. It 
is suggested that the abundance of dominant members 
were associated with plant-associated microbial com-
munities and it is an important factor to determine the 
healthy community state (Shade and Handelsman 2012). 
Utilizing the beneficial potential of the plant microbiome 
to mitigate the hazards of major crop diseases is becom-
ing a sustainable way to improve agricultural production 
(Berg et al. 2013; Gopal et al. 2013; Bakker et al. 2012). In 
our study, we conducted a field experiment to study the 
dynamic change of phyllosphere microbial communities 
by an Illumina MiSeq-based approach, under the differ-
ent stage of angular leaf-spot of cucumber.

The phyllosphere microbiome is crucial for leaf bio-
logical processes and ecosystem functions (Ortega et al. 
2016). The microbial communities composition and 
structure were observed to be strongly affected by the 
plant pathogenic microbe (Rastogi et  al. 2012; Bulgari 
et  al. 2011; Trivedi et  al. 2012). In this study, the rich-
ness and Chao1 of phyllosphere microbiome communi-
ties decreased significantly from DM1 to DM2, while 
increased significantly from DM2 to DM3 (Fig.  1). 
Microbial communities were observed to have the lowest 
biodiversity at the DM2 stage, which suggested that the 
pathogen caused an increase in the microbial community 
richness when disease pressure was higher. Generally 
speaking, plant disease is a serious threat to indigenous 
microbiome biodiversity because of its inhibitory action 
on other microorganisms (Zhou et al. 2010a, b). The cur-
rent results are in contrast with previous research (Man-
ching et  al. 2014), who found that decreased maize leaf 
epiphytic bacterial richness was correlated with southern 
leaf blight disease severity.

Significant variations were found in the microbial com-
munity structure of phyllosphere samples at different 
stages of angular leaf-spot of cucumber. The result of 
the DCA analysis indicated that the samples from dif-
ferent groups were clearly separated (Fig. 2). In addition, 
the dissimilarity test also revealed significant differences 
in the composition and structure of the microbiome 
assembled between different groups (Additional file  1: 
Table S1). In previous studies, It had been observed that 
plant pathogenic microbes shaped the microbial commu-
nities in previous researches (Zhou et al. 2010a, b; Man-
ching et al. 2014), but it is still unclear at different disease 
severities. It might be due to the differences in the disease 
severity of plant disease, which could select the associ-
ated microorganisms to colonize leaf surface because of 
the symbiotic and competitive stresses among microbial 
species.

The composition and structure of microbial commu-
nity changes with the aggravation of the disease, there 
were more than half of shared OTUs were observed in 
each disease severities group (Additional file  2: Figure 
S2). However, the highest number of unique OTUs of 
bacteria were observed in DM3 while for fungi in DM1 
(Additional file  2: Figure S2). Previous studies reported 
that a healthy ecological environment is usually colo-
nized more unique OTUs (Rosenzweig et al. 2012; Zhang 
et  al. 2018). In our study, the number of unique OTUs 
increased from DM1 to DM2 in bacteria while decreased 
significantly in fungi and observed to increase signifi-
cantly from DM2 to DM3 in both bacterial and fungal 
communities. These results indicated that plant patho-
genic microbes would stimulate the growth of more 
antagonistic microbes in the phyllosphere. The dominat-
ing microbial phyla were the members of Proteobacteria 
and Ascomycota (Additional file 2: Figure S3). Proteobac-
teria was the most abundant bacterial population among 
the three disease severities (Additional file 2: Figure S3). 
Among fungal communities, Ascomycota were the most 
abundant phylum in DM1 and DM3 groups, while Basid-
iomycota was the most abundant phylum in DM2 group 
(Fig. S3). The lesion coverage rate (LCR) were negatively 
correlated with Sphingomonas and Methylobacterium but 
positively correlated with Pseudomonas and Kineococ-
cus (p < 0.05, Table 1). It was reported that Sphingomonas 
contributes to plant health in many plants (Innerebner 
et  al. 2011). In addition, some strains of Pseudomonas 
and Sphingomonas can enhance plant growth by produc-
ing plant growth hormones (Omer et al. 2004; Tsavkelova 
et al. 2007) and protect host plants from phytopathogens 
(Innerebner et al. 2011). Previous studies have also indi-
cated that Methylobacterium can protect the host plants 
from various harmful pathogens (Ardanov et  al. 2012; 
Madhaiyan et  al. 2006). Alternaria is a plant pathogen 
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Fig. 3  Phylogenetic molecular ecological networks (pMENs) of bacterial communities under different disease severities. Modules with > 5 nodes 
were obtained for bacterial groups (LB1, LB2 and LB3), respectively. The links between two nodes show the correlation (red: positive, blue: negative). 
The size of circle indicate the relative abundance of the OTU. The number in the center of circle represents the modules to which these OTUs 
belongs



Page 10 of 13Luo et al. AMB Expr            (2019) 9:76 

causing black spots on stems and pods of Brassica napus 
(Bansal et al. 1990). Relative abundance of Alternaria sp. 
decreased with increasing lesion coverage rate (LCR), 
which indicated that growth of this genus may was inhib-
ited by the angular leaf-spot causing pathogen.

The network interactions among three different groups 
were also analyzed in our study. Networks based on ran-
dom matrix theory could accurately reflect various com-
plex biological systems because of stronger robustness 
and consistency (Zhou et al. 2011). In general, the more 
complex network means a more stable community struc-
ture (Liang et  al. 2016; Mougi and Kondoh 2012). The 

results of modularity values indicated that all pMENs 
appear to be modular (Feng et  al. 2017). The modular-
ity values for all groups were higher than those of corre-
sponding randomized networks (Table  3). In this study, 
the interspecies interaction changed with the develop-
ment of angular leaf-spot of cucumber. It is obvious that 
the bacterial network size and the interactions, especially 
the number of positive links (DM1: 42.16%, DM2: 61.34% 
and DM3: 74.4%), were significantly increased from DM1 
to DM3. The results indicated that DM3 group pos-
sessed a more complex network than DM1 and DM2 
group, indicating that the disease severity could affects 

Fig. 4  Phylogenetic molecular ecological networks (pMENs) of fungal communities under different disease severities. Modules with > 5 nodes were 
obtained for fungal groups (LF1, LF2 and LF3), respectively. The links between two nodes show the correlation (red: positive, blue: negative). The size 
of circle indicate the relative abundance of the OTU. The number in the center of circle represents the modules to which these OTUs belongs
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the co-occurrence network patterns of overall bacte-
rial communities. As previous studies described, posi-
tive and negative interactions usually mean mutualism 
and competition under environmental stress (Deng et al. 
2016; Faust and Raes 2012). Interestingly, our results sug-
gested that the competitive relationships between species 
were broken with the development of angular leaf-spot of 
cucumber. It was indicated that the overall bacterial com-
munity tends to mutualism from competition. The dis-
ease severity may just affects some modules. Therefore, 
the development of angular leaf-spot of cucumber could 
disrupt the stability of the microbial community network, 
which in turn affects ecosystem functioning.

Additional files

Additional file 1: Table S1. Dissimilarity test (MRPP, ANOSIM and 
PERMANOVA (ADONIS)) of microorganism communities in phyllosphere 
from two different group. DM1, DM2 and DM3 represent the three 
disease severities of angular leaf-spot of cucumber, respectively. DM1: 
symptomatic-mild, DM2: symptomatic-moderate, DM3: symptomatic-
severe. Table S2. The relative abundance of main microorganism genus 
under different disease degree. DM1, DM2 and DM3 represent the three 
disease severities of angular leaf-spot of cucumber, respectively. DM1: 
symptomatic-mild, DM2: symptomatic-moderate, DM3: symptomatic-
severe. Table S3. Summary of module hubs and connectors in microbial 
communities under different disease severities. LB1, LB2 and LB3 group 
were the bacterial population from DM1, DM2 and DM3 disease severities. 
LF1, LF2 and LF3 group were the fungal population from DM1, DM2 and 
DM3 disease severities. Module hubs were nodes that highly connected 
with nodes within their modules, Zi > 2.5 and connectors were nodes that 
connected with several modules, Pi > 0.62.

Additional file 2: Figure S1. Rarefaction curve of bacterial (A) and fungal 
(B) communities under different disease severities. DM1: symptomatic-
mild, DM2: symptomatic-moderate, DM3: symptomatic-severe. Figure S2. 
The unique and shared OTUs detected in the phyllosphere under different 
disease severities. DM1, DM2 and DM3 represent the three disease severi‑
ties of angular leaf-spot of cucumber, respectively. DM1: symptomatic-
mild, DM2: symptomatic-moderate, DM3: symptomatic-severe. Figure S3. 
Relative abundance at phylum level of bacterial and fungal communities 
under different disease severities. DM1, DM2 and DM3 represent the three 
disease severities of angular leaf-spot of cucumber, respectively. DM1: 
symptomatic-mild, DM2: symptomatic-moderate, DM3: symptomatic-
severe. Figure S4. Relative abundance at class level of bacterial and fungal 
communities under different disease severities. DM1, DM2 and DM3 
represent the three disease severities of angular leaf-spot of cucumber, 
respectively. DM1: symptomatic-mild, DM2: symptomatic-moderate, DM3: 
symptomatic-severe. Figure S5. Relative abundance of dominant genus 
of bacterial and fungal communities under different disease severities. 
The data were analyzed based on a one-way ANOVA followed by Duncan’s 
multiple range test at p < 0.05. DM1, DM2 and DM3 represent the three 
disease severities of angular leaf-spot of cucumber, respectively. DM1: 
symptomatic-mild, DM2: symptomatic-moderate, DM3: symptomatic-
severe. Figure S6. Summary of module hubs and connectors of the 
bacterial (A) and fungal (B) communities under different disease severities. 
The OTUs were peripherals whose links mainly stayed within their respec‑
tive modules. Generalists including module hubs (nodes that highly con‑
nected with nodes within their modules, Zi > 2.5) and connectors (nodes 
that connected with several modules, Pi > 0.62). LB1, LB2 and LB3 group 
were the bacterial population from DM1, DM2 and DM3 disease severities. 
LF1, LF2 and LF3 group were the fungal population from DM1, DM2 and 
DM3 disease severities.
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