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Abstract: Reliability of nonvolatile resistive switching devices is the key point for practical appli-
cations of next-generation nonvolatile memories. Nowadays, nanostructured organic/inorganic
heterojunction composites have gained wide attention due to their application potential in terms of
large scalability and low-cost fabrication technique. In this study, the interaction between polyvinyl
alcohol (PVA) and two-dimensional material molybdenum disulfide (MoS2) with different mixing
ratios was investigated. The result confirms that the optimal ratio of PVA:MoS2 is 4:1, which presents
an excellent resistive switching behavior. Moreover, we propose a resistive switching model of
Ag/ZnO/PVA:MoS2/ITO bilayer structure, which inserts the ZnO as the protective layer between
the electrode and the composite film. Compared with the device without ZnO layer structure, the
resistive switching performance of Ag/ZnO/PVA:MoS2/ITO was improved greatly. Furthermore,
a large resistive memory window up to 104 was observed in the Ag/ZnO/PVA:MoS2/ITO device,
which enhanced at least three orders of magnitude more than the Ag/PVA:MoS2/ITO device. The
proposed nanostructured Ag/ZnO/PVA:MoS2/ITO device has shown great application potential for
the nonvolatile multilevel data storage memory.

Keywords: resistive switching; ZnO/PVA:MoS2; data retention; endurance; memory window

1. Introduction

Recently, random resistive access memory (RRAM) with outstanding characteristics of
a fast operation speed, high storage density, low power consumption, long retention time,
multilevel data storage and simple structure has become the research hotspot for the next-
generation nonvolatile memory applications [1–3]. RRAM has a typical sandwich structure
with metal–insulator–metal, where various materials have been used as the switching
layer. According to the basic properties of the dielectric material layer, it can be divided
into inorganic materials and organic materials [4]. Owing to the characteristics of organic
materials, including easy modification, large scalability, simple preparation method and
so on, there is a growing demand for organic-based resistive switching memory, such as
poly(4-vinylphenol) (PVP) [5] and polyvinyl alcohol (PVA) [6,7]. Metal oxides consisting of
Al2O3 [8], TiO2 [9] and ZnO [10,11] have been widely studied as inorganic materials due to
their simple structure, easy control of material composition and compatibility with CMOS
technology. Two-dimensional (2D) materials such as graphene [12], MoS2 [13,14], WS2 [15]
and h-BN [16] have gained great attention owing to their excellent electrical and mechanical
characteristics. At present, the discussion of RRAM mainly focuses on addressing the major

Nanomaterials 2022, 12, 1977. https://doi.org/10.3390/nano12121977 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12121977
https://doi.org/10.3390/nano12121977
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-9971-3793
https://orcid.org/0000-0001-9340-217X
https://orcid.org/0000-0003-1266-8609
https://doi.org/10.3390/nano12121977
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12121977?type=check_update&version=1


Nanomaterials 2022, 12, 1977 2 of 10

key challenges, which are retention, endurance, ON/OFF ratio and operating voltage.
Scalability, variability and low-cost fabrication are other challenges of concern for RRAM.
However, the resistive switching (RS) performance of mono-components is not ideal be-
cause of their own physical limitations. For example, organic polymers often struggle to
obtain stable RS memory on account of its environmental sensitivity [17]. Table 1 summa-
rizes the research results of RRAM over the years. It can be seen that the performance of
mixed layer and multi-layer structures is better than that of a single traditional device.

Table 1. Summary of some recent research on RRAM devices.

Structure Deposition
Technique

ON/OFF
Ratio

Endurance
Cycles

Retention
Time(s) Year Ref.

Ag/TiO2/FTO Hydrothermal
method ~10× 16 - 2019 [18]

Ag/MoS2/PMMA/SiO2 Sputtering 104 300 103 2020 [19]
Ag/ZnO/FTO CVD >50 ~40 >103 2020 [10]

Au/TiO2/ZrO2/ITO Spin coating 102 100 - 2020 [20]
Ti/h-BN/Au CVD - 120 103 2021 [21]

Ag/PVA:ZnO/FTO Spin coating ~103 - - 2021 [22]
Ag/GO:PVP/TiOx/ITO ALD, Spin coating >103 128 >7 × 103 2022 [23]

Ag/ZnO/PVA:MoS2/ITO Sputtering, Spin coating ~104 >1000 >5 × 103 - This
work

What is more, some studies have reported that by effective mixing of the 2D inorganic
materials and organic matters to produce a nanostructured organic/inorganic composite
dielectric layer, a decent property of the RRAM devices can be obtained. For instance,
Lv et al. [24] studied the resistive memory with the resistive layer related to polymer [6,6]-
phenyl-C61-butyric acid methyl ester (PCBM)−MoS2, which presents both WORM and
flash memory characteristic with superior electrical biostability. In addition, the stacking
of the structure by inserting a metal oxide between the inorganic/organic composites and
electrode can effectively enhance the RS performance of the RRAM devices. Varun et al. [5]
obtained a resistive memory with low power consumption and high storage window
by combining PVP: GO composite film with ultra-thin HfOx. Liao et al. [25] combined
PDPPBTT with ZnO, proposed that the resistive switching mechanism of the device is
related to the formation and rupture of conductive filaments formed by conductive ions
and further demonstrated the application potential of Ag/PDPPBTT/ZnO/ITO devices in
the field of biological synaptic simulation in the future.

In this work, we fabricated a memory device based on the ZnO and PVA:MoS2
composite film stacked structure in which PVA:MoS2 acts as organic heterojunction and
inorganic ZnO acts as function layer. The RS performance of PVA and MoS2 under different
mixing ratios has been studied systematically. By inserting the ZnO layer between electrode
and composite under the optimal mixing ratio, the non-volatile memory characteristics of
the device were observed, including a larger resistive memory window, better repeatability
and a longer retention performance. What is more, a stable middle state of the device
can be obtained after inserting ZnO as a voltage divider, which demonstrates that the
Ag/ZnO/PVA:MoS2/ITO device has important application potential for next-generation
nonvolatile high-density data storage memory.

2. Experiment

MoS2 suspension (1 mg/mL) was purchased from XF Nano Co. Ltd. (Nanjing, China).
PVA powders were procured from Sigma-Aldrich (Shanghai, China). Indium tin oxide
(ITO) with 150 nm-thick coated glass substrates were obtained from South China Science &
Technology Company Limited (Hunan, China). To achieve a PVA:MoS2 nanocomposite
film, a transparent PVA solution was prepared by adding 0.6 g PVA powder into 10 mL
deionized water (DI). The mixture was magnetically stirred for 2 h at the temperature of



Nanomaterials 2022, 12, 1977 3 of 10

60 ◦C and then allowed to cool down to room temperature. Subsequently, the mixtures of
PVA solution and MoS2 suspension with the volume ratio of 4:1 and 4:3 were obtained after
vigorous stirring for 12 h at room temperature, respectively. The graphical ITO bottom
electrode (BE) with a line width of 100 µm was produced by photolithography and wet
etching process. The as-prepared mixture of PVA:MoS2 was spin-coated on the graphical
ITO bottom electrode, which was then dried on the hot plate at 80 ◦C for more than 2 h to
form a PVA:MoS2 composite film with a thickness of ~150 nm. Next, a 10 nm thick ZnO
layer was deposited on the PVA:MoS2 composite film surface by magnetron sputtering.
After that, a Ag top electrode (TE) with a thickness of 150 nm was sputtered via a metal
shadow mask with a typical device size of 10 µm × 10 µm. For the device performance
comparison, the Ag/PVA:MoS2/ITO device and Ag/PVA/ITO device were also fabricated,
respectively. The electrical characterization of as-prepared devices was performed using a
Keithley2636 Source Meter with biasing at TE, while the BE was kept at ground potential.

3. Results and Discussion

Figure 1a shows the schematic illustration of Ag/ZnO/PVA:MoS2/ITO resistive mem-
ory, which is a cross-point structure. The scanning electron microscope (SEM) surface
diagrams of the ZnO layer and PVA:MoS2 layer show that the ZnO and both the PVA:MoS2
are well covered on the bottom electrode ITO. X-ray photoelectron spectroscopy (XPS)
analysis of the ZnO layer was performed as shown in Figure 1b. The Zn2p core-level
spectra can be fitted by two distinct peaks such as the Zn2p1/2 and Zn2p3/2, corresponding
to the 1021.55 eV and 1044.56 eV, respectively, which reveals the strong bonding between Zn
atoms and oxygen ions and a perfect stoichiometry of the ZnO film [26]. Figure 1c shows
the XPS spectra of the O1s, which can be deconvoluted into two peaks related to the lattice
oxygens and non-lattice oxygens [11]. It can be seen that binding energy peaks at 530.23 eV
are attributed to the oxygen ions, while higher energy peaks at 531.76 eV are corresponding
to oxygen vacancies in the ZnO layer [27]. Figure 1d shows the measured Raman spectra of
MoS2. It is clear that two obvious characteristic peaks at 381.09 cm−1 and 407.56 cm−1 can
be found, which are MoS2 lattice vibration modes caused by covalent bond stretching of
Mo and S, corresponding to plane Mo and S atomic vibration modes (E1

2g) and S atomic
vibration modes (A1

1g), respectively. Additionally, it proves the material is multi-layer
stacked MoS2 [28,29]. In order to confirm the phase composition and microstructure of
PVA:MoS2 composites, the phase analysis of the PVA:MoS2 film was carried out by X-ray
diffraction (XRD) (Figure 1e). It is obvious from Figure 1e that the diffraction peak of pure
PVA is about 2θ = 23◦ [30]. The diffraction peak of PVA hardly shifts but the intensity of
the peak decreases with the increase in MoS2, indicating that the crystallinity of the PVA
polymer decreases [31].

The current–voltage (I–V) characteristic was studied to examine the resistive switching
behavior of the fabricated devices as shown in Figure 2, and the electrical tests of all devices
are carried out at a normal temperature and pressure. The sweeping voltages optimizing
the uniformity of the device were applied on the top electrode with the bottom electrode
grounded and the voltage loop was 0 V→Vmax→0 V→−Vmax→0 V. A compliance current
of 0.1 mA was employed to prevent breakdown of the devices. The resistive memory behav-
ior can be described by the SET and RESET switching voltages. While the positive voltage
sweeps from 0 to Vmax and reaches a voltage named Vset, the device switches from an initial
high-resistance state (HRS) to a low-resistance state (LRS), which was labeled as the “SET”
process. The device maintains in the LRS before the reverse voltage is applied and the
device transitions from LRS to HRS when the voltage reaches Vreset, corresponding to “RE-
SET” process. Figure 2a shows the I–V curve of the Ag/PVA:MoS2/ITO (PVA:MoS2 = 4:1)
device, which exhibits an obvious hysteresis under forward-bias voltage and reverse-bias
voltage, representing a typical bipolar resistive characteristic. The voltage increased gradu-
ally from 0 to 3 V and then a sharp rise in current was observed at Vset = 0.91 V, implying
the formation of conductive filaments (CFs) between two electrodes. It is interesting to
note that there was no electronic forming process here, which was beneficial for scaling
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down the complexity of the memory circuit [32,33]. After that, the negative bias was back
from −3 V to 0 and a dramatic drop in current can be surveyed when the voltage reached
Vreset = −0.79 V, suggesting the collapse of conductive filaments between two electrodes.
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Figure 1. Structure and basic characteristics of the device. (a) Schematic illustration of the
Ag/ZnO/PVA:MoS2/ITO memory, (b) SEM image of the ZnO surface, (c) PVA:MoS2 deposited
on the ITO glass substrate, (d) XPS spectra of Zn2p in the ZnO layer, (e) XPS spectra of O1s in the
ZnO layer, (f) Raman spectra of MoS2, (g) XRD patterns of PVA:MoS2 composite.
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Figure 2. The I–V curve and switching behaviors of (a) Ag/PVA:MoS2/ITO, PVA:MoS2 = 4:1, insect:
Ag/PVA/ITO, (b) Ag/PVA:MoS2/ITO, PVA:MoS2 = 4:3. (c) The endurance of PVA:MoS2 = 4:1 RRAM,
(d) The resistive-state retention time of HRS and LRS of Ag/PVA:MoS2/ITO, PVA:MoS2 = 4:1.

The insect picture in Figure 2a shows the electrical characteristics of the Ag/PVA/ITO
device (PVA:MoS2 = 4:0). It is obvious that no bipolar resistive switching characteristic
can be observed, indicating that the RS behavior in hybrid PVA:MoS2 is related to the
local high-electric field generated at the edge of the MoS2 nanosheet consisting of sulfur
vacancy. Figure 2b shows the I–V characteristics of the Ag/PVA:MoS2/ITO device with
PVA:MoS2 = 4:3. By comparing the I–V curves of the as-prepared devices with different
concentrations, it is demonstrated that the decreasing crystallinity puts on the proportion
of amorphous part with the increase in MoS2 content, which is beneficial for the migration
of conductive ions. Hence, the semiconductor properties of MoS2 dominates the electrical
properties of the nanocomposite when the concentration of MoS2 increases and the leakage
current increases, resulting in the deterioration of the memory window [34]. Therefore,
the optimal volume ratio of the composite is PVA:MoS2 = 4:1, which displays an excellent
resistive switching behavior in this work and would be considered for subsequent studies.

MoS2 nanosheets mixed with PVA can improve the memory performance; however,
the device may still have the problem of poor stability. Figure 2c,d show the cycling
endurance and retention time characteristics of Ag/PVA:MoS2/ITO (/PVA:MoS2 = 4:1),
respectively, where the read voltage is 0.2 V. It can be seen that the memory window
of the Ag/PVA:MoS2/ITO devices is about 10 and the device failure occurs after about
380 cycles and 800 s, which indicates that the stability of organic memory cannot be reliably
maintained. The main issue in the hybrid device is the highly localized electric field around
MoS2 nanosheets [7], which might have induced the failure of device performance.

In order to solve this problem, ZnO is selected as the protective layer to sustain the ma-
jority voltage, which would reduce the local electric field. Figure 3a reveals the I–V curve of
the Ag/ZnO/PVA:MoS2/ITO device under different cycle times, which exhibits a reliable
nonvolatile switching behavior. By comparing the I–V curves of Ag/ZnO/PVA:MoS2/ITO,
Ag/PVA:MoS2/ITO and Ag/PVA/ITO devices, it is found that the RS performance
of the Ag/ZnO/PVA:MoS2/ITO device is significantly enhanced due to the develop-
ment of the highly localized electric field of nanocomposite. Moreover, there is a sta-
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ble intermediate resistance state as displayed in Figure 3a, which demonstrates that the
Ag/ZnO/PVA:MoS2/ITO device has the application potential of high-density multilevel
data storage.
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Figure 3. (a) The I–V characteristics of the Ag/ZnO/PVA:MoS2/ITO, PVA:MoS2 = 4:1, insert: electri-
cal circuit for the device. (b) Cumulative probability of SET/RESET voltages for Ag/PVA:MoS2/ITO
and Ag/ZnO/PVA:MoS2/ITO, PVA:MoS2 = 4:1. (c) DC sweep mode endurance cycles at read voltage
0.2 V, respectively. (d) Retention property in both LRS and HRS at read voltage 0.2 V.

The cumulative probability distribution of Vset and Vreset voltages of the Ag/PVA:MoS2/
ITO and Ag/ZnO/PVA:MoS2/ITO devices has been shown in Figure 3b. Although the
inserted ZnO layer increases the SET and RESET voltage of the device, the uniformity of the
switching voltage can be significantly improved, which indicates that the ZnO has been served,
as the divider stands most of the electric field, reduces the instability of the nonvolatile resistive
switching stemming from the large localized electric field and optimizes the uniformity of
the device. The endurance test of Ag/ZnO/PVA:MoS2/ITO can be depicted as in Figure 3c,
and it presents the reliable performance over 1000 switching cycles. Meanwhile, the water
and oxygen chemisorbed by the organic active layer will also lead to the degradation of the
RS performance and stability of the device [35]. As shown in Figure 3d, after the ZnO was
inserted as a protective layer, the LRS and HRS of Ag/ZnO/PVA:MoS2/ITO were maintained
for more than 5000 s without any obvious deterioration. The resistive memory window of
the device can increase to ~104, which is improved by at least three orders of magnitude
compared with the Ag/PVA:MoS2/ITO.

In order to explore the conduction mechanism, the piecewise linear fitting of the I–V
curve plotted in log-log scale was carried out to analyze the resistive switching behavior
of the Ag/ZnO/PVA:MoS2/ITO device as depicted in Figure 4a. During the SET process,
the conduction mechanism follows Ohm’s law with the fitting slope of about 1.06, and the
I–V curve shows a linear relation (I ∝ V) in a low voltage area (Region A), suggesting that
the device has been governed by thermal excitation produced by the trap-filled limited
minority carrier in the HRS. The slope of the I–V curve increases to ~2.37 (Region B), which
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agrees with the nonlinear behavior with the Child conduction mechanism (I ∝ V2). At this
stage, the current is completely controlled by the space charge, which restricts the further
injection of carriers into the dielectric layer. When the voltage increases to Vset, all traps
are filled and a large number of free carriers increase dramatically, resulting in a sudden
surge of current, and the device turns from HRS to LRS. Thus, the electrical behaviors of
the device are ascribed to the conduction mechanism of the trap-filled space charge limited
conduction (SCLC) [36] in the HRS. The relation between the current density and the bias
voltage can be defined as follows:

J = 9εmµθV2/8d3

where J is the current density, εm is the dielectric constant, µ is the mobility of charge carrier,
θ is the ratio of free electrons to trapped electrons, V is the bias voltage and d is the distance
between the two electrodes [37].
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For the LRS, the slope of the curve is about 1.07 (Region C) and the conductive
phenomenon conforms with the Ohmic conduction mechanism, demonstrating that the
metallic conductive filaments are formed inside the device. The different conduction
properties of Ag/ZnO/PVA:MoS2/ITO in high- and low-resistance states indicate that the
resistive switching behavior of the device follows the conduction mechanism adjusted by
the metallic conductive filaments [38].

The switching behavior can also be explained through the energy band diagram of the
Ag/ZnO/PVA:MoS2/ITO device, as presented in Figure 4b. When the voltage is applied
to the Ag electrode, electrons can easily pass through the ZnO due to the work functions
of Ag (4.2 eV) and ZnO (5.2 eV) being approximate [39]. The highest occupied molecular
orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of PVA and MoS2 are
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shown in Figure 4b [40–43]. A large energy gap between MoS2 and PVA suggests that
MoS2 acts as a trapping centra and the electron transfer will occur from PVA to MoS2. It
also indicates that the conductive mechanism in the HRS is SCLC. When the lower reverse
voltage is applied, the conductive filament does not break, which confirms the device is
nonvolatile. A number of sulfur vacancies acting as the trap centers are introduced by
the MoS2 nanosheets, which contribute to the formation of conductive filaments when
the flow of current is highly localized to a small fraction of device area, resulting in the
RS behavior [44]. Thus, the memory characteristic in PVA:MoS2 composite is related to
the highly localized electric field formed by MoS2 nanosheets, and the local electric field
inside the PVA:MoS2 film can be reduced by inserting the ZnO protective layer as shown
in Figure 4(ci), improving the stability of the device.

According to the above discussion, which demonstrates the device is a CFs-type
memory, a nonvolatile resistive switching model has been proposed to analyze the RS
phenomena of the Ag/ZnO/PVA:MoS2/ITO device as shown in Figure 4b. The initial state
of the device is HRS. Then, the conduction behavior of the Ag/ZnO/PVA:MoS2/ITO device
follows Ohmic conduction mechanism in the LRS, indicating the formation of a metallic
conductive path in the Ag/ZnO/PVA:MoS2/ITO device. When the positive voltage is
applied to the top Ag electrode, the Ag loses electrons and would be oxidized into Ag+

ions. Then, the Ag+ ions would migrate toward the ITO electrode under the high external
electric field. Finally, the Ag+ ions would be reduced to Ag atoms near the ITO electrode.
Once the Ag conductive filament connects the two electrodes with the accumulation of Ag
atoms from the top to bottom electrodes, the device would change from HRS to LRS. The
existence of ZnO can also lead to the generation of some oxygen vacancies, which is also
beneficial for the formation of conductive filaments. However, the conductive filaments in
our device are more likely to be Ag filaments [10,25,45,46]. When the voltage polarity is
reversed, the Ag conductive filament will break at the weakest point and the device will
return to the high resistance state (HRS). Figure 4(cii,ciii) show the schematic presentation
of resistive switching mechanism in LRS and HRS, respectively.

4. Conclusions

In summary, the Ag/ZnO/PVA:MoS2/ITO organic/inorganic heterojunction resis-
tive memory has been designed by a spin-coating method and other simple processes
in this paper. The effects of the PVA/MoS2 mixtures with various volume ratios on
the RS performance of devices were studied systematically. The RS characteristics of
Ag/ZnO/PVA:MoS2/ITO devices were discussed and the physical model of the switching
mechanism was established. The XRD analysis shows that the addition of MoS2 will reduce
the crystalline state of the switching layer and produce the RS performance. It also concludes
that the Ag/PVA:MoS2/ITO device with the optimal ratio PVA:MoS2 = 4:1 shows excellent
resistive switching behaviors, including a high resistive memory window up to 104, reli-
able repeatability and long cycling time. This work suggests that the Ag/ZnO/PVA:MoS2
/ITO device has the application potential of high-density multilevel data storage.
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