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Plasmodium falciparum is a unicellular protozoan parasite and causative agent of the
most severe form of malaria in humans. The malaria parasite has had to develop
sophisticated mechanisms to preserve its proteome under the changing stressful
conditions it confronts, particularly when it invades host erythrocytes. Heat shock
proteins, especially those that function as molecular chaperones, play a key role in
protein homeostasis (proteostasis) of P. falciparum. Soon after invading erythrocytes, the
malaria parasite exports a large number of proteins including chaperones, which are
responsible for remodeling the infected erythrocyte to enable its survival and
pathogenesis. The infected host cell has parasite-resident and erythrocyte-resident
chaperones, which appear to play a vital role in the folding and functioning of P.
falciparum proteins and potentially host proteins. This review critiques the current
understanding of how the major chaperones, particularly the Hsp70 and Hsp40 (or J
domain proteins, JDPs) families, contribute to proteostasis of the malaria parasite-
infected erythrocytes.
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INTRODUCTION

The deadliest human malaria parasite, Plasmodium falciparum, has a reduced genome, and yet
appears to have dedicated a significant proportion of its genes (~2%) to molecular chaperones
(Sargeant et al., 2006), the guardians of protein folding. This suggests that the structural integrity of
the proteome is an important aspect of the survival of the malaria parasite. Interestingly, an unusually
high proportion of P. falciparum proteins (24–30%) are rich in asparagine (N) and glutamine (Q),
particularly poly-N repeats (Singh et al., 2004; Pallarès et al., 2018), which have been found to have a
tendancy to aggregate (Halfmann et al., 2011). Furthermore, a key phase in the pathology of malaria,
is the invasion of host erythrocytes by the parasite, which it completely remodels by exporting over
400 parasite proteins, including a substantial proportion (~5%) of molecular chaperones (Cortés
et al., 2020). This massive renovation of the host cell potentially requires unique protein folding
pathways involving both parasite and host molecular chaperones (Pesce and Blatch, 2014; Gabriela
et al., 2022). This review will critique the evidence indicating that heat shock proteins serving as
molecular chaperones, especially Hsp70 and Hsp40 (also called J domain proteins, JDPs) families, are
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highly adapted to maintaining the structural and functional
integrity of the proteomes of the parasite and potentially the
host erythrocyte.

PfHSP70s ARE THE GUARDIANS OF THE
PARASITE-RESIDENT AND EXPORTED
PROTEOME
P. falciparum has only six Hsp70s (PfHsp70s; Shonhai et al., 2007;
Shonhai, 2021) and four Hsp90s (PfHsp90s; Shahinas and Pillai,
2021). However, there is a highly expanded complement of JDPs,
with 49 members (PfJDPs; Botha et al., 2007; Njunge et al., 2013;
Pesce and Blatch, 2014; Dutta et al., 2021a).

All six PfHsp70s appear to be finely tuned to the malaria
parasite lifecycle, playing an important role in parasite survival
and virulence (Przyborski et al., 2015), with most being
essential (Zhang et al., 2018), and a number of them shown
to be inhibited by small molecules with anti-malarial activity
(Chiang et al., 2009; Cockburn et al., 2011; Cockburn et al.,
2014; Zininga et al. 2017a; Zininga et al. 2017b; Zininga et al.
2017c). The canonical and highly abundant cytoplasmic and
nuclear P. falciparumHsp70-1 (PfHsp70-1; Kumar et al., 1991;
Pesce et al., 2008) has been shown to be essential (Zhang et al.,
2018). PfHsp70-1 is regulated by a number of co-chaperones,
including JDPs which deliver specialized substrates (Pesce
et al., 2008; Botha et al., 2011; Njunge et al., 2015), P.
falciparum Hsp70/Hsp90 organizing protein which enables
transfer of substrates to PfHsp90 (PfHop; Gitau et al., 2012;
Zininga et al., 2015), and the cytosolic Hsp70-like protein,
PfHsp70-z (an Hsp110), serving as a nucleotide exchange
factor (Zininga et al., 2016). The cytoplasmic PfHsp70-z is
also essential (Muralidharan et al., 2012; Zhang et al., 2018),
which may well be due to its highly effective protein
aggregation suppression activity (Zininga et al., 2016).
PfHsp70-1 has also been shown to have high ATPase
activity (Matambo et al., 2004; Misra and Ramachandran,
2009; Makumire et al., 2021) and strong aggregation
suppression activity (Botha et al., 2011), suggesting that it is
a superior chaperone compared to human Hsp70s (Anas et al.,
2020). Overall, the evidence suggests that PfHsp70-1 and
PfHsp70-z are major players in proteostasis of the parasite
cytoplasm.

In the endoplasmic reticulum (ER), there are two Hsp70s,
PfHsp70-2 (a BiP/Grp78 homologue) and PfHsp70-y (a
Hsp110/Grp170 homologue). PfHsp70-2 is essential (Zhang
et al., 2018), and has been proposed to be involved in protein
translocation into the ER, working with a PfJDP (PfSec63) and
the PfSec translocon (Tuteja, 2007; Blatch and Zimmermann,
2009; Cortés et al., 2020; Shonhai, 2021). PfHsp70-2 was found
to functionally associate with another PfJDP (Pfj2) and a
protein disulfide isomerase (PDI-8) in the oxidative folding
of ER proteins (Cobb et al., 2017). PfHsp70-y has also been
shown to be essential, and to potentially interact with, and
serve as a nucleotide exchange factor for PfHsp70-2, analogous
to the cytoplasmic PfHsp70-z-PfHsp70-1 interaction (Zhang
et al., 2018; Kudyba et al., 2019). Overall, the data suggest that

these chaperones play an important role in protein quality
control and proteostasis within the ER.

Very little is known about the proposed mitochondrial
PfHsp70-3, except for the observation that PfHsp70-3
interacted with at least two N-rich malarial antigens
(LaCount et al., 2005). Like PfHsp70-3, other PfHsp70s
(PfHsp70-1, PfHsp70-z, and PfHsp70-x) have been
reported to exhibit a preference for N-rich substrates
(Muralidharan et al., 2012; Mabate et al., 2018; Lebepe
et al., 2020; Rajapandi, 2020). Therefore, there is growing
evidence that PfHsp70s may be finely tuned for the protection
of unstable N-rich P. falciparum proteins from misfolding and
aggregation.

PfHsp70-x is the only exported member of the PfHsp70
family, and has been shown to be localized to the PV and
erythrocyte cytosol where it is found free or associated with
PfJDPs (PFE0055c and PFA0660w) in mobile lipid containing
complexes called J-Dots (Külzer et al., 2012; Grover et al.,
2013; Behl and Mishra. 2019). Interestingly, PfHsp70-x is not
essential; however, knockout compromised virulence
(Charnaud et al., 2017), while knockdown compromised
growth under stressful conditions similar to febrile episodes
(Day et al., 2019). Recently, the crystal structures of the
ATPase (Day et al., 2019) and substrate binding domains
(Schmidt and Vakonakis, 2020) of PfHsp70-x were
elucidated. Interestingly, PfHsp70-x contains an N-terminal
signal sequence for secretion through the ER, but not the
Plasmodium export element (PEXEL; Marti et al., 2004;
Hiller et al., 2004), which has been shown to be required
for the export of many P. falciparum proteins through the
Plasmodium translocon of exported proteins (PTEX; de
Koning-Ward et al., 2009; Beck et al., 2014; Elsworth et al.,
2014; Elsworth et al., 2016). PfHsp70-x, like certain other
PEXEL-negative P. falciparum proteins (PNEPs), is also
successfully exported through the PTEX translocon (Rhiel
et al., 2016). We are yet to elucidate exactly how proteins
synthesized off the ribosome in the parasite cytosol, are
threaded through the ER, across the plasma membrane,
through the PV and the PV membrane, and into the
erythrocyte cytosol or via the Maurer’s Cleft to the
membrane, where they are folded and begin functioning.
However, there is some evidence emerging that suggests
that PfHsp70-2 and PfHsp70-x (and potentially other
chaperones/co-chaperones such as PfJDPs) may collaborate
with the core threading machinery of PTEX, a class I AAA +
ATPase (PfHsp101; Russo et al., 2010; Matthews et al., 2019) in
the chaperoning of exported P. falciparum proteins. For
example, it has been shown that PfHsp101 is localized to
the ER and the PV (Russo et al., 2010), and is able to
preferentially associate with certain PEXEL-containing
proteins within these compartments (Gabriela et al., 2022).
PfHsp70-2 has been shown to not only interact with proteins
secreted into the PV, but also with exported proteins, including
the main virulence factor P. falciparum erythrocyte membrane
protein 1 (PfEMP1; Saridaki et al., 2008; Batinovic et al., 2017;
Cortés et al., 2020). In addition, it has been reported that
PfHsp70-x associates with PfHsp101 (Charnaud et al., 2017;
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Cobb et al., 2017; Zhang et al., 2018) and PfEMP1 (Külzer et al.,
2012). Therefore, in addition to its role in protein quality
control and proteostasis in the ER, PfHsp70-2 may be playing a
major role in the protein trafficking of secreted proteins, and in
collaboration with PfHsp70-x also involved in the trafficking
of exported proteins. It is tempting to speculate that two
protein trafficking and folding pathways exist for exported
proteins: 1) a pathway for PEXEL-containing proteins with
PfHsp101 being the main chaperone and PfHsp70-2 and
PfHsp70-x being auxiliary chaperones; and 2) a pathway for
PNEPs with PfHsp70-2 and PfHsp70-x being the main
chaperones which hand over to PfHsp101 in the PV or as a
component of PTEX.

PfJDPs HARNESS THE CHAPERONE
POWER OF PARASITE AND HOST HSP70s

PfJDPs are ubiquitous, expressed in all compartments of the
parasite, in the PV and in the host cell (Dutta et al., 2021a). There
is emerging evidence that they play an important role in protein
trafficking, folding, assembly and protection frommisfolding and
aggregation under stressful conditions (Daniyan et al., 2016;
Dutta et al., 2021a). The majority of the PfJDPs are essential
(Maier et al., 2008; Zhang et al., 2018), and nearly half them are
exported into the erythrocyte and play a crucial role in promoting
parasite virulence (Dutta et al., 2021a).

A number of the parasite-resident PfJDPs, have been identified
as potential co-chaperone of PfHsp70-1 (PfHsp40/PF14_0359,
Botha et al., 2011, Anas et al., 2020; PFB0595w, Njunge et al.,
2015; and Pfj4/PFL0565w, Pesce et al., 2008). Like PfHsp70-1,
PfHsp40 is essential (Zhang et al., 2018), cytosolic, constitutively
expressed, and upregulated under stressful conditions (Botha
et al., 2011). While they are the homologous chaperone pair to
the canonical cytosolic human Hsp70-JDP pair (HSPA1A-
DNAJA1), there are subtle but critical structural, biochemical
and functional differences, with the P. falciparum pair shown to
be a more effective chaperone machine (Anas et al., 2020).
Furthermore, PfHsp40 has been found to be farnesylated and
palmitoylated, leading to membrane localization (Mathews et al.,
2021). Notably, farnesyl-PfHsp40 may well be the essential
isoform of this PfJDP, as inhibition of farnesylation
significantly compromised survival of the parasite under stress
conditions.

PfHsp70-PfJDP pairs have also been identified within the ER,
and appear to play an important role in protein translocation
(PfHsp70-2 and PfSec63/PF13_0102; Marapana et al., 2018) and
protein folding and quality control within that compartment
(PfHsp70-2 and Pfj2/PF11_0099; Cobb et al., 2017). At least one
PfJDP has been shown to be secreted through the ER, and
partially localized to the PV (PFF1415c; Khosh-Naucke et al.,
2018). PFF1415c was found to be essential for growth of
erythrocyte-stage parasites; however, its precise function is yet
to be determined. Pfj1 (PFD0462w) is the only PfJDP reported to
be localized to the apicoplast (Kumar et al., 2010), which was
contrary to a previous report which proposed it was targeted to
the mitochondrion (Watanabe, 1987). Pfj1 has an unusually long

and unique C-terminal region, and has been proposed to be
capable of binding to the apicoplast genome and play a role in
DNA replication (Kumar et al., 2010). Interesting, Pfj1 has been
shown to have a functional J domain (Nicoll et al., 2007), and
therefore is likely to associate with a partner Hsp70; however,
none of the PfHsp70s have been shown to localize to the
apicoplast.

A number of recent reports suggest that the exported
PfJDPs may serve as co-chaperones of not only the
exported PfHsp70-x, but also the host Hsp70. As mentioned
in the previous section, two of the exported PfJDPs
(PFA0660w and PFE0055c) associate with PfHsp70-x in
J-dots within the erythrocyte cytosol (Külzer et al., 2010;
Külzer et al., 2012; Grover et al., 2013; Petersen et al.,
2016), and have been shown to be co-chaperones of
PfHsp70-x (Daniyan et al., 2016; Dutta et al., 2021b). It has
been proposed that these J-dots play a role in the trafficking
and folding of exported proteins (Külzer et al., 2012; Behl et al.,
2019; Gabriela et al., 2022). Interestingly, one of the J-Dot
PfJDPs, PFE0055c, was found to be essential (Zhang et al.,
2018), while the other (PFA0660w) was not. However,
functional disruption of PFA0660w was found to causes
defects in knob formation and cytoadherence, with further
genetic and biochemical studies suggesting that the role of
PFA0660w in host cell modification involved host Hsp70
(Diehl et al., 2021; Table 1). This finding is consistent with
a previous study using a yeast two-hybrid system, which
reported an interaction between three exported PfJDPs
(PFA0660w, PFE0055c, and PFB0090c) and human Hsp70
(Jha et al., 2017; Table 1). PFB0090c, also called knob-
associated Hsp40 (KAHsp40; structurally similar to
PFE0055c and PFA0660w), has been shown to interact with
components of PTEX and knobs, and may be involved in the
genesis of knob complexes (Acharya et al., 2012). It is well
established that the knob protein complex does not contain
PfHsp70-x, but rather, host chaperones (Hsp70, Hsp90, and
Hop), and there is significant evidence that human Hsp70 is
involved in the assembly of knob protein complexes
(Banumathy et al., 2002; Alampalli et al., 2018). Hence, it is
plausible that PFB0090c occurs in a common complex with
human Hsp70, and potentially serves as its co-chaperone
(Table 1).

The largest group of PfJDPs are those members containing a J
domain with a corrupted HPDmotif (so-called type IVs), most of
which appear to be exported (Botha et al., 2007; Njunge et al.,
2013; Daniyan and Blatch, 2017). In fact, there is evidence that a
number of the exported type IV PfJDPs are essential for parasite
survival (e.g., PFB0085c and PF14_0013; Zhang et al., 2018),
required for growth or survival under febrile conditions [e.g.,
PFA0110w, the ring-infected erythrocyte surface antigen protein
(RESA); Silva et al., 2005; Diez-Silva et al., 2012], or involved in
pathogenesis (e.g., PF10_0381; knockout causes loss of knobs;
Maier et al., 2008). Recently, an exported type IV PfJDP, called
eCiJP/PF11_0034 (and a paralogue of PF10_0381), was found to
localize to J-Dots, associate with the erythrocyte cytoskeleton, and
to potentially interact with host Hsp70 (HSPA1A) (Sahu et al.,
2022; Table 1).
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CONCLUSION

The malaria parasite has adapted to its pathological co-existence
with the human host, enabling it to overcome the extreme
physiological and cellular challenges that it faces, particularly
during the erythrocytic stages of the life cycle. P. falciparum
appears to have finely tuned its molecular chaperone machinery
to be highly efficient, particularly its PfHsp70-PfJDP pairs, which
are found in most compartments of the parasite-infected
erythrocyte. Most of these P. falciparum PfHsp70-PfJDP
partnerships appears to have evolved to efficiently protect the
N-repeat-rich parasite proteome from the toxic effects of
aggregation and misfolding. Furthermore, and perhaps as
importantly, the parasite appears to have harnessed the host
Hsp70 chaperone machinery to enable it to renovate the infected
erythrocyte for its survival and pathology. The molecular details

of this host-parasite interface represent an important frontier of
future research endeavours.
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