
Analysis of the Genetic Phylogeny of Multifocal Prostate Cancer 
Identifies Multiple Independent Clonal Expansions in Neoplastic 
and Morphologically Normal Prostate Tissue

A full list of authors and affiliations appears at the end of the article.
# These authors contributed equally to this work.

Abstract

Whole genome DNA sequencing was used to decrypt the phylogeny of multiple samples from 

distinct areas of cancer and morphologically normal tissue taken from the prostates of three men. 

Mutations were present at high levels in morphologically normal tissue distant from the cancer 

reflecting clonal expansions, and the underlying mutational processes at work in morphologically 

normal tissue were also at work in cancer. Our observations demonstrate the existence of on-going 

abnormal mutational processes, consistent with field-effects, underlying carcinogenesis. This 

mechanism gives rise to extensive branching evolution and cancer clone mixing as exemplified by 

the coexistence of multiple cancer lineages harboring distinct ERG fusions within a single cancer 

nodule. Subsets of mutations were shared either by morphologically normal and malignant tissue 

or between different ERG-lineages, indicating earlier or separate clonal cell expansions. Our 

observations inform on the origin of multifocal disease and have implications for prostate cancer 

therapy in individual cases.
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Prostate cancer is commonly multifocal1, although the origin of multifocal disease remains 

controversial. Analyses of patterns of allele loss have suggested the independence of most 

individual foci2,3. However such studies cannot exclude the presence of common underlying 

mutations not detected by the methods employed. Recent attempts to unravel the origins of 

multifocal disease using high-resolution genome technologies have also led to conflicting 

data with different authors concluding either that all foci in a single prostate are related4 or 

that all foci are unrelated5. To gain further insights into the mechanism of prostate cancer 

development particularly the origin of multifocal disease we selected three representative 

prostate cancers (Fig.1, Supplementary Fig.1) that had been ERG-status mapped using the 

FISH break-apart method6,7. Twelve cancer samples and three samples designated as 

morphologically normal prostate based on central pathology review, were analyzed using 

paired-end massively-parallel DNA sequencing of complete genomes to generate 

comprehensive catalogues of genetic alterations (for coverage statistics see Supplementary 

Table 1). For 3D representations of each prostate and clinical characteristics see respectively 

Supplementary Fig. 2 and Supplementary Table 2. Prostates were named according to their 

Cancer Research UK project designation: Cases 6, 7 and 8.

Somatic mutations, absent from cancer and blood samples, were observed at significant 

levels in morphologically normal prostate tissue distant from cancer in Case 6 (518 

substitutions) and in Case 7 (454 substitutions) (Supplementary Fig. 3), some of which may 

have potential functional significance (Table 1). The presence of substitution mutations in 

morphologically normal prostate tissue was confirmed in validation DNA-sequencing 

experiments to an average read depth of 10,000. Substitutions were present in an estimated 

~48%, and ~42% of cells in morphologically normal samples from Case 6 and Case 7 

respectively (Supplementary Fig. 3b)), demonstrating clonal expansions of cells within 

morphologically normal prostate tissue, in agreement with studies using mitochondrially-

encoded enzyme cytochrome c oxidase as a marker8.

Aiming to understand the tumor subclonal architecture and their phylogeny, we initially 

constructed phylogenetic trees based on copy number (Supplementary Fig. 4 & 5, 

Supplementary Data Set 1) and substitution data. We adapted our previously developed 

Bayesian Dirichlet process to identify clusters of substitutions in n dimensions9, where n is 

the number of samples from the case, such that shared and unique subclones could be 

identified between related samples (Fig. 2d and Supplementary Fig. 6). To further explore 

the fine details and verify the main features of the phylogeny tree and clonal structure, a 

selection of substitutions from each potential relationship between samples were sequenced 

to an average read depth of 10,000 in independent DNA sequencing analyses, verifying 279 

mutations across all samples. This provided us with our final integrated phylogenetic trees 

(Fig. 2a-c) and final list of somatic point mutations (Supplementary Data Set 2). The 

structure of these trees was also supported by verified insertions, deletions and breakpoints 

(Supplementary Data Set 3 & 4). The single cancer mass from Patient 6 contained three 

independent cancer clones represented by samples 6_T2, 6_T3 and 6_T4 (Fig. 2a), with a 

single verified substitution linking 6_T1/6_T2 and 6_T3. Patient 7 contained at least three 

independent cancer lineages: one (7_T3) representing the smaller cancer nodule and two 

(7_T1/7_T2 and 7_T4/7_T5) present in the larger cancer mass (Fig. 2b). Ten mutations were 
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common to the morphologically normal prostate sample and to cancer samples 7_T1 and 

7_T2, and three mutations joined 7_T4/7_T5 to the separate multifocal lesion 7_T3. These 

observations show that Prostate 7 contains at least two clones of cells that existed prior to 

the formation of the distinct cancers lineages. Prostate 8 contained two cancer lineages 

represented by 8_T1/8_T2 and 8_T3 (Fig. 2c), with 43 substitutions shared between all three 

tumor samples, 8_T1, 8_T2 and 8_T3, 8 of which were also present in distant 

morphologically normal sample 8_N.

Complex patterns of ERG alteration were observed in samples from Patient 6 and Patient 7 

(Fig. 3); each main lineage contained at least one and in some cases two unique TMPRSS2-

ERG fusions with distinct breakpoint locations within the TMPRSS2 and ERG genes (Fig. 2, 

Table2). The presence of multiple distinct TMPRSS2-ERG fusions was demonstrated by 

direct PCR across the breakpoint and by an ERG FISH break-apart assay (Table 2, Fig. 1b,c, 

Supplementary Fig. 1). In this respect TMPRSS-ERG fusions could be considered to be 

similar to the convergent gene alterations observed in kidney cancer where distinct 

alterations of genes such as SETD2, PTEN, and KDM5C were observed in different parts of 

the same cancer10. A deletion on Chromosome 8 exhibited a very similar pattern of 

alterations (Supplementary Fig. 7), but we did not see convergent evolution for other 

potential driver genes (Supplementary Table 3). Where two TMPRSS2-ERG fusions existed 

in a single lineage we were unable to determine whether these fusions co-existed at any time 

in the same cell as reported previously11 and as implied by the phylogenic tree. However the 

FISH assay (Fig 1b,c) demonstrated that in sample 7_T4 the two TMPRSS2_ERG fusions 

were present in distinct cell populations at the time that the cancer sample was taken. 

Moreover, an additional separate ERG breakpoint was detected in a region of the cancer that 

had not been sampled in the DNA sequencing studies (TERG J). The occurrence of several 

TMPRSS2-ERG fusions is a single cancer mass is consistent with previous FISH-based 

studies reporting multiple ETS fusions in a low proportion of individual cancer foci11. ERG 

alterations are believed to represent a relatively early event in cancer development in 

agreement with their occurrence in prostatic intraepithelial neoplasia (PIN)6, but our 

observations suggest that they may not always be present at the very first cellular expansion. 

Mutations shared either between different ERG-lineages or between cancer and 

morphologically normal tissue may represent earlier clonal cell expansions on the same 

lineage (Fig. 2a-c). Alternatively they could represent separate clones of cells within which 

multiple independent cancer lineages developed.

Recently, we identified 21 distinct mutational signatures from 7,042 samples across 30 

different cancer types12. The contribution of mutational processes was calculated for 

prostate cancer as previously described12,13 (Fig. 4). A signature (designated Signature 1A 

in Ref. 12) associated with spontaneous deamination of 5-methyl-cytosine at CpG sequences 

explained ~50% of all of our mutations. Two additional signatures with unknown etiology, 

designated Signature 5 and Signature 8, best explained the remaining somatic mutations. 

Signature 5, present in all prostate samples may reflect an endogenous mutational process12. 

Signature 8, present in two cancer samples from a single cancer nodule, is characterized by 

weak C>A strand bias. Critically these observations show that the same mutational 

processes, giving rise to Signatures 1a and 5, are detected both in cancer and in matched 

Cooper et al. Page 3

Nat Genet. Author manuscript; available in PMC 2015 October 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



morphologically normal prostate tissue. We identified clustering of C>T and C>G mutations 

previously referred to as kataegis14 and complex interdependent translocations and deletions 

called chromoplexy15 in some cancer lineages (Supplementary Fig. 8 & 9).

Next generation sequence technologies have previously been used to identify critical genetic 

processes in prostate cancer development15-19. Our results demonstrate the presence of 

clonal expansions or fields of cells in the morphologically normal prostate that provide a 

background against which prostate cancer develops. A recent study on a 115 year old 

woman identified 424 point mutations, thought to result from somatic mosaicism, in the 

rapidly dividing tissue blood, but failed to detect any mutations in brain tissue20. The 

presence of mutations in blood was accompanied by telomere attrition that was not observed 

in other tissues. Prostate is considered to be a relatively quiescent tissue21, and we found 

that the telomeres in morphologically normal tissue from Cases 6 and 7 had not undergone 

attrition, being of comparable length to telomeres in adjacent cancer. The processes at work 

in morphologically normal prostate therefore appear to be distinct from those reported for 

blood (see Supplementary Notes for full discussion). Whether the clones of cells observed in 

morphologically normal prostate are generated by a pathological process or are the product 

of somatic mosaicism involving unexpectedly high mutation rates, the resulting clonal fields 

of cells may influence cancer development and/or contribute to multifocality and the 

presence of multiple cancer lineages in a single cancer mass. Evidence for a field effect in 

prostate cancer is also supported by studies demonstrating tumor-like alterations in 

cytomorphology, gene expression, epigenetics in adjacent morphologically normal tissue, 

and the presence of multifocal disease in a high proportion of prostates. Field effects have 

also been proposed for oral cancer22, head and neck cancer23 and breast cancer24. Our 

results have implications for the use of cancer focal therapy when targeting a single nodule 

of cancer within the prostate25,26 and for potential chemotherapeutic approaches. We 

propose that (i) focal therapy may only be curative if surrounding clonal cell populations 

within morphologically normal tissue were also ablated, and (ii) cancer heterogeneity may 

hinder therapeutic targeting and biomarker investigation.

ONLINE METHODS

Sample Selection and Fluorescence in situ Hybridisation

Samples for analysis were collected from prostatectomy patients at the Addenbrooke’s 

Hospital (see Supplementary Table 2). The study was approved by the Trent Multicentre 

Research Ethics Committee. Informed consent was obtained for all patients. Prostates were 

sliced and processed as described previously31. In brief, a single 5 mm slice of the prostate 

was selected for research purposes. 4 or 6 mm cores were taken from the slice and frozen. 

Frozen cores were mounted vertically and sectioned transversely giving a single 5 μm frozen 

section for H&E staining followed by 6×50 μm sections for DNA preparation. The presence 

of or complete absence of cancer was confirmed independently by three pathologists in 

central pathology review of the 5 μm H&E stained tissue slice immediately adjacent to 

tissue slices used for DNA preparation. The ERG fluorescence in situ hybridisation break-

apart assay for assessing ERG gene rearrangement was performed as described previously6, 

both (i) on whole-mount formalin-fixed sections, taken immediately adjacent to the research 
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slice, and (ii) on the frozen slices, immediately adjacent to the samples selected for DNA 

sequencing that had been initially subject to H&E staining. In all cases, the ERG status 

determined by these two methods and shown in Figure 1, were consistent.

DNA sequencing

Samples and Massively Parallel Sequencing—DNA was extracted from 18 samples 

from 3 patients: 12 prostate cancer samples, 3 adjacent morphologically normal prostate 

samples and 3 matched bloods. Paired-end whole genome sequencing of the samples was 

performed at Illumina, Inc. Paired-end libraries were manually generated from 1 μg of 

gDNA using the Illumina Paired End Sample Prep Kit (Catalog # PE-102-1002). 

Fragmentation was performed with Covaris E220. After end repair, A-tailing, and adapter 

ligation as per the sample prep kit instructions, libraries were manually size-selected using 

agarose gel electrophoresis, targeting 300 bp inserts. Adapter-ligated libraries were PCR 

amplified for 10 cycles and purified through a second agarose gel electrophoresis. Final 

libraries were QC’ed on a Agilent Bioanalyzer and quantified by qPCR and/or picogreen 

fluorimetry. Samples were clustered with Illumina v1.5 flowcells using the Illumina cBot 

with the TruSeq Paired End Cluster Kit v3. Flowcells were sequenced as 100 base paired-

end (non-indexed) reads on the Illumina HiSeq2000 using TruSeq SBS chemistry v3 to a 

target depth of 50× for the tumour samples and 30× for adjacent morphologically normal 

and blood samples. The Burrows-Wheeler Aligner (BWA) was used to align the sequencing 

data from each lane to the GRCh37 reference human genome32. Lanes that pass quality 

control are merged into a single well-annotated sample BAM file with duplicate reads 

removed. This data has been submitted to the European Genome-Phenome Archive 

(EGAD00001000689).

Mutation-Calling: Substitutions—CaVEMan (Cancer Variants Through Expectation 

Maximization), an in-house bespoke algorithm developed at the Sanger Institute, was used 

for calling somatic substitutions. CaVEMan utilises a Bayesian expectation maximization 

(EM) algorithm: Given the reference base, copy number status and fraction of aberrant 

tumor cells present in each cancer sample, CaVEMan generates a probability score for 

potential genotypes at each genomic position. A ‘somatic’ probability of 95% and above 

was applied as a cut off. Further post-processing filters were applied to eliminate false 

positive calls arising from genomic features that generate mapping errors and systematic 

sequencing artifacts. In addition to the standard filters applied in the Sanger pipeline we 

designed project-specific filters to improve the positive predictive value of our callers based 

on results from visually inspecting and calling many hundreds of variants. Visually 

inspecting involves checking that the variant was in at least three reads, not in any reads of 

control, no strand bias, no correlation of the reads containing the variant and read quality, 

not in a location where indels are also detected, not in a poorly mapped region, and not in a 

repeat region. Substitutions that are found in the WGS data of more than 2.5% of a batch of 

465 normal non-malignant samples from a range of tissue types were also removed. 

Additional visual verification across all samples for a patient was performed for all non-

intronic gene substitutions, all substitutions in adjacent morphologically normal samples, 

potential “field effect” substitutions, substitutions shared between adjacent morphologically 
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normal and neoplastic samples, and the rare predicted substitutions apparently violating the 

inferred phylogeny.

Mutation-Calling: Insertions/Deletions—Insertions and deletions in the tumor, 

morphologically normal and matched blood control genomes were called using a modified 

Pindel version 0.2.0 on the NCBI37 genome build33. As with the substitutions, all standard 

Sanger pipeline filters were applied, as well as a custom filter built based on results from 

visually calling identified variants. Indels that were detected by Pindel in more than two 

samples from a series of hundreds of malignant non-prostate tissue were also removed. If an 

indel detected by Pindel that does not pass the filters is found in another sample for that 

patient and does pass all filters, it is also included. From those indels that passed all filters, 

for each sample, up to one hundred variants were validated by capillary sequencing. In 

addition, visual verification across all samples for a patient was performed for all indels 

occurring within genes, all indels in adjacent morphologically normal samples, potential 

“field effect” indels, those indels that were not supported by the phylogeny and a sampling 

of variants from each phylogeny relationship.

Mutation-Calling: Structural Variants—Brass (Breakpoints via assembly), an in-house 

bespoke algorithm developed at the Sanger Institute, was used for detecting structural 

variants. In Brass phase 1, discordant read pairs are detected and integrated to find regions 

of interest. These regions of interest are removed if they have been found in the matched 

blood normal sample, have been detected as germline in PCR validation of any other 

sample, have a low numbers of reads supporting them or appear to be in a “difficult” region 

of the genome. For a subset of regions, validation was performed by gel electrophoresis 

PCR using custom-designed PCR primers across the rearrangement breakpoint as previously 

described34 and for those products that give a band the precise location and nature of the 

breakpoint was determined by standard Sanger capillary sequencing methods. In the cases 

where the PCR experiments failed, Brass phase 2 was applied to the remaining predicted 

somatic structural variants. This gathers reads around the region, including half-unmapped 

reads and performs a local de novo assembly using Velvet35. Identifiable breakpoints have a 

distinctive De Bruijn graph pattern and allowed the breakpoint to be regenerated down to 

base pair resolution. Any breakpoints where an exact location could not be determined were 

removed. To ensure that breakpoints shared between samples in a patient were picked up, 

in-silico and PCR cross-sample experiments were performed. All breakpoints reported have 

been visually verified to ensure the presence of discordant reads and checked to ensure they 

were not in repeat regions.

To detect rearrangements involved in chromoplexy, a recently described process generating 

chained rearrangements we applied ChainFinder15. We used default parameters, selecting 

the rearrangements from 57 prostate genomes as background. As input copy number data, 

we used data derived from Affymetrix SNP 6.0 arrays, and processed using ASCAT36. As 

input structural variants, for each patient, we combined all high confidence breakpoints 

detected in all samples of that patient. One chained event was manually filtered, as it 

combined somatic rearrangements present in separate subpopulations in different samples, 

and hence could not have occurred as one chromoplexy event.
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Mutation-Calling: Copy Number—The Battenberg algorithm was used to detect clonal 

and sub-clonal somatic copy number alterations (CNA) and estimate ploidy and tumour 

content from the NGS data as previously described9. Briefly, germline heterozygous SNPs 

are phased using Impute2 and a- and b- alleles assigned. Data is segmented using piecewise 

constant fitting37 and subclonal copy number segments are identified as those with 

deviations in the b-allele frequencies from the values expected when all cells have a 

common copy number in that segment, using a t-test. Ploidy and tumour content are 

estimated using the same method used by ASCAT36.

Construction of phylogenetic trees

For each patient, phylogenetic trees were constructed separately using (i) copy number 

aberrations (CNAs) and (ii) point mutations. Clonal and subclonal CNAs were identified 

using the previously described Battenberg algorithm9. This method achieves high sensitivity 

for the detection of CNAs found in small proportions of cells by phasing heterozygous SNPs 

into parent specific haplotype blocks. Joint analysis of SNPs within these blocks, rather than 

single SNPs, allows the resolution of CNAs found in ~5% of cells, with 30× sequencing 

depth. Matching of copy number and rearrangement breakpoints, supported by visual 

inspection of allele frequency and logR plots, was used to identify CNAs common to 

multiple samples. Point mutations were analysed using an adaptation of a previously 

described Bayesian Dirichlet process. Mutations within each sample are modelled as 

deriving from an unknown number of subclones, each of which is present at an unknown 

fraction of tumour cells and contributes an unknown proportion of all somatic mutations, 

with all the unknown parameters jointly estimated. In order to identify clusters of mutations 

that are common to 2 or more samples, the Dirichlet process was extended into 2 

dimensions, with the fraction of tumour cells bearing a mutation in each of a pair of samples 

jointly estimated from the number of reads observed in each sample. The presence of 

clusters of unique or shared mutations can be inferred from the position of the peaks in the 

resulting 2-dimensional probability density.

Dirichlet process clustering

We used a previously developed Bayesian Dirichlet process to model clusters of clonal and 

subclonal point mutations, allowing inference of the number of subclones, the fraction of 

cells within each subclone and the number of mutations within each clone36. Within this 

model, the number of reads bearing the ith mutation, yi, is drawn from a binomial 

distribution

where Ni is the total number of reads at the mutated base and ζi is the expected fraction of 

reads that would report a mutation present in 100% of tumour cells at that locus. πi ∈ (0, 1), 

the fraction of tumour cells carrying the ith mutation, is modelled as coming from a 

Dirichlet process. We use the stick-breaking representation of the Dirichlet process:
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where ωh is the weight of the hth mutation cluster, i.e. the proportion of all somatic 

mutations specific to that cluster. This model was extended into n dimensions, where n is the 

number of related samples, with the number of mutant reads obtained from each sample 

modelled as an independent binomial distribution, each with an independent π drawn with a 

Dirichlet process from a base distribution U(0,1). Gibbs sampling was used to estimate the 

posterior distribution of the parameters of interest, implemented in R, version 2.11.1. The 

Markov chain was run for 500 iterations, of which the first 100 were discarded. In order to 

plot the mutation density, each possible pair of related samples was treated separately. The 

median of the density was estimated from πh, each weighted by the associated value of ωh, 

using a bivariate Gaussian kernel, implemented in the R library KernSmooth. Median values 

were then plotted using the R function ‘levelplot’, using a colour palette graduated from 

white (low probability of a mutation) to red (high probability of a mutation).

Targeted PCR and MiSeq sequencing of selected mutations and structural variants

PCR primers for somatic substitutions and indels were designed using Primer-Z38, with 

known SNPs and human repeats masked. All amplicons were designed to be a maximum of 

500 bp and all variants of interest were checked to be within a read generated on a 2×250bp 

MiSeq run. DNA was amplified using Phusion HotStart II DNA polymerase kit (Thermo 

Fisher Scientific) and thermo cycler. DNA was denatured at 98 °C for 30 seconds followed 

by 30 cycles of denaturing at 98 °C for 10 seconds, annealing at 65 °C for 20 seconds and 

extension at 72 °C for 20 seconds. Products were incubated at 72 °C for 5 minutes before 

cooling to 4 °C. All PCR products were analysed using 96 well 2% agarose E-gel with 

ethidium bromide (Life Technologies). If no detectable band was present these reactions 

were repeated using an annealing temperature of 60 °C. 2 μl of PCR mixture for each sample 

of DNA were pooled. Pooled DNA was diluted 1:10, and tagged with an individual barcode 

(Fluidigm) using Expand High Fidelity PCR System (Roche), following manufacturers 

protocol (Access Array System for Illumina Systems User Guide). DNA was denatured at 

98 °C for 1 minute followed by 15 cycles of denaturing at 98 °C for 15 seconds, annealing at 

60 °C for 30 seconds and extension at 72 °C for 1 minute. Products were incubated at 72 °C 

for 3 minutes before cooling to 4 °C. Barcoded PCR samples were pooled for each patient 

and analysed using 2100 Bioanalyzer (Agilent) to determine the average size of the PCR 

library and by KAPA SYBR FAST qPCR (Anachem) to determine the library concentration. 

2 nM of each sample was analysed using MiSeq (Illumina).

The average sequencing depth across all mutations assessed within each patient varied 

between 4900 (in 8_T1) and 16600 (in 7_T4). However, for around a fifth of the targeted 

mutations within each patient, the average coverage across all samples from that patient was 

very much lower, 200 or lower. Many of these low coverage mutations had mutant allele 

frequencies very different from the values obtained from whole genome sequencing (WGS). 

These PCRs were considered to have failed and were not included in subsequent analysis.
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Due to the very high coverage, a low rate of sequencing errors was observed for most 

mutations. This manifested as a small percentage of aberrant reads, peaked close to zero and 

rapidly decaying exponentially with allele fraction. The rate of these errors was evaluated by 

considering those samples that reported no mutant reads in WGS. For this purpose, only 

mutations that were identified in samples that were previously identified as being 

phylogenetically related were included, in order to filter out low quality or questionable 

calls. Allele frequencies, fs, were converted to mutation copy numbers, nmut, as previously 

described39.

where ρ,  and  are, respectively, the tumor purity, the locus-specific copy number 

in the blood normal cells, inferred from the Battenberg algorithm. Mutation copy numbers 

correspond to the fraction of cells bearing a mutation multiplied by the number of 

chromosomal copies bearing the mutation and are more informative than raw allele 

frequencies as they are adjusted for tumour ploidy and normal cell contamination. The 

distribution of misreads was then found to have similar distributions for the different 

patients, with average reported mutation copy numbers of 0.0059 ± 0.0072, 0.0032 ± 0.0070 

and 0.0037 ± 0.0035 in patients 6, 7 and 8, respectively. The highest reported mutation copy 

number for these mutations was 0.041. This value was therefore used as a threshold for 

distinguishing between mutations present in a small proportion of cells and misreads arising 

from sequencing errors. It should be noted that a mutation copy number of 0.041 

corresponds to an allele frequency of ~1% for most mutations, since most mutations occur in 

diploid regions of the genome and the average tumour content across the samples is below 

50%.

For samples 6_T2, 6_T3 and 6_T4, it was apparent that nearly all mutations that were 

present in 6_T1 were identified at allele fractions slightly above the threshold used to 

exclude artefacts (corresponding to a mutation copy number ~0.05). Since these mutations 

were exclusively those present in 6_T1, it appears that ‘contamination’ of these 3 samples 

by 6_T1 occurred at some point during the PCR experiment, although whether this 

contamination is physical or the result of bleed-through of tags used in multiplexing is 

unknown. Assessment of WGS data, by checking the allele frequency of mutations 

identified uniquely in 6_T1 in samples 6_T2, 6_T3 and 6_T4, indicated that there may have 

been some intermixing of the cells 6_T1 with 6_T2, corresponding to a much lower 

percentage of cells (1.8%) and possibly arising from growth of cells in 6_T1 into the region 

sampled in 6_T2. Further, no evidence for intermixing of 6_T1 with 6_T3 or 6_T4 was 

found in WGS data. For this reason, mutations apparently present in the PCR experiment in 

6_T2, 6_T3 and 6_T4 and identified in 6_T1 in both WGS and PCR were only considered to 

be validated if they fell above a higher threshold, set to a mutation copy number of 0.2, that 

excluded mutant reads arising from the contamination of these samples.
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Mutational Signatures

The mutational spectra, as defined by the triplets of nucleotides around each mutation, of 

each sample was deconvoluted into mutational processes as described12,13.

Clustering of Mutations

We investigated regional clustering of substitution mutations by constructing plots (“rainfall 

plots”) in which the distance between each somatic substitution, and the substitution 

immediately before it has been plotted for each mutation. This was achieved exactly as 

described previously9.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Prostate samples chosen for whole-genome sequencing. a, ERG rearrangements determined 

by fluorescence in situ hybridization (FISH). Case 7 is a multifocal cancer containing two 

separate foci (T1/T2/T4/T5 and T3). Case 8 is also designated as a multifocal cancer,

(nodules T1/T2, and T3). Yellow: un-rearranged normal ERG gene; Red, ERG gene split but 

both 3′ and 5′ ends retained; Green, ERG gene rearranged but only its 3′ end retained. Panels 

b and c: 3-colour FISH used to distinguish different ERG-locus translocation breakpoints in 

Case 7. b, Position of the three FISH probes: probe 1 (blue, BAC RP11-164E1, and probe 

1a, BACs RP11-95G19, RP11-720N21, CTD-2511E13) was labeled in Aqua (Kreatech 415 

Platinum Bright): probe 2 (red, fosmid G248P80319F5 37Kb) labeled with Cy3; and Probe 

3 (green, fosmid G248P86592E2 38.5k, and probe 4, BACs RP11-372O17, RP11-115E14, 

RP11-729O4) labeled with FITC. The purple arrows represent the positions of ERG 

breakpoints detected in these experiments. For the precise position of the ERG breakpoints 

G and H see Table 2. c, Left: Tumor areas with ERG locus breaks G and H are indicated as 

light and dark green respectively. Break J was found in an adjacent prostate section not 

show in this figure. Right: representations of the ERG FISH patterns. Original FISH images 

are show in Supplementary Fig. 1. “Split” denotes that 5′ and 3′ ERG signals were separated 
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but retained in the cell. “Del” indicates that 5′ ERG signals were lost from the cell, while 3′ 

ERG signals were retained.
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Figure 2. 
Phylogenies of multi-focal prostate cancers. a-c, Phylogenies revealing the relationships 

between sample clones for each case. Each line is associated with a clone from a particular 

sample. The length of each line is proportional to the weighted quantity of variations on a 

logarithmic scale. The thickness of a line indicates the proportion the clone makes up of that 

sample i.e. 48%/52% for 6_T1 and 12%/88% for 8_T3. The minor clone of 8_T3b has no 

detected unique variants. 8_T3 contained 43 mutations present as a 12% subclone (T3a) 

shared with 8_T1/8_T2. In validation experiments 8_T3 did not contain any of the five ERG 

and TMPRSS2 rearrangements present in 8_T1/8_T2 (Table 2)) or mutations that were 

unique to 8_T1/8_T2 (10,000 depth) indicating that it represents an earlier clone of 

8_T1/8_T2 seeded into tissue sample 8_T3. The various TMPRSS2-ERG translocations are 

indicated by their TERG ID (Table 2). d, Example 2D density plots showing the posterior 

distribution of the fraction of cells bearing a mutation in two samples. The fraction of cells is 

modeled using a Bayesian Dirichlet processes. These plots illustrate samples that have 

shared clonal mutations (6_T1/6_T2), and branched (unrelated) mutations (7_T2/T_T3). 

Cooper et al. Page 16

Nat Genet. Author manuscript; available in PMC 2015 October 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



There are two examples of samples with a subclone. 7_T2/7_T5 has a peak at (0,0.72), 

which represents subclonal mutations in 72% of cells in 7_T5 that have occurred only in this 

sample, after divergence from the other samples. Similarly, 8_T1/8_T3 has a peak at 

(0.54,0), representing subclonal mutations in 54% of cells in T1 only.
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Figure 3. 
Patterns of ERG alterations. a-c, Circos plots highlighting ERG rearrangements present in 

each prostate. Each color represents a different cancer sample as indicated.
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Figure 4. 
Relative contributions of mutational signatures to the total mutation burden of each sample. 

The mutational spectra, as defined by the triplets of nucleotides around each substitution, of 

each sample were deconvoluted into mutational processes using 22 distinct signatures 

determined from 7,042 cancers as described previously12,13. The signature designations (1a, 

5, 8) match those reported previously12. For sample 7_T4 and 8_N there were too few 

mutations to be able to accurately identify the contributions of the mutational signatures.
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Table 1

Sample Description Gene Protein Description Type % reads Total num reads

MA 
predicted 
functional 
impact

ANNOVAR
significant
algorithms

0006#N chr9:g.131115799G>A SLC27A4 p.V435I misssense 13.79 58 low 1

0006#N chr14:g.20389481C>T OR4K5 p.T239M misssense 13.25 83 high 4

0006#N chr15:g.33873844G>T RYR3 p.A525S misssense 33.33 48 medium

0006#N chr4:g.88766379C>G MEPE p.S120* nonsense 20.83 24 2

0007#N chr5:g.150885254A>T FAT2 p.S4308T misssense 23.4 47 low 5

0007#N chr7:g.150934857G>T CHPF2 p.R470L misssense 17.24 58 medium 5

0007#N chr8:g.24192995G>A ADAM28 p.D470N misssense 17.78 45 neutral 2

0007#N chr12:g.24989522G>T BCAT1 p.L276M misssense 26.47 34 medium

Mutations and clonal expansions in morphologically normal tissue: point mutations present in exons with indication of functional significance. 
Missense and nonsense mutations detected and visually confirmed in the adjacent morphologically normal tissue were tested for functional impact 

using the MutationAssessor.org27 and wANNOVAR28 services. The OR4K5 gene was excluded as a candidate because of the potential to overcall 

mutations in genes encoding very large proteins29. Since none of the mutations had a high “MA” we considered that epigenetic changes may 
provide a more likely driver of clonal expansion.
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