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Abstract

Background: GJ-4 is extracted from Gardenia jasminoides J. Ellis (Fructus Gardenia) with crocin compo-
sition and has been demonstrated to improve memory deficits in several dementia models in our previous 
studies.
Objective: This study aimed to evaluate the effects of GJ-4 on hyperlipidemic vascular dementia (VD) and 
explore the underlying mechanisms.
Design: In the current study, we employed a chronic hyperlipidemic VD rat model by permanent bilateral 
common carotid arteries occlusion (2-VO) based on high-fat diet (HFD), which is an ideal model to mimic the 
clinical pathogenesis of human VD. 
Results: Our results showed that GJ-4 could significantly reduce serum lipids level and improve cerebral 
blood flow in hyperlipidemic VD rats. Additionally, treatment with GJ-4 remarkedly ameliorated memory 
impairment and alleviated neuronal injury. Mechanistic investigation revealed that the neuroprotective ef-
fects of  GJ-4 might be attributed to the inhibition of  microglia-mediated neuro-inflammation via regulating 
the M1/M2 polarization. Our data further illustrated that GJ-4 could regulate the phenotype of  microglia 
through activating the peroxisome proliferator-activated receptor-γ (PPAR-γ) and subsequently inhibited nu-
clear factor-κB (NF-κB) nuclear translocation and increased CCAAT/enhancer-binding protein β (C/EBPβ) 
expression.
Conclusion: Our results implied that GJ-4 might be a promising drug to improve VD through the regulation of 
microglial M1/M2 polarization and the subsequent inhibition of neuro-inflammation.

Popular scientific summary
1.  Gardenia jasminoides J. Ellis extract GJ-4 remarkedly improved dyslipidemia and memory disor-

ders in hyperlipidemic vascular dementia (VD) rats.
2.  The study showed that GJ-4 significantly inhibited microglial activation and modified  microglial 

M1/M2 polarization by regulating PPAR-γ signaling pathway.
3.  GJ-4 might be a promising drug to improve VD through the regulation of microglial M1/M2 

 polarization and the subsequent inhibition of neuro-inflammation.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.29219/fnr.v66.8101


Citation: Food & Nutrition Research 2022, 66: 8101 - http://dx.doi.org/10.29219/fnr.v66.81012
(page number not for citation purpose)

Hui Liu et al.

Vascular dementia (VD) is currently recognized as 
the most frequent form of dementia second only 
to Alzheimer’s disease (AD) (1–3). VD patients 

often suffer from locomotor abnormalities, disorienta-
tion, forgetfulness, depression, and anxiety, as well as loss 
of capacities for problem solving and reasoning (2, 4). VD 
is resulted from accumulated damage in the vascular sys-
tem, and traditional vascular risk factors (hyperlipidemia, 
hypertension, and diabetes) can also contribute to the 
pathogenesis of VD (5). Hyperlipidemia is an especially 
important factor, as it is thought to be related to the cere-
bral perfusion decline and breakdown of the blood–brain 
barrier (BBB). Both elevated low-density lipoprotein cho-
lesterol (LDL-C) level and reduced high-density lipopro-
tein cholesterol (HDL-C) level are related to heightened 
risk of carotid atherosclerosis, leading to cognitive deficits 
after cerebral hypoperfusion or embolism (5, 6). The ce-
rebral ischemia model based on hyperlipidemia is an ideal 
model to mimic the clinical pathological basis and has 
been extensively used in drug evaluation for VD.

Although vascular risk factors are implicated in the 
pathology and mechanisms underlying VD, there are 

accumulating evidences that neuroinflammation plays 
a critical part in the progression (7). In VD, chronic hy-
poperfusion and thromboembolic incidents result in de-
creased cerebral blood supply and hypoxia, which then 
trigger microglial activation (2, 8). The excessive activation 
of microglia can exacerbate the damage of neurogenesis, 
neuronal cell growth, and synaptogenesis and synaptic 
plasticity, causing neurodegeneration and cell death (9). 
Recent researches showed that the activated microglia 
could be categorized into M1 and M2 subtypes (10). M1 
phenotypic cells mainly associated with the augmentation 
of inflammatory responses by releasing pro-inflammatory 
factors (11), which would trigger neuronal death, acceler-
ate synaptic damage, and worsen memory impairment. By 
contrast, M2 phenotypic cells participate in anti-inflam-
matory responses relevant to the repair of brain injury 
following ischemic injury via upregulating anti-inflamma-
tory mediators (12, 13). Therefore, targeting the balance 
of M1/M2 polarization to regulate neuroinflammation is 
beneficial for various neurodegenerative diseases (12, 14). 

Multiple transcription factors participate in the regula-
tion of microglial polarization, including the peroxisome 
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proliferator-activated receptors-γ (PPAR-γ). PPAR-γ that 
belongs to the nuclear receptor superfamily is pivotal in 
regulating cellular glucose uptake, protecting against athero-
sclerosis and controlling immune reactions (15). Addition-
ally, PPAR-γ is distributed broadly in central nervous system 
(CNS) and can protect neurons by attenuating inflamma-
tory responses (16, 17), which makes it a potential target 
for CNS disorders (15, 18). Several studies demonstrated 
that PPAR-γ participated in inflammation control through 
modulation of microglial polarization (19). Regulating the 
PPAR-γ pathway is recognized as an attractive therapeutical 
strategy for many progressive neurological disorders (20, 21).

Gardenia jasminoides J. Ellis (Fructus Gardenia) is a 
 potential traditional herb with versatile biological activi-
ties and has been traditionally applied to improve symp-
toms of cardiovascular (22) and nervous systems (23, 24). 
Modern pharmacological research revealed that Gardenia 
jasminoides J. Ellis extract exhibited anti- inflammatory ac-
tivity and protective effects on ischemic brain injury (25) 
and neurodegenerative disorders (26). GJ-4 is a Gardenia 
jasminoides J. Ellis extract with crocin composition, and 
the metabolite could cross the BBB (27). In our previous 
researches, GJ-4 could notably ameliorate cognitive disor-
ders in various AD models (28). Recently, we found GJ-4 
exhibited protective effects on VD developed via focal ce-
rebral ischemia/reperfusion injury (29). In this study, we 
developed a chronic hyperlipidemic VD model by bilateral 
common carotid arteries occlusion (2-VO) in hyperlipid-
emic rats to further investigate the therapeutical effects 
and the underlying mechanism of GJ-4 on VD.

Materials and methods

Extraction of GJ-4
GJ-4 powder was prepared as previous description (30). 
The chromatographs are shown in Fig. 1.

Experimental animals
Male Sprague–Dawley rats (160 to 180 g) were provided 
by Beijing Vital River Laboratory Animal Technology 
Co., Ltd. (Beijing, China) and fed in the diurnal lighting 
(12 h light/dark cycle) house. All experimental protocols 
were performed in accordance with the National Insti-
tutes of Health Guide for the Care and Use of Labora-
tory Animals and approved by the Animal Care and Use 
Committee of Peking Union Medical College.

Development of hyperlipidemic VD rat model
Hyperlipidemic rats (n = 50) were developed by feeding 
with high-fat diet (HFD) for 7 weeks, while control rats 
(n = 10) with normal feeding. Thereafter, the 2-VO sur-
gery was performed in the hyperlipidemic rats according 
to the methods described by Liu and Du with some mod-
ifications (31, 32). Briefly, after exposed and separated, 
each common carotid artery of HFD rats was ligated 
with a 5–0 type surgical silk suture. The sham-operated 
rats were subjected to the same operation except for arte-
rial ligation. 

Treatment schedules
On the 2nd day after operation, the hyperlipidemic VD 
rats were randomly assigned into HFD+2-VO group, 
GJ-4 group (10 and 50 mg/kg, provided by Jinan Uni-
versity), and Ginkgo biloba extract group (EGb761, pur-
chased from Dr. Willmar Schwabe). GJ-4 and EGb761 
were orally administered one time per day for 3 weeks. 
Moreover, rats were maintained on their respective diets 
during treatment period.

Step-down test
The apparatus consists of a square reflecting chamber and 
a cylindrical insulation platform. In this study, the step-
down test was performed as previously described (29). 

Fig. 1. Major peaks in the crocin-rich fraction identified in HPLC-ELSD at 440 nm.
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After adapt for 2 min, rat would receive a foot shock im-
mediately once it steps down from the platform during the 
next 3 min. Twenty-four hours after training, the rat was 
placed on the platform again. The following two paramet-
ric measures of retention were recorded as the final results 
in a blinded manner: the time to stay on the platform and 
the times jumping from the platform.

Morris water maze test 
The Morris water maze test was performed in a black 
cylindrical tank filled with water maintained at room 
temperature. The Morris water maze test was performed 
as previously described (28). During the orientation 
navigation test, a platform was underneath the water. 
A  rat was randomly placed into the water at four equi-
distant locations for 4 days. If  the rat can find platform 
and stayed for over 3 s, the latency will be recorded. If  
not, the latency will be 90 s, and the rat will be remained 
on the platform for another 30 s. The spatial probe test 
was carried out without the platform 24 h after the last 
orientation navigation test. Rats were placed in the pool 
to swim within 90 s, and the latency to cross the platform, 
time spent in the target quadrant, and the times of plat-
form crossings were automatically recorded.

Cerebral blood flow detection
Cerebral blood flow was measured by a laser doppler flow-
metry. After the rats were anesthetized, a midline scalp 
incision was made to expose the skull bone. The probe of 
the laser doppler probe was fixed on the frontal brain to 
measure the brain blood supply. The mean blood flow of 
each rat was recorded.

Blood lipid analysis
Blood samples from the caudal vein of rats were stayed 
2 h and subsequently centrifuged at 3,500 rpm for 25 min. 
The levels of total cholesterol (TC), triglycerides (TG), 
LDL-C, and HDL-C were detected using commercial kits. 

Nissl staining
Briefly, after paraformaldehyde-fixed and paraffin-em-
bedded, the brains were coronally sectioned to 3 mm thick 
sections. The slides were then subjected to dewaxing and 
rehydration, followed by stained with Nissl staining solu-
tion for 1 h at 50 °C. Following clearing and sealing, the 
images of Nissl-stained cells were obtained by the light 
microscope (NIKON E600, Japan).

Immunohistochemistry analysis
Paraffin slices were incubated with CD11b antibody 
(Abcam, 1:200) and followed by biotinylated secondary an-
tibody (Abcam, 1:2000). Hydrogen peroxidase and 3,3′-di-
aminobenzidine were used as chromogen to visualize the 
positive cells. Images of CD11b-positive cells were acquired 
by a light microscope (NIKON E600, Japan).

Real-time polymerase chain reaction
The total mRNA expression of CD68, CD86, arginase 1 
(Arg1), chitinase-like protein-3 (Ym1/Chi3l3), tissue ne-
crosis factor-α (TNF-α), IL-1β, transforming growth fac-
tor-β (TGF-β), and IL-4 in the cortex and hippocampus 
was determined by real-time polymerase chain reaction 
(RT-PCR). Rats were anesthesia and rapidly decapi-
tated, and cortex and hippocampus were rapidly isolated 
and stored at −80°C. Total RNA was extracted and re-
verse-transcribed by commercial kit (TransGen Biotech, 
China). The primer sequences for RT-PCR were listed in 
Table 1. The PCR was performed as previously described. 
The relative mRNA levels were analyzed by the 2−ΔΔCt 
method normalizing to GAPDH and relative to the sh-
am-operated groups.

Western blot
Rat tissues were lysed and then protein-quantified using 
a Bicinchoninic Acid (BCA) kit. Samples containing 
40  μg proteins were separated via 10% sodium dodecyl 
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

Table 1. Primers for quantitative PCR

Gene
Primer sequence (5’-3’)

Forward Reverse

CD68 ATGGTTCCCAGCCATGTGTT TTTCCACCCTGGGTCAGGTA

CD86 GACACCCACGGGATCAATTA GCCTCCTCTATTTCAGGTTCAC

Arg1 AAGAAAAGGCCGATTCACCT CACCTCCTCTGCTGTCTTCC

Ym1 GATCACCACCCCTATGACCCT GGGACCAGTTGGTGTAGTAGC

TNF-α TCTCAAAACTCGAGTGACAAGC GGTTGTCTTTGAGATCCATGC

IL-1β TGATGTTCCCATTAGACAGC GAGGTGCTGATGTACCAGTT

TGF-β ACTCCCAACTACAGAAAAGCA GGTGGTGCCCTCTGAAATGA

IL-4 TTGCTGTCACCCTGTTCTGC TTCTCCGTGGTGTTCCTTGTT

GAPDH AGTGCCAGCCTCGTCTCATA GGTAACCAGGCGTCCGATAC
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and subsequently transferred to polyvinylidene fluoride 
(PVDF) membranes. The membranes were then blocked 
with skim milk and incubated with primary antibod-
ies: PPAR-γ, nuclear factor kappa beta (NF-κB), and 
CCAAT/enhancer-binding protein β (C/EBP β) (Abcam, 
1:1000) at 4°C overnight, followed by corresponding 
secondary antibody (Abclonal, 1:2000) for 2 h at 37°C. 
The immunoreactive blots were visualized by LAS4000 
software.

Statistical analysis
All data were presented as mean ± SEM from at least 
three independent experiments. Statistical analysis was 
performed by one-way analysis of variance (ANOVA) 
followed by Tukey’s t-test. A P value of <0.05 was consid-
ered statistically significant.

Results

GJ-4 treatment restored dyslipidemia in hyperlipidemic VD rats
The consumption of HFD can cause a leading obe-
sity and related complications including hyperlipidemia 
(33). Before drug administration, rats fed with HFD for 
7 weeks showed the significant increased TC, TG, and 
LDL-C levels (data not shown), indicating the successful 
establishment of hyperlipidemic model. Next, the 2-VO 
surgery was performed after 7 weeks of HFD, and then 
rats were administrated with GJ-4. After 3 weeks of GJ-4 
(50 mg/kg) treatment, a remarkable decrease in serum 
TC, TG, and LDL-C levels was observed compared with 
the HFD+2-VO rats (TC: P < 0.05, TG: P < 0.05, and 
LDL-C: P < 0.01) (Fig. 2a–c). GJ-4 treatment had not 
shown significant effect on HDL-C level (Fig. 2d). The 

a b

c d

Fig. 2. GJ-4 improved serum lipid abnormalities in HFD+2-VO-induced VD rats. After 3 weeks of GJ-4 administration, the 
effects of GJ-4 on lipid levels of VD rats were evaluated. (a) Serum TC concentrations. (b) Serum TG concentrations. (c) Serum 
LDL-C concentrations. (d) Serum HDL-C concentrations. The dosage of EGb761 was 50 mg/kg. Results were expressed as mean 
± SEM from 8 to 10 rats. #P < 0.05 versus sham-operated rats; *P < 0.05, **P < 0.01 versus HFD+2-VO rats.
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Fig. 3. GJ-4 ameliorated memory decline and improved regional cerebral blood flow in HFD+2-VO-induced VD. The learning 
and memory ability of VD rats was accessed by the step-down test and Morris water maze test. (a) Time to stay on the platform 
in the step-down test. (b) Number of errors in the step-down test. (c) Time to first cross the platform in Morris water maze test. 
(d) Time in the target quadrant in Morris water maze test. (e) Number of crossing the platform in Morris water maze test. The 
 cerebral blood flow of rats was detected by laser doppler flowmetry. (f) Regional cerebral blood flow of rats. The dosage of 
EGb761 was 50 mg/kg. Results were expressed as mean ± SEM from 10 to 12 rats. #P < 0.05, ##P < 0.01 versus sham-operated 
rats; *P < 0.05, **P < 0.01 versus HFD+2-VO rats.
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results suggested that GJ-4 significantly improved hyper-
lipidemia, which was induced by HFD.

GJ-4 treatment alleviated memory decline and improved regional 
cerebral blood flow in hyperlipidemic VD rats
To evaluate the cognitive ability, we performed the 
step-down test on the 15th day, and Morris water maze 
 experiment on the 17th day of  GJ-4 administration. In 
the step-down test, the time of  HFD+2-VO rat stay-
ing on the platform was obviously decreased (P < 0.05, 
Fig. 3a), and the number of  errors was significantly in-
creased (P < 0.05, Fig. 3b), suggesting that the animal 
subjected to HFD+2-VO exhibited severe memory im-
pairment. GJ-4 at 50 mg/kg could apparently prolong 
the time staying on the platform and reduce the number 
of  errors (Fig. 3a, b).

In the Morris water maze test, severe cognitive dys-
function was detected in HFD+2-VO rats, as indicated 
by delayed time to first cross the platform, decreased 
time spent in the target quadrant, and reduced number 
of  platform crossing (Fig. 3c–e). Compared to the HF-
D+2-VO group, the rat administered with GJ-4 spent 
less time to first reach the platform (HFD+2-VO group, 
44.33 s; GJ-4 50 mg/kg, 13.37 s) (Fig. 3c) and more time 
in the target quadrant (HFD+2-VO group, 28.03 s; GJ-4 
50 mg/kg, 34.73 s) (Fig. 3d) and showed increased num-
ber of  platform crossing (HFD+2-VO group, 1.84; GJ-4 
50 mg/kg, 3.75) (Fig.  3e). The results illustrated that 
GJ-4 could remarkedly attenuate memory deficits in HF-
D+2-VO-induced VD rats.

The 2-VO operation results in the insufficiency of the 
persistent cerebral blood flow, which was partly similar 
to the clinical characteristics of VD patients (34, 35), 
so we then used laser doppler flowmetry to explore the 
effects on cerebral blood flow. As shown in Fig. 3f, re-
gional cerebral blood flow was significantly decreased by 
42% in HFD+2-VO rats. Administration of GJ-4 at both 
10 and 50 mg/kg could improve the cerebral blood flow 
( HFD+2-VO group, 150.57 PU; GJ-4 10 mg/kg, 290.57 
PU; GJ-4 50 mg/kg, 325.20 PU).

GJ-4 attenuated neuronal injury of hyperlipidemic VD rats
Chronic cerebral ischemia initiates extensive neuronal loss 
and dysfunction, subsequently causing memory disorders. 
Nissl staining results revealed that the number of neurons 
in cortex and hippocampus CA1 region of  HFD+2-VO 
rats was markedly decreased in comparison with the 
 sham-operated rats (Cortex: sham-operated group, 
331  cells/mm2; HFD+2-VO group, 185 cells/mm2. Hip-
pocampus CA1: sham-operated group, 58.75 cells/mm2; 
 HFD+2-VO group, 34.25 cells/mm2), detected by the 
Nissl staining. Moreover, HFD+2-VO rats presented 
large population of damaged neurons with vacuolated 
 cytoplasm and pyknotic nucleus. To our expectation, 

GJ-4 treatment notably ameliorated neuronal injury of 
VD rats, as demonstrated by increased quantity and im-
proved form (Fig. 4a–d). The above data indicated that 
GJ-4 ameliorated neuronal damage in VD rats challenged 
via hypoperfusion and hyperlipidemia.

GJ-4 inhibited microglial activation and switched microglial 
phenotype in hyperlipidemic VD rats
A growing number of evidences indicated that neuroin-
flammation, mainly elicited by microglia, aggravated the 
pathological process of VD by exacerbated the produc-
tion of pro-inflammatory cytokines. To identify whether 
the improved effects of GJ-4 on VD were concerned with 
the inhibition of neuroinflammation, we first examined 
the expression of CD11b, a typical marker of microglia. 
As shown in Fig. 5, the number of CD11b-positive cells 
in HFD+2-VO rats was obviously increased in compar-
ison with the sham-operated rats. Besides, the microglia 
of HFD+2-VO rats were highly ramified, with enlarged 
cellular bodies and increased branches (Fig. 5a, c). Treat-
ment of GJ-4 at 50 mg/kg markedly reduced the quan-
tity of CD11b-positive cells (Cortex: HFD+2-VO group, 
32.25 cells/mm2; GJ-4 50 mg/kg group, 6.5 cells/mm2. 
Hippocampus CA1: HFD+2-VO group, 24.5 cells/mm2; 
GJ-4 50 mg/kg group, 12.75 cells/mm2) (Fig. 5a–d), sug-
gesting that GJ-4 could inhibit microglial activation in 
HFD+2-VO-induced VD rats.

Activated microglia is distinguished by the expression 
of specific phenotype markers. M1 phenotypic cells ex-
press typical phenotypic molecules, such as CD68 and 
CD86, while M2 phenotypic cells express Arg1 and Ym1. 
Our RT-PCR results showed that the levels of M1-polar-
izing markers (CD68 and CD86) were increased, whereas 
M2 marker expression levels (Arg1 and Ym1) were de-
creased in HFD+2-VO rats (Fig. 5e–h), suggesting that 
phenotypic changes occurred in microglia, ranging from 
anti-inflammatory M2 to pro-inflammatory M1 under 
hypoperfusion and hyperlipidemia conditions. Interest-
ingly, GJ-4 50 mg/kg balanced the polarization condition 
of microglia by promoting the expression of M2 mark-
ers as well as inhibiting the expression of M1 markers 
(Fig. 5e–h). Altogether, our data indicated that protective 
effects of GJ-4 on VD induced by HFD+2-VO might be 
associated with microglial polarization regulation.

GJ-4 regulated the secretion of inflammatory cytokines in 
hyperlipidemic VD rats
After the ischemic injury, microglia showed phenotypic 
transition overtime, switching from the beneficial M2 into 
the harmful M1 type (14). In this study, levels of TNF-α 
and IL-1β, representative of M1-related cytokines, were 
significantly increased in HFD+2-VO-induced VD rats 
(Cortex: TNF-α, P < 0.05; IL-1β, P < 0.05. Hippocampus: 
TNF-α, P < 0.05; IL-1β, P < 0.05) (Fig. 6a, b). Additionally, 
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Fig. 4. GJ-4 alleviated neuronal injury of HFD+2-VO-induced VD rats. Rats were fed with HFD for 7 weeks followed by 2-VO 
surgery, and then they were treated with GJ-4 for 3 weeks. (a) Nissl staining in the cortex. (b) Nissl staining in the CA1 region of 
hippocampus. (c) Statistical analysis of Nissl-stained cells in the cortex. (d) Statistical analysis of Nissl-stained cells in the CA1 
region of hippocampus. The dosage of EGb761 and GJ-4 was both 50 mg/kg. Results were expressed as mean ± SEM from 3 to 
5 rats. ##P < 0.01 versus sham-operated rats; *P < 0.05 versus HFD+2-VO rats.

http://dx.doi.org/10.29219/fnr.v66.8101


Citation: Food & Nutrition Research 2022, 66: 8101 - http://dx.doi.org/10.29219/fnr.v66.8101 9
(page number not for citation purpose)

Gardenia jasminoides J. Ellis extract GJ-4 attenuates hyperlipidemic vascular dementia

a significant reduction of the M2-associated cytokines 
(TGF-β and IL-4) was also found in HFD+2-VO rats (Cor-
tex: TGF-β, P < 0.01; IL-4, P < 0.05. Hippocampus: TGF-
β, P < 0.01; IL-4, P < 0.01) (Fig. 6c, d). GJ-4 treatment 
could markedly decrease the mRNA expression of TNF-α 

and IL-1β, while the levels of TGF-β and IL-4 mRNA were 
increased by treatment with GJ-4 in VD rats (Fig. 6a–d), 
indicating that GJ-4 could inhibit microglial M1 polariza-
tion and promote M2 polarization. Taken together, the 
above results further certified that GJ-4 might suppress 

a b

c d
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Fig. 5. GJ-4 suppressed microglial activation and modulated microglial M1/M2 polarization in HFD+2-VO-induced VD rats. 
Rats were fed with HFD for 7 weeks followed by 2-VO surgery, and then they were treated with GJ-4 for 3 weeks. (a) CD11b 
staining in the cortex. (b) Statistical analysis of  CD11b positive cells in the cortex. (c) CD11b staining in the hippocampus. 
(d) Statistical analysis of  CD11b positive cells in the hippocampus. (e) CD68 and CD86 mRNA expressions in the cortex. (f) 
CD68 and CD86 mRNA expressions in the hippocampus. (g) Arg1 and Ym1 mRNA expressions in the cortex. (h) Arg1 and 
Ym1 mRNA expressions in the hippocampus. The dosage of  EGb761 and GJ-4 was both 50 mg/kg. Results were shown as 
mean ± SEM from 3 to 5 rats. #P < 0.05, ##P < 0.01, ###P < 0.001 versus sham-operated rats; *P < 0.05, **P < 0.01 versus 
HFD+2-VO rats.
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neuroinflammation through promoting the phenotypic shift 
of microglia from M1 to M2 phenotype in hyperlipidemic 
VD rats.

GJ-4 increased the activity of PPAR-γ in hyperlipidemic VD rats
PPAR-γ stimulation is considered necessary for inhibiting 
inflammatory response (36) and is implied in controlling 
the microglial alternative activation and regulating mi-
croglial M1/M2 polarization (19, 37). To further explore 
the therapeutic mechanism of GJ-4 on VD, Western blot 
was employed to test the profiles of PPAR-γ expression 
in VD rats. As shown in Fig. 7, the levels of PPAR-γ were 
elevated in cytoplasm but were significantly reduced in 
nuclei, indicating that HFD+2-VO inhibited the nuclear 
translocation of PPAR-γ. Treatment with GJ-4 appar-
ently promoted PPAR-γ nuclear translocation (Fig. 7a–d), 
as demonstrated by upregulated PPAR-γ expression in 
nuclei and downregulated expression in cytoplasm. The 
earlier data suggested that GJ-4 could regulate microglial 
M1/M2 polarization via promoting PPAR-γ activation.

GJ-4 regulated PPAR-γ-induced microglial polarization via NF-κB 
and C/EBPβ in hyperlipidemic VD rats
Recent studies have shown that the PPAR-γ activation 
was potential to modulate microglia-mediated neuroin-
flammation through the regulation of different signaling 

pathways, such as the NF-κB and the C/EBPβ pathways 
(38). NF-κB plays an essential role in the shift from the 
anti-inflammatory M2 to the pro-inflammatory M1 phe-
notypes and then increases the expression of relevant 
pro-inflammatory cytokines through translocating into 
nucleus (39, 40). In this study, the nuclear translocation of 
NF-κB was apparently increased in rats subjected to HF-
D+2-VO (Fig. 8a, b), indicating the excessive activation 
of NF-κB pathway. GJ-4 markedly suppressed the activity 
of NF-κB by inhibiting its nuclear translocation (Fig. 8a, 
b). C/EBPβ can specifically shift the microglia toward an 
anti-inflammatory phenotype (41). Western blot analy-
sis revealed that the C/EBPβ expression was significantly 
reduced in VD rats. GJ-4 treatment obviously increased 
the C/EBPβ expression compared with the VD rats (Fig. 
8c, d), indicating that the C/EBPβ pathway was activated 
by GJ-4. The above results revealed that both decreased 
M1-polarization and increased M2-polarization by GJ-4 
on VD rats upon PPAR-γ activation might be regulated 
by NF-κB and C/EBPβ pathways.

Discussion
In the present study, through employing the hyperlipid-
emic VD model developed via 2-VO in HFD-fed rats, 
we found that treatment with GJ-4 could significantly 
restore the abnormal serum lipid levels, increase cerebral 

a b

c d

Fig. 6. GJ-4 inhibited pro-inflammatory cytokine release and promoted anti-inflammatory cytokine production in HF-
D+2-VO-induced VD rats. Rats were fed with HFD for 7 weeks followed by 2-VO surgery, and then they were treated with GJ-4 
for 3 weeks. (a) TNF-α and IL-1β mRNA expressions in the cortex. (b) TNF-α and IL-1β mRNA expressions in the hippocam-
pus. (c) TGF-β and IL-4 mRNA expressions in the cortex. (d) TGF-β and IL-4 mRNA expressions in the hippocampus. The 
dosage of GJ-4 was 50 mg/kg. Results were shown as mean ± SEM from 4 to 5 rats. #P < 0.05, ##P < 0.01 versus sham-operated 
rats; *P < 0.05, **P < 0.01 versus HFD+2-VO rats.
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blood flow, protect neurons, and improve memory ability. 
Further investigation revealed that GJ-4 could modulate 
microglial M1/M2 polarization by suppressing M1 phe-
notype and promoting M2 phenotype via regulating the 
activation of the PPAR-γ.

There are a variety of pathological mechanisms implied 
in the development of VD, and lipid is attracting more and 
more attention. Growing evidences have proved increased 
levels of TC, TG, and LDL-C as well as reduced levels of 
HDL-C are known as risk factors for carotid atheroscle-
rosis (5), which may result in cerebral hypoperfusion or 
embolism and subsequent cognitive dysfunction (6). Thus, 
in this study, we developed a hypoperfusion-induced VD 
model in hyperlipidemic rats via 2-VO surgery. The model 
rats were characterized by dyslipidemia, chronic cerebral 
ischemia, and cognitive impairment, which conformed to 
the clinical pathological basis and was similar with memory 

deficits of human beings (42). In accordance with the re-
ported studies, we found that HFD+2-VO rats developed 
hyperlipidemia as shown by higher levels of TC, TG, and 
LDL-C and reduced cerebral blood supply as well as se-
vere memory deficits compared with the sham-operated 
rats (42). In this hyperlipidemic VD model, GJ-4 showed 
the marked effect on improving memory functions and cer-
tain effect on reducing plasma lipids. Memory function was 
closely associated with the serum lipid state, which implied 
us that further investigation was needed to clarify the ef-
fects of GJ-4 on improving memory.

Microglia are the major immune cellular in CNS, and 
accumulating researches suggested that microglia-medi-
ated neuroinflammation participates in the pathogenesis 
and progression in various neurodegenerative diseases, 
such as AD and Parkinson’s disease (43–45). Many evi-
dences point to the neurotoxic effect of excessive microglial 

a b

c d

Fig. 7. GJ-4 stimulated PPAR-γ nuclear translocation. Rats were fed with HFD for 7 weeks followed by 2-VO surgery, and then 
they were treated with GJ-4 for 3 weeks. (a) PPAR-γ expression in the cytoplasm of cortex. (b) PPAR-γ expression in the nucleus 
of cortex. (c) PPAR-γ expression in the cytoplasm of hippocampus. (d) PPAR-γ expression in the nucleus of hippocampus. The 
dosage of GJ-4 was 50 mg/kg. Results were shown as mean ± SEM from 4 to 5 rats. #P < 0.05, ###P < 0.001 versus sham- operated 
rats; *P < 0.05, ***P < 0.001 versus HFD+2-VO rats. 
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activation, and modifying microglial activation might be 
a beneficial strategy for various neurodegenerative disor-
ders (45, 46). However, recent research found that simply 
blocking inflammation by suppressing microglial activation 
would likely not induce overall beneficial effects (43), and 
increasing studies focused on the microglial polarization 
regulation. Similar to periphery macrophages, microglia 
are heterogeneous with different phenotypes and functions 
in response to microenvironmental disturbances, such as 
chronic cerebral ischemia (47), which range from pro-in-
flammatory M1 phenotype to anti-inflammatory M2 phe-
notype (14). M1 phenotype microglia could synthesize and 
secrete pro-inflammatory cytokines, aggravating neuronal 
injury and CNS disorders. On the contrary, M2 phenotype 
participates in the repair process after brain injury by re-
moving damaged cell debris and generating neurotrophic 
factors and anti-inflammatory mediators (48). It has been 
reported that restoring the M1/M2 balance of microglia 
could reverse memory decline in AD mice (49) and attenu-
ate brain damage of the focal cerebral ischemia model (47). 
Thus, redirection of microglial M1/M2 status by inhibiting 

the M1 phenotype while stimulating the M2 phenotype has 
been suggested as an effective strategy for neurodegenera-
tive diseases (50, 51). In this VD rat model, we found the 
occurrence of microglial over-activation and abnormal 
microglial phenotypic transformation. Treatment with 
GJ-4 notably suppressed microglial activation by switch-
ing the phenotypes of microglia, as evidenced by decreased 
mRNA levels of M1-associated molecules as well as in-
creased mRNA levels of M2-associated molecules. These 
data identified that protective effects of GJ-4 were on the 
account of suppressing microglia-mediated neuroinflam-
matory actions via regulating microglial polarization.

Recently, PPAR-γ is considered as the potential ther-
apeutic target for various CNS diseases (52). It has been 
reported that PPAR-γ activation could elicit potent neu-
roprotective effects in various animal models of  cerebral 
ischemia, AD, and VD (21, 53–55). The neuroprotective 
effects of  PPAR-γ are closely involved in the regulation 
of microglia-associated neuroinflammation (56). Exactly, 
the activation of PPAR-γ could suppress microglial M1 
phenotype polarization via inhibiting the  activation of 

a b

c d

Fig. 8. GJ-4 suppressed NF-κB nuclear translocation and elevated C/EBPβ expression in HFD+2-VO-induced VD rats. Rats 
were fed with HFD for 7 weeks followed by 2-VO surgery, and then they were treated with GJ-4 for 3 weeks. (a) NF-κB expres-
sion in the nucleus of cortex. (b) NF-κB expression in the nucleus of hippocampus. (c) C/EBPβ expression in the cortex. (d) 
C/EBPβ expression in the hippocampus. The dosage of GJ-4 was 50 mg/kg. Results were shown as mean ± SEM from 4 to 5 rats. 
#P < 0.05, ##P < 0.01, ###P < 0.001 versus sham-operated rats; *P < 0.05, **P < 0.01 versus HFD+2-VO rats.
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NF-κB and could also cooperate with C/EBPβ to sub-
sequently promote M2 microglial polarization (37,  57). 
To further investigate the mechanisms of GJ-4 in regu-
lating microglia-mediated neuroinflammation, we ana-
lyzed the changes of  NF-κB and C/EBPβ. The PPAR-γ 
nuclear translocation in VD rats was decreased, which 
consequently caused downstream increased activity of 
NF-κB as well as decreased expression of C/EBPβ. GJ-4 
markedly increased the activity of  PPAR-γ by promot-
ing its nuclear translocation, and further investigation 
demonstrated that GJ-4 could inhibit NF-κB nuclear 
translocation and elevate the C/EBPβ expression. These 
aforementioned data suggested that with the activation 
of PPAR-γ, GJ-4 switched the microglial phenotypes via 
modulating NF-κB and C/EBPβ signaling pathways. 

Conclusions
In summary, our study revealed that GJ-4 could improve 
dyslipidemia and memory impairment in hyperlipidemic 
VD rats. The protective effects may be related to its ability 
to regulate microglial polarization. Mechanistic studies 
showed that GJ-4 could switch the microglial phenotype 
through the activation of PPAR-γ signaling pathway. Col-
lectively, our data supported that GJ-4 might become an 
effective alternative for VD treatment. 
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