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A chromosome-level genome 
assembly of the gall maker pest 
inquiline, Diomorus aiolomorphi 
Kamijo (Hymenoptera: Torymidae)
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Diomorus aiolomorphi Kamijo (Hymenoptera: Torymidae) is an inquiline of gall maker Aiolomorphus 
rhopaloides Walker (Hymenoptera: Eurytomidae). They are of significant economic significance and 
predominantly inhabit bamboo forest. So far, only four scaffold-level genomes have been published 
for the family Torymidae. In this study, we present a high-quality genome assembly of D. aiolomorphi 
at the chromosome level, achieved through the integration of Nanopore (ONT) long-read, Illumina 
pair-end DNA short-read, and High-through Chromosome Conformation Capture (Hi-C) sequencing 
methods. The final assembly was 1,084.56 Mb in genome size, with 1,083.41 Mb (99.89%) assigned to 
five pseudochromosomes. The scaffold N50 length reached 224.87 Mb, and the complete Benchmarking 
Universal Single-Copy Orthologs (BUSCO) score was 97.3%. The genome contained 762.12 Mb of 
repetitive elements, accounting for 70.27% of the total genome size. A total of 18,011 protein-coding 
genes were predicted, with 17,829 genes being functionally annotated. The high-quality genome 
assembly of D. aiolomorphi presented in this study will serve as a valuable genomic resource for future 
research on parasitoid wasps. The results of this study may also contribute to the development of 
biological control strategies for pest management in bamboo forests, enhancing ecological balance and 
economic sustainability.

Background & Summary
Diomorus aiolomorphi Kamijo (Hymenoptera: Torymidae) is a parasitic inquiline associated with the gall maker 
Aiolomorphus rhopaloides Walker (Hymenoptera: Eurytomidae). D. aiolomorphi and A. rhopaloides are of sig-
nificant economic significance and predominantly inhabit bamboo forest. Notably, these two species constitute 
approximately 90% of the insects within this group in such environments1.

The gall maker A. rhopaloides lays its eggs in the internode at the base of the new branch buds, stimulating 
the paraplegma tissue in these areas. This process inhibits the growth of bamboo plants, leading to a reduction 
in both the quantity and quality of bamboo shoots. It has been observed that bamboo galls are contagiously 
distributed across both the culms and branches in a bamboo stand2,3. Its harm makes it a significant factor 
hindering effective management and economic value of bamboo forests, with notable impacts on both society 
and the environment4. It not only leads to reduced bamboo yield, lower quality, and decreased market prices 
but also results in indirect losses such as control and restoration costs and ecological impacts2–5. Adults of D. 
aiolomorphi, known as inquilines, oviposit on these young bamboo galls. Unlike typical phytophagous insects, 
D. aiolomorphi cannot create its own galls but instead feeds on the gall tissues induced by other gall makers4,5. 
Understanding the attack pattern of D. aiolomorphi on bamboo galls is crucial for assessing and managing the 
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population density of A. rhopaloides1. Despite the commonality of D. aiolomorphi among gall makers and its 
economic significance, it has received relatively little scientific attention6. Consequently, there is a substantial gap 
in our understanding of the genetic makeup underpinning the genome of D. aiolomorphi.

In this study, we have assembled the chromosome-level genome of D. aiolomorphi, representing the 
first chromosome-level sequenced genome of the family Torymidae. The genome size is 1,084.56 Mb, with 
1,083.41 Mb (99.89%) assigned to five pseudochromosomes. The scaffold N50 of the genome is 224.87 Mb in 
length, and the complete Benchmarking Universal Single-Copy Orthologs (BUSCO) score reached 97.3%. A 
total of 762.12 Mb repetitive elements were identified, accounting for 70.27% of the total genome size. 18,011 
protein-coding genes, with functional annotations available for 17,829 of these genes. The high-quality genome 
assembly of D. aiolomorphi provides a valuable repository for understanding the genomic traits of the Torymidae 
genomes.

Methods
Sampling.  Galls were sampled from bamboo branches at Fuyang, Hangzhou, China (30°03′ N, 119°57′ E) 
before gall maker emergence, and a total of 1,467 galls were collected. An inquiline is an organism that lives 
within or on the structure of another organism. The inquiline, D. aiolomorphi, emerged from galls 15–20 days 
later than the gall maker A. rhopaloides. Before sequencing, both morphological examination7 and COI barcode 
information confirmed the identification of the species as D. aiolomorphi. The specimens were deposited at the 
Institute of Insect Sciences, Zhejiang University (ZJUH_20231101). They were preserved in 100% ethanol prior to 
DNA extraction to maintain the integrity of the genetic material, and subsequently kept in the scientific specimen 
repository.

Library preparation and genomic DNA sequencing.  Genomic DNA was prepared by the sodium 
dodecyl sulfate (SDS) method followed by purification with QIAGEN® Genomic kit (Qiagen, Hilden, Germany) 
according to the manufacturer’s standard operating procedure for both long-read and short-read whole 
genome sequencing (https://www.qiagen.com/us/resources/resourcedetail?id = 566f1cb1-4ffe-4225-a6de-
6bd3261dc920&lang = en). RNA extraction was conducted with the TRlzol reagent (Vazyme, Nanjing, China) 
(https://bio.vazyme.com/product/730.html). The quality of the extracted RNA was assessed using an Agilent 2100 
Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). The RNA Integrity Number (RIN) was determined 
for each sample, ensuring that only high-quality RNA (RIN > 7.0) was used for subsequent sequencing pro-
cesses. The total data produced from RNA extraction amounted to 4.73 Gb, with a duplication rate of 66.07%. 
The Q20 (Quality scores > 20) bases totaled 3,607,313,837 (97.8713%), while the Q30 (Quality scores > 30) bases 
amounted to 3,455,480,380 (93.7518%). Long-read sequencing was performed on the Nanopore GridION X5/
PromethION sequencer (Oxford Nanopore Technologies, UK) at Nextomics. Short-read and transcriptome 
sequencing were sequenced on the Illumina Novaseq/MGI-2000 platforms. The total data generated from the 
long-read sequencing was 81.21 Gb, while the output from the short-read sequencing totaled 28.37 Gb (Table 1).

Genome survey and assembly.  K-mer analysis was performed using Illumina paired-end sequenced DNA 
reads. This analysis was conducted before genome assembly to estimate the genome size and the level of hete-
rozygosity. Briefly, quality-filtered reads were subjected to a 21-mer frequency distribution analysis employing 
Jellyfish v2.2.108. For a read of length L, the number of k-mer produced is (L - 21 + 1). Therefore, the genome size 
(G) is estimated by the formula: G = Knumber / Kdepth, where Knumber represents the total number of k-mer produced 
and Kdepth represents the peak value of k-mer depth. Furthermore, the overall genomic properties were inferred by 
GenomeScope v1.09. The preliminary genome survey of D. aiolomorphi revealed a low level of heterozygosity level 
(0.19%) within a substantial genome, 988,63 Mb. This estimated genome size was used to evaluate the integrity of 
the subsequent assembly (Fig. 1, Supplementary Table S1).

The primary assembly of the clean reads obtained from the Nanopore platform was conducted using next-
Denovo v2.5.010, and subsequently corrected using Canu v2.1.111. Illumina paired-end sequenced DNA reads 
were then utilized to polish and enhance the genome assembly using nextPolish v1.4.012. To eliminate haplotigs 
and contig overlaps in the de novo assembly, purge_dups v1.2.5 (https://github.com/dfguan/purge_dups) was 
employed. Finally, the primary assembly yielded 147 scaffolds with 1,084.58 Mb in genome size, 18.13 Mb in 
contig N50 and 224.87 Mb in scaffold N50.

Chromosome Hi-C assembly.  The High-through Chromosome Conformation Capture (Hi-C) method13 
was utilized to anchor accurately position hybrid scaffolds onto chromosomes. Genomic DNA was extracted 
from the thorax of an individual D. aiolomorphi for the Hi-C library. This library, along with the sequencing data 
was processed via the Illumina Novaseq/MGI-2000 platform. The procedure yielded high-quality clean reads of 
110.44 Gb of raw data (Table 1). All subsequent analyses were then applied to these clean reads. The clean Hi-C 
paired-end reads were initially mapped to the primary assembly using Bowtie2 v2.3.214. Then, HiC-Pro v2.8.115  

Sequencing strategy Platform Usage Insertion size Raw data (Gb) Coverage (X)

Short-reads Illumina Genome survey 350 bp 28.37 26.16

Long-reads Nanopore Assembly 12–20 kb 81.21 74.88

Hi-C Illumina Hi-C assembly 350 bp 110.44 101.82

RNA-seq Illumina Annotation 350 bp 4.73 4.36

Table 1.  Library sequencing data and methods used to assemble the D. aiolomorphi genome.
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was utilized to identify valid alignments, simultaneously filtering out multiple hits and singletons align-
ments. Finally, Lachesis16 was employed to cluster, order and orient the scaffolds. Following Lachesis analysis, 
1,083.41 Mb of reads were allocated to five pseudochromosomes, amounting to 99.89% of the final assembly 
(Fig. 2, Table 2).

Assessment of the genome assembly.  To assess the completeness and accuracy of the final assembly 
of D. aiolomorphi genome, Benchmarking Universal Single Copy Orthologs (BUSCO) v5.2.217 with the insect_
obd10 database and hymenoptera_obd10 database were utilized. The assessments yielded high BUSCO scores of 
97.3% and 91.1%, respectively (Fig. 3, Supplementary Table S2-3). Additionally, to ascertain the integrity of the 
genome assembly, the five pseudochromosomes from the final assembly were aligned to the Nt library to evaluate 
the genome assembly using BLAST v2.5.018. Among the 5 chromosomes, 60% (3 pseudochromosomes) showed 
similarity to Nasonia vitripennis, 20% (1 pseudochromosomes) to Eretmocerus sp. and 20% (1 pseudochromo-
somes) to Torymus sp. These results suggest the pseudochromosomes sequences are free from sequences of 
non-target organisms, contaminants, or symbionts presented in the DNA library (Supplementary Table S4).

Repetitive element annotation.  In the D. aiolomorphi genome, transposon element (TE) were identified 
using the Extensive de novo TE Annotator (EDTA) v1.9.619. Tandem Repeats Finder (TRF) v4.0920 facilitated the 
identification of tandem repeats. Based on these findings, a de novo repeat database was consequently generated 
using RepeatModeler v2.0.221. The known repeats in Dfam database22 were combined with the results of TE 
detection and the de novo repeat database, creating a reference library that was clustered using Cd-hit v4.8.123 
to eliminate redundant sequences. After combining and clustering, comprehensive repeat and TE detection was 
conducted using RepeatMasker v4.1.2 (https://www.repeatmasker.org/). The genome was found to have a total 
of 762.12 Mb repetitive sequences, accounting for 70.27% of the genome. Long Terminal Repeat (LTR) elements 
and DNA transposons emerged as the most predominant types of repeats, representing 24.40% and 22.60% of the 
genome, respectively (Table 3).

Protein-coding genes annotation.  Transcriptome sequencing, homologous gene search and de novo 
prediction were employed to infer the protein-coding genes (PCGs) in the D. aiolomorphi genome, which were 
then integrated to generate a final gene set. Initially, transcriptome reads were aligned using Hisat2 v2.2.124 and 
assembled with StringTie v2.1.725. Meanwhile, Trinity v2.8.526 was utilized for de novo assembly of transcrip-
tome reads. Subsequent mapping of the transcriptome assembly to the genome for gene structural prediction by 
PASA v2.3.327. For the identification of homologous gene sets, sequences from various insects, manually anno-
tated in the Universal Protein Resource database (UniProt, https://www.uniprot.org/) and National Center for 
Biotechnology Information (NCBI, https://www.ncbi.nlm.nih.gov/), were aligned to the D. aiolomorphi genome 
using Exonerate v2.4.028 and Gemoma v1.7.129. The process of de novo gene prediction involved three separate 
programs, Augustus v3.3.330, SNAP v2.54.331 and GeneMark-ETP v4.6532. A non-redundant consensus of gene 
structures was then generated by combining all results using EVidenceModeler v1.1.133. To annotate gene func-
tions, the identified PCGs were aligned to various databases, including Nt, Nr, Swiss-Prot and TrEMBL, employ-
ing Diamond v2.0.534 with an e-value threshold of 1e-5. Protein classification and domain search were performed 
using eggNOG-mapper v2.1.435 and InterProScan v5.8.036. Finally, a total of 18,011 protein-coding genes were 
predicted, with 17,829 genes (98.99%) functionally annotated (Table 4).
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Fig. 1  The K-mer distribution of the D. aiolomorphi genome. len, genome haploid length; uniq, genome unique 
length; het, heterozygosity; kcov, genome coverage; err, read error rate; dup, duplicated sequence.
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Non-coding RNA annotation.  To identify noncoding RNA, BAsic Rapid Ribosomal RNA Predictor 
(BARRNAP) v0.9 and tRNAScan-SE v2.0.537 were executed for predicting rRNA and tRNA, respectively. 
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Fig. 2  Overview of the genomic features of the D. aiolomorphi genome. (a) Genome-wide all-by-all Hi-C 
interaction identified five pseudochromosome link groups of the Diomorus aiolomorphi genome; (b) Genomic 
features of the D. aiolomorphi genome. Tracks from outside to inside (a-e) are as follows: pseudochromosomes, 
GC contents, repeat density, gene density and collinearity between the pseudochromosomes.

Statistics Number

Total length 1,084,575,061 bp

GC contents (%) 36.55%

The number of pseudochromosomes 5

Unscaffolded sequences 16

Contig N50 18,128,534 bp

Scaffold N50 224,866,539 bp

Total length of scaffold anchored to pseudochromosomes 1,083,519,070 bp

Total length of unscaffolded sequences 1,055,991 bp

Maximum length of unscaffolded sequence 143,167 bp

Maximum length of pseudochromosomes 267,152,207 bp

Minimum length of pseudochromosomes 157,366,800 bp

Table 2.  Statistics of final Hi-C scaffolding genome of D. aiolomorphi.

Complete and single-copy BUSCOs

Complete and duplicated BUSCOs

Fragmented BUSCOs

Missing BUSCOs

insecta_odb10

hymenoptera_odb10

1009080706050403020100
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Fig. 3  The BUSCO summary of the D. aiolomorphi genome. The x axis represents the percentage of BUSCOs 
and the y axis represents BUSCO datasets.
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Infernal v1.1.238 was used to identify the remaining noncoding RNA based on the alignment with the Rfam 
library39. Finally, 539 noncoding RNAs (ncRNAs) were predicted, including 57 micro-RNAs (miRNAs), 104 
ribosomal RNAs (rRNAs), 21 small nuclear RNAs (snRNAs), 15 small nucleolar RNAs (snoRNAs), and 344 
transfer RNAs (tRNAs) (Supplementary Table S5).

Data Records
The MGI, ONT, RNA-seq and Hi-C sequencing data used for the genome assembly were deposited in the 
NCBI Sequence Read Archive (SRA) database with accession numbers SRR2688253040, SRR2688252941, 
SRR2688253142 and SRR2688252843, respectively, under the BioProject accession number PRJNA1036143. The 
chromosome assembly was deposited at GenBank with accession number JAXKQO00000000044. Genome anno-
tation information was deposited in the Figshare database45.

Technical Validation
To ensure the reliability and integrity of the genomic data, we implemented rigorous preprocessing proto-
cols on various datasets (Illumina sequencing system protocol: https://support.illumina.com/content/dam/
illumina-support/documents/documentation/system_documentation/novaseq/1000000019358_17_novaseq-
6000-system-guide.pdf; Nanopore sequencing system protocol: https://a.storyblok.com/f/196663/x/a2ee9a9945/
j2586-promethion-24-combined-qsg_170x250mm_rev2-final.pdf), including Illumina paired-end sequenced 
DNA raw short-reads, Nanopore sequenced DNA raw long-reads, Illumina paired-end sequenced RNA raw 
reads and Illumina paired-end Hi-C sequences. This preprocessing was carried out using fastp v.0.21.646, a 
widely recognized tool in genomic studies. The primary objective of this preprocessing step was to filter out 
low-quality sequences (Quality scores < 20), adapter sequences, reads containing Poly-N and sequences shorter 
than 30 bp. Following these stringent filtering criteria, we successfully obtained clean reads, which were subse-
quently stored in the fastq/fasta format.

Code availability
If no detailed parameters were mentioned, all software and tools in this study were performed according to those 
manuals and protocols of the applied bioinformatics software. No specific code or script was used in the study.
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