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Purpose: The treatment of moving targets with scanned proton beams is challenging. For motion
mitigation, an Active Breathing Coordinator (ABC) can be used to assist breath-holding. The deliv-
ery of pencil beam scanning fields often exceeds feasible breath-hold durations, requiring high
breath-hold reproducibility. We evaluated the robustness of scanned proton therapy against anatomi-
cal uncertainties when treating nonsmall-cell lung cancer (NSCLC) patients during ABC controlled
breath-hold.

Methods: Four subsequent MRIs of five healthy volunteers (3 male, 2 female, age: 25-58, BMI: 19—
29) were acquired under ABC controlled breath-hold during two simulated treatment fractions, pro-
viding both intrafractional and interfractional information about breath-hold reproducibility. Defor-
mation vector fields between these MRIs were used to deform CTs of five NSCLC patients. Per
patient, four or five cases with different tumor locations were modeled, simulating a total of 23
NSCLC patients. Robustly optimized (3 and 5 mm setup uncertainty respectively and 3% density
perturbation) intensity-modulated proton plans (IMPT) were created and split into subplans of 20 s
duration (assumed breath-hold duration). A fully fractionated treatment was recalculated on the
deformed CTs. For each treatment fraction the deformed CTs representing multiple breath-hold
geometries were alternated to simulate repeated ABC breath-holding during irradiation. Also a
worst-case scenario was simulated by recalculating the complete treatment plan on the deformed CT
scan showing the largest deviation with the first deformed CT scan, introducing a systematic error.
Both the fractionated breath-hold scenario and worst-case scenario were dosimetrically evaluated.
Results: Looking at the deformation vector fields between the MRIs of the volunteers, up to 8 mm
median intra- and interfraction displacements (without outliers) were found for all lung segments.
The dosimetric evaluation showed a median difference in Dggg, between the planned and breath-hold
scenarios of —0.1 Gy (range: —4.1 Gy to 2.0 Gy). Dygg, target coverage was more than 57.0 Gy for
22/23 cases. The D; .. of the CTV increased for 21/23 simulations, with a median difference of
0.9 Gy (range: —0.3 to 4.6 Gy). For 14/23 simulations the increment was beyond the allowed maxi-
mum dose of 63.0 Gy, though remained under 66.0 Gy (110% of the prescribed dose of 60.0 Gy).
Organs at risk doses differed little compared to the planned doses (difference in mean doses <0.9 Gy
for the heart and lungs, <1.4% difference in V35 [%] and V,, [%] to the esophagus and lung).
Conclusions: When treating under ABC controlled breath-hold, robustly optimized IMPT plans
show limited dosimetric consequences due to anatomical variations between repeated ABC breath-
holds for most cases. Thus, the combination of robustly optimized IMPT plans and the delivery under
ABC controlled breath-hold presents a safe approach for PBS lung treatments. © 2018 The Authors.
Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists
in Medicine. [https://doi.org/10.1002/mp.13195]
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1. INTRODUCTION

Intensity modulated proton therapy (IMPT) using pencil
beam scanning (PBS) is a highly conformal radiotherapy
technique. Little dose is deposited after the Bragg peak,
leading to improved organ at risk (OAR) sparing com-
pared to conventional photon therapy.'” Furthermore, the
intensity modulating properties of IMPT/PBS are superior
to passive scattering proton therapy for modulating the
dose in and around the target.1 However, a major chal-
lenge for IMPT/PBS is the treatment of moving targets,
such as in nonsmall-cell lung cancer (NSCLC) patients.”
Breathing motion causes “interplay” between the timeline
of the proton beam delivery and the timeline of the target
motion, leading to misplacement of spots and subse-
quent unintended dose heterogeneities within the target
volume.*”

There are several techniques to mitigate breathing motion
and minimize the dose degradation due to the interplay
effect. Examples are rescanning,” ' tracking,”®° gating,>'°
and abdominal compression.'" The breath-hold technique is
a technique investigated initially for breast cancer patients,'?
and later also for NSCLC patients."? Here, the radiotherapy
treatment is delivered while the patient is holding his/her
breath for about 20-25 s, creating a quasi-static situation.
To assist breath-holding, an Active Breathing Coordinator
(ABC) (Elekta Oncology systems Ltd, Crawley, West Sus-
sex, UK) can be used. The ABC device controls the inspi-
ration volume at a given threshold value and aims to
produce a reproducible treatment situation. Recently, Kaza
et al. investigated the reproducibility of lung volumes with
ABC and found lung volume differences by 2% within and
by 7% between simulated fractions."* Brock et al. investi-
gated the variability in tumor position when using ABC
control for photon therapy in NSCLC patients and found
clinically significant tumor movements.'> Sarrut et al. inves-
tigated the interfraction reproducibility of the lung anatomy
using deformable image registration (DIR) on three repeated
CT scans during ABC control.'® They found ABC control
to be effective and reproducible in 6 of 11 patients. Both
Brock et al. and Sarrut et al. inspected and evaluated the
local displacements, but the dosimetric consequences for
IMPT/PBS therapy were not addressed. Dueck et al. investi-
gated the robustness of single-field uniform dose plans to
interfraction uncertainties between repeated voluntary
breath-holds for peripheral located tumors.> Their conclu-
sion was that the smaller tumors and tumors with large
baseline shifts were more prone to target coverage loss. In
this study, we investigated the anatomical reproducibility of
ABC controlled breath-holding in addition to the work per-
formed by Kaza et al. for both intra- and interfraction
uncertainties. This is possible due to the availability of sub-
sequent breath-hold MR scans, providing information about
the intrafractional reproducibility of subsequent breath-
holds. This information is unique and generally not accessi-
ble by conventional CT imaging due to the significant
imaging dose given for each acquisition. Moreover, the
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dosimetric consequences of ABC breath-hold uncertainties
were studied. We evaluated robustly optimized IMPT plans
which present the state-of-the-art for proton treatments of
locally advanced NSCLC patients. The aim of this study
was to determine whether the combination of robustly opti-
mized IMPT plans and the delivery under ABC controlled
breath-hold presents a safe approach for PBS lung treat-
ments.

2. METHODS AND MATERIALS
2.A. Data acquisition

Three-dimensional T;-weighted MRIs were collected
from five representative consented volunteers (3 males, 2
females, age: 25-58 yr, height: 1.65-1.93 m, BMI: 19-29)
at the Institute of Cancer Research in London. As
described by Kaza et al., a volumetric interpolated breath-
hold examination (VIBE) sequence was used (TR 4 ms,
TE 0.93 ms, field-of-view 299*399 mmz, acquisition
matrix 324*576 interpolated, flip angle 8°, acceleration fac-
tor GRAPPA3)."" The image voxel size was
0.7 x 0.7 x 3.0 mm>. MR imaging was performed under
ABC controlled breath-holding, at the 75% threshold of
the prior determined maximum deep inspiration volume.
The ABC apparatus was modified to be MR-compatible, as
described by Kaza et al.'”” Only one breath-hold was
required to image the complete lung volume, with a
breath-hold duration of either 22.5 or 25.0 s, according to
the number of partitions required. To simulate the fraction-
ated treatment, image acquisition was repeated after 1-
4 weeks. During each session, four subsequent MRIs were
acquired under ABC controlled breath-hold, resulting in
eight MRIs per volunteer providing both intra- and inter-
fraction information about the lung anatomy reproducibility.
Imaging was performed using a modified extended wing
board for radiotherapy (Oncology Systems Limited, Shrop-
shire, UK).

2.B. Deformable image registration

Between the acquired MRIs for each volunteer, a global
rigid image registration was applied to account for setup
uncertainties. Next, DIR was performed using Mirada’s mul-
timodal algorithm RTx v1.6 (Mirada Medical, Oxford, UK).
It was done locally on the lung volumes, with a grid resolu-
tion of 3.5 x 2.0 x 3.0 mm’.

The first MRI of the first simulated fraction was desig-
nated as the “planning” MRI. By deforming the planning
MRI to the three other MRIs of the same fraction and
comparing the resulting deformation vector fields (DVF)
DVF_A1A2, DVF_A1A3, and DVF_A1A4, the intrafrac-
tion reproducibility of the lung anatomy during breath-hold
was investigated. The interfraction anatomical reproducibil-
ity was investigated by comparing the DVF_AIBI,
DVF_AI1B2, DVF_AIB3, and DVF_AI1B4 resulting from
deforming the planning MRI of the first simulated fraction
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to the four MRIs acquired during the second imaging
session.

2.C. Displacement magnitudes

Magnitude vectors in 3D were calculated from the
DVFs and combined for all seven DVFs in each of
the five volunteers using Matlab (v8.3, MathWorks, Nat-
ick, MA, USA). To analyze the anatomical displacements
on a local level, the lung volumes were divided into
seven segments: an apical region, a right/left upper and
lower mid region, and a right/left caudal region
[Fig. 1(a)].
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2.D. Deformed CT scans

To generate IMPT/PBS treatment plans and to assess the
dosimetric impact of the breath-hold reproducibility, we gen-
erated synthetic CT scans from the MRI data set using the
following method:

-Breath-hold CTs of five NSCLC patients (2 males, 3
females, 54-69 yr.) were selected (Table I). They were
matched to respective volunteers based on a visual anatom-
ical match of the lung volumes (Fig. 2).

-With Transformix (see elastix toolboxlg) the CTs were
transformed using the DVFs from the matched volunteer.
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Fic. 1. (a) Coronal view of an MR scan overlaid with the deformation vector fields of a deformable image registration between two MRIs for one volunteer. The
lung contour was used to guide the deformable registration algorithm. The seven segments that overlap with the lung contour represent the local regions for
which the magnitudes of displacement were analyzed. (b) Range of intrafractional (upper boxplots) and interfractional displacements (lower boxplots) for the five
volunteers. The middle line in the boxes indicates the median and the bottom and top edges of the boxes the 25™ and 75" percentiles. Up to the whiskers the most
extreme data points not considered outliers are shown. [Color figure can be viewed at wileyonlinelibrary.com]
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This was performed for all seven DVFs (DVF_A1A2,
DVF_A1A3, DVF_AlA4, DVF_AIB1, DVF_AIB2,
DVF_AI1B3, DVF_A1B4).

TaBLE 1. Patient and tumor characteristics.

Patient Tumor TNM Original tumor
number Gender Age volume stage location

1 male 69 38.5cm®  T3N2MO  Left upper lobe

2 male 67 13.5 cm®  T4NOMO  Right upper lobe

3 female 56 6.0 cm® T3N2MO Right middle lobe

4 female 58  22.6cm® T3N3MO  Left lower lobe

5 female 54 31.6 cm®  T3N3MO  Left lower/upper lobe

5528

This resulted in a set of seven deformed CTs (A2, A3, A4,
B1, B2, B3, B4) with different breath-hold geometries per
patient.

2.E. Lung tumor modeling

For each patient, we simulated the original tumor con-
figuration plus three other tumor locations. This is to
assess the dosimetric impact of the found displacements
between breath-holds for different tumor locations.
Involved lymph nodes located in the mediastinum were not
included in this simulation, as only the lung anatomy
reproducibility is investigated. When the original tumor

match 3 match 4

FiG. 2. (a)—(e) Fused coronal views of the five patient/volunteer matches. (f)—(i) 3D views of simulated tumor locations for patient number one, including the
original tumor location in the left upper lobe (f), left lower lobe (g), right middle lobe (h), and right lower lobe (i). [Color figure can be viewed at wileyonlinelib

rary.com]

Medical Physics, 45 (12), December 2018


www.wileyonlinelibrary.com
www.wileyonlinelibrary.com

5529 den Otter et al.: ABC lung anatomy reproducibility for PBS

location was not close to the heart, a fourth simulated
tumor location was added. The mean gross target volume
(GTV) was 22.4 cm® (range: 6.0-38.5 cm’). The GTVs
were delineated on the original breath-hold CTs in RaySta-
tion (v.4.99, RaySearch Laboratories Ltd., Stockholm, Swe-
den). For each simulation the original GTV contour was
translated and given a density of 1.05 g/cm’® to simulate
tumor tissue. The simulated locations included the upper
and lower left lung lobes and the middle/upper and lower
lobes of the right lung [Figs. 2(f)-2(1)]. GTVs were
expanded by 5 mm to create the clinical target volumes
(CTV). The CTVs were then deformably warped from the
CTs toward the deformed CTs.

2.F. Treatment planning

For each of the original and simulated locations (23
cases in total) intensity-modulated proton therapy plans
were created (RayStation v4.99, RaySearch Laboratories
Ltd., Stockholm, Sweden). The treatment was given in 25
fractions of 2.4 Gy in 5 weeks to a dose of 60.0 Gy,
according to institutional policy. The treatment delivery
system was the Proteus® PLUS proton system (IBA, Bel-
gium), including a scanning spot size of 6.5 mm at
70 MeV and 3 mm at 230 MeV (1 sigma). A two-beam
or three-beam approach was applied depending on the
complexity of the case. Beam angles in posterior-anterior
(PA), posterior-oblique (PO), and lateral (L. or R) direc-
tions were selected for simulated tumors located posteri-
orly. Anterior-posterior (AP), anterior-oblique (AO), and
lateral (L or R) directions were selected for the anteriorly
located tumors. For two-beam configurations only the PA
or AP beams and lateral beams were used. To account
for setup errors and range uncertainties, minimax robust
optimization was applied.'” > Two treatment plans were
created for every case to investigate the effect of ABC
breath-holding uncertainties to treatment plans with differ-
ent target dose conformities. For the first treatment plan
a robustness to 3.0 mm shifts in all directions was aimed
at in addition to = 3% range uncertainties. A robustness
to 5.0 mm shifts in all directions was the aim for the
second treatment plan together with +3% range uncer-
tainties. Optimization settings included a set of objectives
for the CTV (min dose 59.5 Gy [robust], uniform dose
in CTV 60.0 Gy [robust]), and a constraint for the
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maximum dose (63.0 Gy) within the body. Also, objec-
tives were used for the heart (mean dose, Vsg, [%]),
lungs (mean dose and V,og, [%]), esophagus (Visg, [%]
or Dy [Gy]), and spinal cord (Dg.[Gy]) to reduce any
dose as much as possible, without compromising the
robustness of the treatment plan. To stimulate conformal
treatment plans, two dose fall-offs were used. The first
dose fall-off was intended to create a steep high dose
gradient (60.0-30.0 Gy) around the CTV and the second
dose fall-off was used to create a gradient from 60.0 to
0.0 Gy dose. A uniform dose grid size was used of
3.0 mm, and a minimum spot weight of 0.011 MU/frac-
tion. During optimization, a constant RBE correction of
1.1 was applied.”> After optimization, the robustness was
evaluated with an in-house developed script, applying 14
different setup scenarios accounting for either 3 or 5 mm
shifts and £3% range uncertainties. In total, 28 scenarios
were evaluated from which a voxel-wise minimum dose
distribution was calculated.’”** The minimum dose
required to be given to 98% of the CTV (Dggq) was
57.0 Gy for the voxel-wise minimum dose.

2.G. Simulation of ABC controlled treatment
delivery

To simulate a treatment delivery during breath-hold, each
plan was split into sub-plans with delivery duration of 20 s
(assumed breath-hold duration). The number of simulated
breath-holds varied per case. An overview of required breath-
holds is shown in Table II.

Next, the subplans were recalculated on the deformed
CTs to simulate the dosimetric consequences of using
ABC. The full fractionated treatment course was simulated
rotating between all available deformed CT scans, starting
with the original CT for the first breath-hold, followed by
CT-A2, then CT-A3 and CT-A4. For fractions 1-12 only
the deformed CTs with intrafraction uncertainties were
considered. For fractions 13-25 deformed CTs with inter-
fraction uncertainties were included, simulating an increase
in uncertainties with progressing treatment duration. A
schematic overview of the subplan recalculation for one
representative patient case is given in Table III. Dose dis-
tributions of the subplans recalculated at the deformed CT
scans were mapped to the planning CTs and summed for
dosimetric evaluation.

TasLE II. The number of breath-holds (20 s. duration) required to deliver one treatment fraction per case and patient for 3 mm and 5 mm setup robustness.

Pt. 1 Pt. 2 Pt. 3 Pt. 4

Pt. 5 Pt. 1 Pt.2 Pt. 3 Pt. 4 Pt. 5

Number of breath-holds

3 mm setup robustness

5 mm setup robustness

Leftupperlobe 5 7 4 7
Leftlowerlobe - 4 6 6
Rightupperlobe 6 6 5 -
Rightmiddlelobe 6 7 4
Rightlowerlobe 6 4 3

4 5 7 4 7 4
7 - 4 5 6 7
4 8 6 6 - 4
6 8 7 4 4 7
9 6 6 3 7 8

Medical Physics, 45 (12), December 2018
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TasLe III. Overview of the dose recalculation (fully fractionated treatment)
for the breath-hold delivery scenario for one sample case with a three-beam
configuration. Each beam requires two breath-holds to deliver.

Beam 1 Beam 2 Beam 3
Fraction 1-12 breath-hold 1 CT A2 CT A4 CT A3
breath-hold 2 CTA3 CT A2 CT A4
Fraction 13-25 breath-hold 1 CT BI CT B3 CT BI
breath-hold 2 CT B2 CT B4 CT B2

2.H. Worst-case scenario simulation

In addition to the described breath-hold scenario, a
worst-case scenario was simulated for all treatment plans.
The whole treatment plan was recalculated on one deformed
CT scan deviating the most from the planning CT scan
(CT-B4). This way a systematic error was introduced for all
fractions.

2.1. Dosimetric evaluation

Several dosimetric parameters were compared between the
original treatment and the recalculated plans, according to
our institutional policy. Regions of interest that were evalu-
ated included the CTV, heart, lungs (minus GTV), esopha-
gus, and spinal cord. The Dogq, (Gy) and D.. (Gy) of the
CTV were evaluated. For the heart and lungs, the mean doses
were analyzed. Furthermore, the volume receiving 35 Gy and
20 Gy (V3sgy [%], Vaoy [%]) to, respectively, the esophagus
and lungs was evaluated as well as the dose to 0.lcc
(Do.1cc[Gy]) of the spinal cord volume.

5530

3. RESULTS
3.A. Magnitudes of displacements

Figure 1(a) shows the coronal view of a deformable image
registration between two MRIs for one volunteer. The dis-
placement magnitudes for all volunteers are shown in
Fig. 1(b). The median intrafraction displacement was
1.3 mm and ranged for the segments between 0.8 mm and
1.6 mm. For the midregions, the right lung showed larger
intrafraction displacements compared to the left lung (median
increased with 0.1-0.3 mm). Interfraction displacements
were larger than intrafraction displacements for all regions
(median 1.6 mm [range: 1.2-1.9 mm]). Most displacements
(75%) remained below 4.0 mm. Maximum displacements
(without outliers) reached 5.7 mm intrafractionally and did
not exceed 8.0 mm interfractionally. The anatomical repro-
ducibility decreased from the apical regions (maximum dis-
placements <3.0 mm) toward the caudal regions (<8.0 mm
maximum displacements).

3.B. Dosimetric evaluation of target coverage

Figure 3 shows the Dogq, of the CTV for the different sim-
ulations and combined for all patients. All nominal plans
passed the above described robustness evaluation and were
clinically approved based on this evaluation. For the 3 mm
setup margin, 22/23 simulations of the breath-hold scenario
achieved the minimally clinically required dose of 57.0 Gy,
whereas 18/23 simulations of the worst-case scenario did.
One simulation (pt. 4: right lower lobe) of the breath-hold
scenario showed a Dggg, of 60.6 Gy, beyond the described

62.0 : -
pt. 2 - right middle lobe®
61.07 pt. 3 - right lower lobe
]
60.0
5900t 5 %upper lob i T ? i
58.04 ) . 3 - right middle lobeg
T _ Prorguioveriobe | pt3-leftlowerlobsg _
= o pt. & - right upper lobe
2.56.0 pt. 5 - right upper lobe
|=: . ) pt. 3 - left lower lobe
5 55.01 pt. 3 - right middle lobe o
2 . "
& 94.07 pt. 3 - left lower lobe
fa ]
53,0
59 0 pt. 3 - left lower lobe
’ @
51.04
pt. 2 - left lower lobg
50.0 e
pt. 2 - left lower lobe
49.04 ]
48.0 T T T T T T
Planned  Breath-hold Worst-case  Planned  Breath-hold Worst-case
dose scenario scenario dose scenario scenario
3mm 3mm 3mm 5 mm 5mm 5mm

FiG. 3. The dose at 98% of the CTV for each simulation and all patients. The tolerance threshold (dotted line) was set to 57.0 Gy of minimum target coverage.
[Color figure can be viewed at wileyonlinelibrary.com]
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dose. For the 5 mm setup margin, the minimum dose of
57.0 Gy that is considered clinically acceptable was achieved
for 22/23 simulated breath-hold scenarios and for 21/23 simu-
lated worst-case scenarios. Two simulations (pt. 2: right mid-
dle lobe, pt. 3: right lower lobe) showed an increase in Dogg,
extending beyond the prescribed dose of 60.0 Gy (61.5 Gy
and 60.6 Gy respectively) for the breath-hold scenario.
Table IV shows the differences in Doggq, between the planned
doses and breath-hold or worst-case scenario, for both 3 mm
and 5 mm setup robustness settings. For the breath-hold sce-
nario, the difference in Dogq, was larger for the middle and
lower lobe simulations (median: —0.6 Gy [range: —5.4 to
1.0 Gy]) compared to the upper lobe simulations (median:
—0.1 Gy [range: —1.0 to 0.3 Gy]). Also for the 5 mm setup
robustness setting, the difference between breath-hold sce-
nario and planned doses was larger for the middle and lower
lobe simulations (median: —0.2 Gy [range: —4.1 to 2.0 Gy])
compared to the upper lobe simulations (median: —0.1 Gy
[range: —0.6 to 0.3 Gy]).

Figure 4 shows the results of the Dy to the CTV. For
the 3 mm setup robustness setting, the D; .. increased
for 19/23 breath-hold scenario and 21/23 worst-case sce-
nario simulations.18 of 23 simulations were beyond the
maximum dose of 63.0 Gy for the breath-hold scenario
and 15/23 worst-case simulations exceeded this threshold.
Evaluating the results using the 5 mm setup robustness
setting, D, increased for 21/23 simulations for both
breath-hold and worst-case scenarios. For 14/23 breath-
hold scenario and 8/23 worst-case scenario simulations
the increment was beyond the allowed maximum dose of
63.0 Gy. Table IV shows the differences in D;.. for both
robustness settings and the breath-hold and worst-case
scenario compared to the planned doses. For the breath-
hold scenario and 3 mm setup robustness setting, the

5531

median difference in D;.. was smaller for the upper lobe
simulations (0.2 Gy [range: —0.4 to 2.2 Gy]) compared
to the middle and lower lobe simulations (0.7 Gy [range:
—0.5 to 6.1 Gy]). Also for the 5 mm setup robustness
setting, the median difference in D;.. was smaller for the
upper lobe simulations (0.5 Gy [range: —0.3 to 1.7 Gy])
compared to the middle and lower lobe simulations
(1.1 Gy [range: 0.0-4.6 Gy]).

3.C. Dosimetric evaluation of organs at risk

Table IV contains the differences in dose for the heart and
lungs for the breath-hold and worst-case scenarios compared
to the planned doses. Also the volume differences in the
esophagus receiving 35.0 Gy and the lungs receiving
20.0 Gy are shown, when comparing the results of the
breath-hold scenario and worst-case scenario with the
planned doses. Both the 3 mm setup and 5 mm setup robust-
ness settings results are shown.

4. DISCUSSION

In this study, we investigated the intra- and interfrac-
tional anatomical reproducibility of ABC controlled
breath-holds. Moreover, we investigated the dosimetric
consequences of ABC breath-hold uncertainties during
IMPT/PBS proton treatment in a representative population
(23 simulated NSCLC patients). Up to 2 mm median
intra- and interfraction displacements were found for all
lung regions. The maximum displacements increased from
the apical regions (~3 mm) toward the caudal regions
(~8 mm). Looking at the possible dosimetric impact of
the found displacements for 5 mm setup robustness, the
evaluation of Dggy showed for only one breath-hold

TaBLE IV. Dosimetric results for CTV and organs at risk shown as differences (mean [range]) between the breath-hold scenario or worst-case scenario and the
planned dose/volume parameters. Shown for both 3 mm and 5 mm setup robustness settings.

Planned
Median (range)

Planned — Breath-hold scenario

Planned — Worst-case scenario

Median (range) Median (range)

3 mm setup 5 mm setup 3 mm setup 5 mm setup 3 mm setup 5 mm setup
robustness robustness robustness robustness robustness robustness
CTV
Doge, (Gy) 59.4 (58.6-59.9) 59.0 (58.2-59.5) —0.5(-5.4-1.0) —0.1 (—4.1-2.0) 0.0 (—8.0-1.3) 0.0 (—8.8-0.8)
D (Gy) 62.8 (61.7-62.9) 62.3 (61.1-62.9) 0.6 (—0.5-6.1) 0.9 (-0.3-4.6) 0.0 (—5.2-1.8) 0.4 (—0.2-1.7)
Heart
Diean (Gy) 1.2 (0.1-5.1) 1.4 (0.2-6.0) 0.0 (—=0.1-0.3) 0.0 (—0.2-0.2) 0.0 (—=0.2-0.2) 0.0 (-0.2-0.2)
Lungs
Diean (Gy) 4.0 (2.0-7.1) 4.5(2.3-8.2) 0.0 (-0.3-0.2) 0.0 (—=0.3-0.2) 0.0 (—=0.3-0.5) 0.0 (=0.9-0.5)
Vaoay (%) 7.8 (3.9-13.7) 8.8 (4.4-16.7) 0.0 (—0.5-0.3) 0.0 (—0.6-0.3) 0.0 (—1.4-0.6) 0.0 (—1.6-1.2)
Esophagus
Visay (%) 0.0 (0.0-12.4) 0.0 (0.0-14.3) 0.0 (—=0.1-0.3) 0.0 (—0.4-0.5) 0.0 (—=0.9-0.9) 0.0 (—=0.4-1.1)
Spinal Cord
Do.1ce (Gy) 0.1 (0.1-15.3) 0.1 (0.0-22.0) 0.0 (=0.1-1.0) 0.0 (—0.4-1.4) 0.0 (—1.9-1.6) 0.0 (=3.2-7.5)

CTYV, clinical target volume; Dogg,, dose given to 98% of volume; D, dose given to 1 cc of volume; Dyy,c,n, mean dose; Vo, volume receiving 20 Gy; Vs, volume receiv-

ing 35 Gy; Dy e, dose given to 0.1cc of volume.
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scenario simulation a clinical relevant decrease in target
coverage (Dogg, = 55.0 Gy). Two worst-case scenario sim-
ulations showed a clinical relevant decrease in target cov-
erage (Dogg, = 50.0 Gy and 56.8 Gy). Two simulations of
the breath-hold scenario showed a relevant increase in the
target dose (Dogg, = 61.5 Gy and 60.6 Gy, Dy, = 65.2 Gy
and 64.5 Gy respectively). Twelve more simulations
showed a relevant increase in Dj. alone (63.0-65.5 Gy)
compared to eight increased D;.. (63.2-64.5 Gy) of the
worst-case scenario simulations. However, this increase
was still below a maximum of 110% of the prescribed
dose. Evaluating these results with the ones observed for
the 3 mm setup robustness, the number of decreased Dogg,
target coverage remained the same for the breath-hold sce-
nario simulations. It increased from two to four simula-
tions for the worst-case scenario (Dggy = 48.9-56.2 Gy).
Only one simulation showed a relevant increase in both
D and Dggg, The number of simulations with increased
Di.. was more compared to the 5 mm robustness setting
(17/23 breath-hold scenario simulations and 15/23 worst-
case simulations). We observed that ABC controlled
breath-holding can affect the target coverage by inducing
hotspots reducing the target dose homogeneity. This was
seen for more simulations using the 3 mm setup robust-
ness setting. Still, the differences between the 3 mm
robustness and 5 mm setup robustness setting were rela-
tively small and for most simulations the increased dose
heterogeneity stayed within clinical acceptable limits.
Moreover, dose differences in the organs at risk were min-
imal for all scenarios and simulations.

Brock et al. investigated the variability in tumor position
and concluded that the intrafraction uncertainties were small
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(1.5-1.7 mm in all directions). Our finding of a small median
displacement for all regions (1.7 mm) confirmed these previ-
ous results. For interfraction changes of the lung anatomy,
Sarrut et al. found a median displacement of 2.6 mm for
eight patients and Brock et al. measured mean displacements
of less than 5.1 mm (superior-inferior).">"'® We only observed
a small increase in median displacements for interfractional
changes that remained under 2.0 mm (0.2-0.6 mm median
increase). Dueck et al. investigated the robustness of volun-
tary breath-holding for PBS and concluded that small tumors
and large baseline shifts are more prone to target coverage
loss."? In the current study, we added the effect of intrafrac-
tion motion uncertainties and we especially evaluated uncer-
tainties induced by ABC controlled breath-holding.
Furthermore, in contrast with the single-field uniform dose
optimized treatment plans created in the study by Dueck
et al. we investigated the dosimetric effect for robustly opti-
mized IMPT treatment plans, which are considered as state-
of-the-art for PBS proton therapy and will be the treatment
technique used at our facility.

To calculate the displacements between the breath-hold
MRIs, deformable image registration was used. As we
applied the multimodal algorithm locally on the lungs, sliding
boundaries were not considered. Most of the DIR-involved
uncertainties are considered to be around 2.0 mm,>’ which is
also the median of the displacements found. However, locally
we found much larger displacements up to 7.0 mm, which is
beyond the range of errors associated with DIR.

Our breath-hold data were derived from healthy volun-
teers. We expect that healthy volunteers can hold the breath-
hold more easily than patients. However, ABC controlled
breath-hold as motion mitigation technique will only be
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applied to patients who are able to at least hold their breath
for 20 s. We therefore assume the volunteer data as represen-
tative also for the clinical situation.

A limitation of the assessment of anatomical reproducibil-
ity based on DVFs obtained from healthy volunteers is that
individual tumor movements cannot be considered. Further-
more, involved lymph nodes of the original cases were not
included as only the lung anatomy reproducibility is investi-
gated, where the lymph nodes are located in the medi-
astinum.

In this study we investigated the reproducibility of ABC
breath-holding, where there might be other breath-holding
uncertainties that negatively affect the planned dose distribu-
tions. One such phenomenon is breath-hold drifting. Espe-
cially when reproducing a number of breath-holds this
drifting can occur. A limitation of this study is that we did
not investigate this effect with the limited number of breath-
holds (four per session), however this would be interesting to
investigate for future work. For clinical implementation,
image surface scanning could provide a way to monitor the
stability of the breath-hold (eg drifting, slowly exhaling), by
imaging the chest surface. This could be in addition to the
ABC breath-hold device, that reproduces the same amount of
air that is inhaled.

With our data set we can only approximate a realistic treat-
ment delivery under ABC controlled breath-hold. A limited
number of four intrafraction ABC breath-hold variations and
four interfraction ABC breath-hold variations for only two
simulated fractions were available. A complete course of
treatment will generally consist of 25 fractions and the deliv-
ery of a single fraction took according to our simulations
between three and nine breath-holds. However, this is the first
study evaluating dosimetrically both intra- and interfraction
uncertainties. The found uncertainties using four breath-holds
and two separate sessions have proven to show only limited
dosimetric differences in two different robustness settings
and two different scenarios. We can only speculate about the
increased dosimetric differences when more than four breath-
holds would have been evaluated per session. By using our
data iteratively and in an alternating way we were confident
of reflecting the realistic situation with adequate accuracy.

The errors of setup and range during irradiation and the
breath-hold reproducibility were evaluated separately, and we
did not evaluate the robustness of the treatment plans to the
combined effects of residual setup errors and range errors.
However, especially 5 mm setup robustness is quite generous
considering a semi-static treatment situation using ABC
breath-holding after the normal setup positioning using
CBCT imaging. We expect that for breath-holding this added
effect of the combination of the residual setup and range error
and breath-holding will be limited.

Finally, the matching of volunteers MRIs with CTs of
patients may be improved by use of CT images during
repeated breath-holds to directly create treatment plans and
address the dosimetric differences. However, CT image
acquisition during eight breath-holds, of which four repeated
breath-holds per session, is not justifiable for imaging dose
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reasons. Thus, comprehensive information about repeated
breath-holds could only be obtained with MRI. NSCLC
patients would have possibly provided a better resemblance
of ABC breath-hold uncertainties. This is because there
might be differences in compliance between healthy and non-
healthy lung tissue, affecting the reproducibility of breath-
hold. However, an addition of eight times MR imaging to the
already extensive treatment and imaging schedule of actual
patients is considered too much of a time burden.

A prerequisite for small dosimetrical differences between
the original and the breath-hold recalculated plans is the
applied robust optimization settings (5 mm or 3 mm shifts
and 3% range uncertainties). With especially the 5 mm setup
setting, the majority of the ABC breath-hold uncertainties
were accounted for in our study. The question arises what
robustness optimization setting would be optimal. A higher
robustness inevitably compromises healthy tissue, but ensures
adequate target coverage. Where smaller setup robustness set-
tings increase the dose inhomogeneity gradually as observed
for the 3 mm setup setting. As future work, we plan to find
an optimal cut-off point between high dose region conformity
and robustness of the treatment plan, especially when using
ABC controlled breath-hold. We will assess this cutoff based
on risk of compromising target coverage. Patients at higher
risk possibly need larger margins; however, patients at lower
risk should be planned with smaller margins aiming for more
conformity. Moreover, for clinical implementation repeat
breath-hold imaging is recommended to assess the patient
specific breath-hold reproducibility. This to assure that any
extremes in reproducibility can be detected and accounted for
during the treatment planning.

CONCLUSIONS

The use of ABC for NSCLC patients can be considered
safely for IMPT/PBS proton therapy when robust optimiza-
tion is used during treatment planning. This study indicates
that ABC controlled breath-hold reproducibility uncertainties
will not compromise robustly optimized IMPT/PBS plans.
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