Published online 7 February 2020

NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 1 1
doi: 10.1093/nargabllqaa007

Deep analysis of RNA Né-adenosine methylation (m°A)

patterns in human cells
Jun Wang and Liangjiang Wang’

Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA

Received September 21, 2019; Revised January 22, 2020; Editorial Decision January 27, 2020; Accepted February 04, 2020

ABSTRACT

NS-adenosine methylation (mfA) is the most abun-
dant internal RNA modification in eukaryotes, and
affects RNA metabolism and non-coding RNA func-
tion. Previous studies suggest that méA modifica-
tions in mammals occur on the consensus sequence
DRACH (D = A/G/U, R = A/G, H = A/C/U). How-
ever, only about 10% of such adenosines can be
m6A-methylated, and the underlying sequence deter-
minants are still unclear. Notably, the regulation of
m8A modifications can be cell-type-specific. In this
study, we have developed a deep learning model,
called TDm6A, to predict RNA mfA modifications
in human cells. For cell types with limited availabil-
ity of m®A data, transfer learning may be used to
enhance TDm6A model performance. We show that
TDmG6A can learn common and cell-type-specific mo-
tifs, some of which are associated with RNA-binding
proteins previously reported to be mfA readers or
anti-readers. In addition, we have used TDm6A to
predict méA sites on human long non-coding RNAs
(IncRNAs) for selection of candidates with high lev-
els of m®A modifications. The results provide new
insights into m®A modifications on human protein-
coding and non-coding transcripts.

INTRODUCTION

Epigenetically, RNAs are elaborated with some chemical
modifications affecting cellular activities. In addition to
the well-known 5" cap and 3’ poly(A) modifications, inter-
nal RNA modifications are also found in eukaryotes, such
as N°-methyladenosine (m®A), N'-methyladenosine (m'A),
2'-O-dimethyladenosine (m®A,), 5-methylcytosine (m>C)
and 5-hydroxymethylcytosine (hm>C) (1). N°-adenosine
methylation (m®A) is the most abundant internal mRNA
modification with the prevalence of one per 700-800 nu-
cleotides (nt) for poly(A)+ nuclear RNAs and one per
800-900 nt for cytoplasmic RNAs (1,2). High-throughput

single-nucleotide-resolution mapping of m®A has revealed
that m°A modifications are present in thousands of tran-
scripts (3-5). These modifications are mainly clustered in
the 3’ UTR near the stop codon and long internal exons, but
may also be found in the 5 UTR and coding regions of mR-
NAs. Moreover, m®A modifications have been shown to be
different in various brain regions and neural cells (6), indi-
cating that this process is under tissue- or cell-type-specific
regulation.

RNA m®A modifications are controlled by a methyltrans-
ferase complex formed by METT3, METT14, WTAP and
KIAA1429, and by two potential demethylases, FTO and
ALKBHS (1). Many cellular activities are modulated by
m®A modifications. For instance, m°A is selectively rec-
ognized by the human YTH domain family 2 (YTHDF2)
reader protein to regulate mRNA degradation and localiza-
tion from the translatable pool to decay sites (7), whereas
YTHDF1 interacts with translation initiation factors to
increase the translational efficiency of m®A-marked tran-
scripts (8). Interestingly, m®A modifications are important
for the functions of some long non-coding RNAs (IncR-
NAs), such as XIST (X-inactive specific transcript), which
has at least 78 mC®A sites required for its function in tran-
scriptional gene silencing on the X chromosome (9). More-
over, m®*A modifications have been shown to impact many
other cellular processes, including mRNA alternative splic-
ing (10), microRNAs biogenesis (11), stem cell differenti-
ation (12-14), circadian clock control (15), heat shock re-
sponse (16), DNA damage response (17) and cancer devel-
opment (18).

However, not all RNA adenosines are methylated. Pre-
vious studies suggest that m°A modifications in mammals
preferably occur in the consensus sequence of DRACH (D
= A/G/U, R = A/G, H = A/C/U) (3,19,20). Further-
more, only a fraction of DRACH-conformed adenosines
may actually be methylated (21). The underlying sequence
determinants are still unclear. To date, machine learning
models have been developed to predict m°A sites in dif-
ferent species and to learn features that may be important
for m°A modifications. m6Apred (22) and iRNA-Methyl
(23) are support vector machine (SVM) models for yeast
mCA site prediction, and the model performance may be
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limited by the small amount of available training data.
With the availability of single-nucleotide-resolution map-
ping of m®A modifications, machine learning models with
improved performance have been developed. SRAMP (24),
arandom forest (RF) model with sequence-derived features,
was the first machine learning model for mammalian m®A
site prediction. Recently, by integrating sequence and ge-
nomic features, WHISTLE, an SVM model, has been de-
veloped for accurate prediction of human mC®A sites (25).
Although good model performance may be achieved us-
ing conventional machine learning algorithms, SVM or RF
model construction requires careful and considerable hand-
crafted work to transform raw sequences into suitable fea-
ture vectors (26). In contrast, deep learning methods can
automatically learn high-level features from transcript se-
quences, and have thus been widely applied to biological
problems (27). By combining bidirectional gated recurrent
unit (BGRU) and RF, BERMP was developed for multi-
species m®A site prediction (28). Convolutional neural net-
works (CNN) were also used to construct several deep
learning models, including DeepM6ASeq (29), Deep-m6A
(30) and Gene2Vec (31).

Although several models with good performance have
been developed, the underlying sequence determinants for
m°A modifications are still limited to DRACH. Moreover,
m®A modifications may be regulated dynamically and dif-
ferentially in cellular processes such as stem cell differen-
tiation, cell-state transitions and stress responses (6,32).
Therefore, a cell-type-specific model can be useful for ac-
curate prediction of RNA mCA sites. In this study, we have
used CNN and recurrent neural network (RNN) to build
a cell-type-specific model, named TDm6A (tissue or cell-
type-dependent m6A modifications), for human m®A site
prediction. The kernels/filters of CNN detect important
features for m°A site prediction regardless of their posi-
tions in the transcript sequences, making CNN a useful
method for motif discovery (33,34). In TDm6A, RNN is
used to capture the inter-relationship between the learnt
motifs. Long short-term memory (LSTM) is a variant of
RNN developed to avoid gradient disappearing in a con-
ventional RNN. By using CNN followed by LSTM, motifs
and their inter-dependencies may be learnt for m®A site pre-
diction. For cell types with low detection coverage of m°A
modifications, transfer learning may be used to improve
model performance. Moreover, we have utilized TDm6A to
predict the possible m®A sites on human IncRNAs, provid-
ing good candidates for investigating the functional roles of
mC®A modifications on non-coding RNA transcripts.

MATERIALS AND METHODS
Datasets

The positive m°A data for human cell types A549, CDST
and HEK293 were collected from two studies using méA-
CLIP (3) and mi-CLIP (4), and the m°A sites conforming
to the DRACH motif pattern were retained. For the neg-
ative data, we used the dataset from the SRAMP study,
which included non-methylated adenosines randomly se-
lected from the same set of m®A-methylated transcripts and
also conforming to the DRACH motif pattern (24). For

each cell type, the dataset had a 1:10 positive-to-negative ra-
tio of instances since there were many more non-m°A sites
than m°A sites in cells. Although the dataset had no dupli-
cated instances, some positive and negative instances shared
similar flanking sequences around the DRACH-conformed
adenosines. RNA transcript sequences were extracted from
the ENSEMBL GRCh38 annotation file (https://useast.
ensembl.org/Homo _sapiens/Info/Index).

The whole dataset was divided randomly into training
and test datasets using a ratio of 4:1, and the 1:10 positive-
to-negative ratio of instances was kept in both datasets. For
further model evaluation, four non-redundant test datasets
(NRO0.9, NRO0.8, NRO.5 and NRO0.3) were derived from the
full test dataset. The software tool MUMmer (35) was used
to analyze the nucleotide sequence similarity between the
positive and negative instances, and between the training
and test datasets. We tested four different thresholds of se-
quence identity, 0.9, 0.8, 0.5 and 0.3 to derive the four non-
redundant test datasets, NR0.9, NRO0.§, NRO0.5 and NRO.3,
respectively.

Model construction

To build a deep learning model for human m°A site predic-
tion as shown in Figure 1, the Keras v2.2.4 in R v3.5.1 was
used. Both the human pan-cell-type model, HPm6A, and
cell-type-specific model, TDm6A, can be summarized as:

Oi — fSigmoid fFlatten fLSTM fMaxPooling fConle,ReLU ( 1Y, )

¢y

For the model input, we extracted / nucleotides (nt) of
flanking sequence centered on the target adenosine, and /
was tested from 43 to 1201 nt for the optimal input length.
Since the model required the input to be of a fixed length,
an input sequence less than / nt was padded with ‘N’.
Each sequence was one-hot-encoded into a matrix using A
(1,0,0,0), C(0,1,0,0), G (0,0,1,0), T (0,0,0,1) and N (0,0,0,0),
which yielded X; as the input matrix with dimensions of 4
x [, and was fed into the 1D convolution (Conv1D) layer.
The input sequence was scanned by n kernels with size m,
producing a feature map of size n * (/ — m + 1) with four
channels. Each kernel might be regarded as a motif scanner
to identify motifs of length m nt. In this study, » was tested
in the range from 16 (2*) to 256 (2%) and m in the range 4-20
to find the combination with the best model performance.
The non-linear function, rectified linear unit (ReLU), was
used to calculate the output.

The max-pooling layer with step s was used to reduce
the dimensionality of the output from the preceding layer
and hence the number of model parameters. The maximum
value among the s values was used to form a new output
matrix. The n kernels of size m nt with step s reduced the
dimensionality to n * (/ - m + 1)/s with four channels, and
s was tested in the range from 4 to § for the best model per-
formance.

The long short-term memory (LSTM) layer was used to
capture the inter-dependencies between motifs learnt by the
convolution layer. Each LSTM unit contained a memory
cell and three gates, forget, input and output gate, to con-
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Figure 1. Schematic diagram of model construction for RNA m®A prediction. The input is a 1001-nt sequence centered on the target adenosine. Both
mP®A and non-m°A sites conform to the DRACH motif. An input sequence is converted into a 4 x 1001 matrix with 4 channels representing A, C, G,
T(U). Kernels in the convolutional layer act as motif scanners. The max-pooling layer reduces the feature dimensionality. The LSTM layer learns the
inter-dependencies between motifs learnt by the convolutional layer. The flatten layer combines the previous 75 kernels into a vector as the input to the
fully connected binary output layer, in which the prediction probability for each class is calculated.

trol the flow of information passing through the network.
The outputs from the LSTM layer were converted into a
vector and fed into a fully connected layer with the number
of output nodes (O;) equaling to the number of classifica-
tion category. The non-linear sigmoid activation function
calculated the prediction probability for each class. These
prediction probabilities were compared to the true labels
for weight-tuning through the loss function, binary cross-
entropy, during the training process and for performance
evaluation during the testing process.

To avoid model overfitting, a dropout layer following
each of the first three layers in TDm6A was implemented.
The dropout layer randomly zeroed out a fraction (r) of ker-
nels in the inputs to the next layer, resembling the bagging
technique. In this study, r was tested in the range of 0-0.9
for the best model performance.

Training strategy and model performance evaluation

The datasets in this study have a 1:10 positive-to-negative
ratio of instances to mimic the cellular distribution of
m°A modifications as only ~10% of DRACH-conformed
adenosines are actually m®A-methylated in cells. However,
for model construction, ten balanced datasets were derived
from the full training dataset with the 1:10 positive-to-
negative ratio of instances. We randomly sampled the nega-
tive training instances into 10 non-overlapping parts, and
combined each part with the same positive training in-
stances to create 10 balanced datasets for training 10 sub-
models. The average performance of the 10 sub-models on
the same imbalanced test dataset was taken as the over-
all performance of HPm6A or TDm6A. Each sub-model
was trained for 70 epochs to gradually tune the weights in
each layer, and the validation_split argument provided by
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the Keras package was set to 0.2 (Supplementary Table S1).
Thus, during each epoch, the sub-model was trained using
80% of the training instances, and the remaining 20% were
used as the validation set for model evaluation during train-
ing. The purpose of this training strategy was to convert the
original imbalanced dataset into 10 balanced datasets for
model construction, which might avoid bias toward a label
class. This strategy was also used by the study of SRAMP
(24).

Trained models were evaluated on the test dataset using
the following performance metrics (24,25):

TP+ TN

Accuracy = )
TP+ TN+ FP+FN

TP

Sensitivity = ——— (3)
TP + FN

TN
Specificity = ———— 4
pecificity TN+ FP 4)

TP x TN—FP x FN

MCC =
J(TP+ FP)(TP + FN)(TN + FP)(TN + FN)

©)

Here, TP is the number of true positives; TN is the num-
ber of true negatives; FP is the number of false positives;
and FN is the number of false negatives. The Matthews
correlation coefficient (MCC) describes the correlation be-
tween predictions and labels (0 for random guess and 1
for a perfect model). The receiver operating characteristic
curve (ROCQ) is the plot of the true positive rate (sensitiv-
ity) against the false positive rate (1 - specificity) with vary-
ing output thresholds. The value of the area under the ROC
curve (ROC AUC) ranges between 0.5 and 1; a classifier is
perfect if AUC is 1, and randomly guessing if AUC is 0.5.

Transfer learning

In recent years, transfer learning has attracted more and
more attention, and can be classified into three categories:
instance-based knowledge transfer, feature-based knowl-
edge transfer and parameter-based knowledge transfer (36).
In this study, transfer learning was employed to enhance
the performance of a cell-type-specific model constructed
with a limited amount of training instances. To simulate the
low coverage of detected m®A modifications, we sampled a
small fraction of m®A instances to build a cell-type-specific
model, and the m°A instances from other cell types were
utilized for transfer learning. For the cell type HEK 293, mi-
CLIP signal peak scores were provided (4), and based on
the distribution of peak scores (Supplementary Figure S1),
DRACH-conformed m°A sites with a peak score >5 were
selected to form a dataset of 2756 positive instances. For
the cell types A549 and CDST, mCA sites were detected by
mC®A-CLIP (3), and the peak scores were not provided. We
randomly sampled 20% of m°A sites from the full dataset of
each cell type, resulting in 4103 and 3473 positive instances
for A549 and CDST, respectively. The ratio of positive to
negative instances was also kept as 1:10 for each cell type.
For a target cell type, a TDm6A model was first initial-
ized and pre-trained using all the available data from the

other cell types. This process allowed TDm6A to capture
common features for m®A modifications. Mathematically,
the features learnt by a TDm6A model were the weights of
kernels in each layer. We then froze the weights of the first
convolutional layer of TDm6A to retain the features learnt
from the other cell types, and then tuned the weights of the
other layers of TDm6A using the relatively small dataset of
the target cell type to build a cell-type-specific model.

Motif visualization and comparison

To visualize the position weight matrices (PWMs) learnt
by TDm6A, we used the method as described in our pre-
vious study (37). Kernels of length m in the first convolu-
tional layer of TDm6A scanned an input sequence at all po-
sitions and calculated activation scores. The sub-sequence
of length m with the maximum score was selected. For each
kernel, such sub-sequences collected from all the positive
mPA instances in the test dataset were aligned to create a
PWM in the MEME motif format, and the TOMTOM web-
server (http://meme-suite.org/tools/tomtom) was used for
PWM comparison and sequence logo generation (38).

Prediction of m®A sites on human IncRNAs

Human IncRNA transcript sequences (GRCh38) were
downloaded from GENCODE (https://www.gencodegenes.
org/human/). All adenosines conforming to the DRACH
motif on each IncRNA were extracted. The three cell-type-
specific TDm6A models were used to predict m°A sites on
human IncRNAs. For each candidate m°A site, the aver-
age probability to be an m®A site of the 10 sub-models of
TDmo6A was taken as the overall score for classification
with 0.5 as the threshold. To select candidate IncRINAs that
might be highly m® A-methylated, two criteria were used: the
total count of predicted m®A sites on a IncRNA and the fre-
quency of predicted m°A sites (the total count normalized
by the length of a IncRNA).

RESULTS AND DISCUSSION
Model construction for human m°A site prediction

Before developing cell-type-specific models, we first com-
bined the m°A sites from all the available cell types (A549,
CDS8T and HEK?293) to construct a pan-cell-type model,
HPm6A, for permissive m°A site prediction (Figure 1).
Hyper-parameters of HPm6A were tuned for the best per-
formance (Supplementary Table S1). An HPm6A model
with either the mature RNA mode or the full-transcript pre-
RNA mode was constructed. Various input lengths rang-
ing from 43 to 1201 nt were tested, and 1001-nt was se-
lected based on the area under the receiver operating char-
acteristic curve (ROC AUC) (Supplementary Figure S2).
As shown in Table 1, HPm6A achieved comparable perfor-
mance with the previous models using only sequence fea-
tures as the input. Although WHISTLE had the best perfor-
mance, it was mainly based on 35 genomic features collected
from the transcript annotations. Interestingly, the impor-
tant genomic features contributing to the superior perfor-
mance of WHISTLE included long exon, being miRNA tar-
get gene, conservation score, distance to known mCA sites,
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and distance to UTR boundaries. However, some of these
genomic features are uniquely applicable to protein-coding
transcripts, but not non-coding transcripts such as IncR-
NAs, for which m®A modifications can be functionally im-
portant (39). In addition, since m®A modifications show
overall enrichment in 3 UTR near mRNA stop codons
and long internal exons (3-5), the genomic features used
by WHISTLE might make the model to be overfitted to
protein-coding mRNAs and thus perform poorly on IncR-
NAs. In this study, we intended to utilize only RNA se-
quence as the model input. First, with RNA sequence as
input, the kernels in the CNN layer can act as motif scan-
ners to find motifs that may represent new sequence de-
terminants for m®A modifications (Figure 1). Second, we
are interested in the m°A modification patterns of IncR-
NAs, which have little annotations besides their available
nucleotide sequences.

As shown in Table 1, HPm6A in the full-transcript
pre-RNA mode has a statistically significant improvement
of ROC AUC over the mature RNA mode (P-value <
0.00001, two-sided z-test), suggesting that relevant features
may be present in pre-RNA sequences. This result is con-
sistent with the hypothesis that m®A modifications are
added to exons before or soon after exon definition in the
nascent pre-RNAs (40). To further evaluate the model per-
formance, we used HPm6A to predict the m°A sites on
human protein-coding transcripts in GENCODE (https:
/Iwww.gencodegenes.org/human/). As shown in Figure 2, by
setting the threshold for positive m°®A sites at higher values
from 0.5 to 0.95, the m°A sites predicted by HPm6A with
higher confidence show stronger enrichment in the 3 UTR
region near the stop codon. The agreement between pre-
dictions and experimental data (3-5) suggests that HPm6A
may have learnt some relevant sequence features for the con-
trol of RNA m°A modifications.

TDm6A for cell-type-specific prediction of m®A modifica-
tions

Since m®A modifications are dynamically regulated in vari-
ous cellular pathways, cell-type-specific models for m°A site
prediction can be more useful and accurate than the pan-
cell-type model. Thus, for each of the available cell types
(A549, CD8T and HEK?293), we have developed a cell-
type-specific model in the full-transcript pre-RNA mode,
named TDm6A (tissue or cell-type-dependent m6A modifi-
cations). As shown in Table 2 and Figure 3A, the cell-type-
specific TDm6A models achieved better performance than
the pan-cell-type HPm6A model on the test datasets (P-
value < 0.0001, two-sided z-test). For HEK 293 using the an-
tibody Abacm, the relatively low performance was obtained
by both TDm6A and other previous models (25). This
might be due to the low quality of the dataset (HEK293-
Abacm). Thus, for the cell type HEK293, the m°A sites
detected using the antibody SySy were used in the further
analysis.

Each model was also evaluated using four non-redundant
test datasets, NR0.9, NRO0.8, NRO.5 and NRO.3, which
were derived by removing the test instances that had simi-
lar flanking sequences with any training instances using the
sequence identity thresholds 0.9, 0.8, 0.5 and 0.3, respec-
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tively (Supplementary Figure S3). Remarkably, when eval-
uated using the non-redundant test datasets, the TDmo6A or
HPm6A models performed well, actually better than on the
full test datasets (Supplementary Table S2 and Supplemen-
tary Figure S4), demonstrating the robustness of our mod-
els. The TDm6A models again outperformed the HPm6A
model on the non-redundant test datasets. Since the flank-
ing sequences around the DRACH-conformed adenosines
can be similar between some positive and negative instances
(Supplementary Figure S5), removing the instances with
similar flanking sequences may have made the positive and
negative instances more distinct from each other and thus a
simpler classification task. Taken together, the results sug-
gest that our models have consistently robust performance
with no sign of overfitting, and may have captured the subtle
difference between the positive and negative instances with
similar flanking sequences.

The available methods for single-nucleotide-resolution
mapping of m®A sites may only offer limited coverage of
mP®A modifications with low confidence as such experiments
are often expensive, laborious and difficult (25). In this sit-
uation, where researchers can only detect a limited num-
ber of m°A sites for one cell type under a specific condi-
tion, an accurate prediction model can be helpful. How-
ever, model construction with a small or low-quality train-
ing dataset can be problematic, and transfer learning may
be useful in this case. Some sequence determinants for m°A
modifications, such as the DRACH motif pattern, can be
universal features regardless of cell types. Through trans-
fer learning, common features may be learnt from related
data and transferred to initialize a new model, and then the
limited amount of training data can be used to further tune
the new model and learn additional features. As shown in
Figure 3B and Supplementary Table S3, for each cell type,
transfer learning enhanced the performance of the TDm6A
model trained with the limited amount of m°®A instances
as it achieved comparable accuracy with the model trained
using the full dataset. The efficacy of transfer learning in-
dicates that these models have learnt some common se-
quence features important for m®A modifications in all cell
types. Nevertheless, the superior performance of TDmo6A
over HPm6A suggests that some cell-type-specific features
may also need to be learnt for accurate prediction of m°A
modifications.

Cell-type-specific features learnt by TDm6A

This study used data from three different cell lines: A549
from a cancerous lung tissue, CDST from T lymphocytes
and HEK293 from human embryonic kidney cells. As
shown in Figure 4A, the decrease of performance for cross-
cell-type m°A site prediction suggests that TDm6A may
have captured some cell-type-specific sequence features.
Thus, we converted the 75 kernels in the convolutional layer
of TDm6A into position weight matrices (PWMs) (Supple-
mentary Table S4) using the method as described previously
(37), and compared the PWMs between cell types using
TOMTOM (38). Interestingly, most of the PWMs appear
to be cell-type-specific (Figure 4B). With E value < 0.05,
only seven distinct PWMs are shared by the three cell types
(Supplementary Table S5). Particularly, as shown in Figure
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Table 1. Performance comparison of pan-cell-type HPm6A with other previous models

HPm6A

Gene2Vec*

SRAMP* WHISTLE*

Input features

Sequence features

Sequence features

Sequence features Sequence and genomic features

Algorithm CNN+LSTM CNN RF SVM

Species Human Human Mammals Human

Cell type Pan-cell-type Pan-cell-type Pan-cell-type Cell-type-specific
ROC AUC (mature RNA mode) 0.8534 0.8333 0.7970 0.8903

ROC AUC (pre-RNA mode) 0.8916 / 0.8910 0.9498%

Note: “The AUC scores from the previous papers are shown since the models were constructed using the same datasets from the single-nucleotide-resolution

mapping of m®A sites in the cell lines A549, CDST and HEK293.

# According to the authors of WHISTLE (25), the predictive performance of WHISTLE on the full-transcript model may be significantly over-estimated.
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Figure 2. High-confidence m°A sites predicted by HPm6A show strong enrichment in the 3’ UTR region near the stop codon of human protein-coding
transcripts. In the density plots, the X-axis represents the relative position of the coding sequence (CDS) region. The dashed blue line at x = 0 represents
the start of the CDS, and the blue solid line at x = 1 represents the end of the CDS. Thus, the 5 UTR region is x < 0, the CDS regionis 0 < x < 1, and
the 3 UTR region is x > 1. By setting the output threshold for positive m®A predictions at higher values, TDm6A-predicted m®A sites show stronger

enrichment near the stog) codon. The dashed magenta line shows the statistic median of the relative CDS position of the positive m®A sites. The total

numbers of predicted m

4C, among the seven common PWMSs learnt by TDmo6A,
GGACTG conforms to the known DRACH motif pattern
and is enriched at the m®A modification sites, whereas the
motif GGTAAG with a conserved T residue at the third
position is enriched in the downstream region of non-m°A
sites.

Next, we compared the TDm6A-learnt PWMs with the
known RNA motifs in the Ray2013 Homo sapiens database
using TOMTOM. None of the seven common PWMs
matched with any known motifs of RNA-binding proteins.
However, several cell-type-specific PWMs showed similar-

A sites are 787573, 311437 and 1576 for output thresholds of 0.5, 0.7 and 0.95, respectively.

ity to the known RNA motifs (Supplementary Table S6).
For instance, the PWM M5 of A549 is similar to the motif
of the RNA-binding protein LIN28A (Figure 4D), which
has been reported to be an m°A anti-reader that requires a
non-methylated adenosine for RNA binding (41,42). The
distributions of M5 in the flanking sequences of positive
and negative data instances are statistically different (Fig-
ure 4D). The position of M5 appears to shift toward the
upstream region of m®A sites, which may avoid the antag-
onistic interaction between M5 and m®A. The PWM M60
of A549 matches the RNA motif of SRSF7, which directly
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Table 2. Performance of TDm6A for cell-type-specific prediction of m®A modifications. The pre-RNA mode was used for both TDm6A and HPm6A

models
Model TDm6A HPm6A
Cell type A549 CDST HEK293 HEK293 A549+CD8T+HEK?293
Antibody used for m®A detection SySy SySy SySy Abacm SySy + Abacm
Method for m®A detection mCA-CLIP m°A -CLIP mi-CLIP mi-CLIP mOA -CLIP + mi-CLIP
Reference 3) 3) 4) 4) (3.4)
Number of m®A sites 20515 17 365 5234 7370 49 618
Accuracy 0.7907 0.8031 0.7880 0.7230 0.7815
Sensitivity 0.8784 0.8650 0.8987 0.7714 0.8568
Specificity 0.7819 0.7969 0.7769 0.7182 0.7740
MCC 0.4236 0.4321 0.4304 0.3002 0.4024
ROC AUC 0.9054 0.9060 0.9094 0.8173 0.8916
A. B -
2
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©
= ()]
o = 2 =2
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— HEK293_Abacm AUC =0.8173 A549_transfer AUC = 0.9013
'''' HPm6A AUC = 0.8916 CD8T _transfer AUC = 0.9081
Random guess AUC = 0.5000 — HEK293_transfer AUC =0.9192
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Figure 3. ROC curves of cell-type-specific TDm6A models in the pre-RNA mode. The ROC AUC values are given in the legend. (A) Cell-type-specific
TDm6A models show better performance than the pan-cell-type model HPm6A for human m°A site prediction. For HEK293_Abacm, the low quality of
the dataset might result in its poor performance. (B) Transfer learning can be used to improve cell-type-specific model performance if the available training
data from a new cell type is limited. For each of the cell types A549, CD8T and HEK293 (SySy), a small fraction of m®A sites was sampled from the full
dataset to build the model with transfer learning. The performance improvement in (A) and (B) was statistically significant (P-value < 0.0001) based on

two-sided unpaired #-tests.

interacts with the nuclear m®A-binding protein YTHDC1.
Together with various SR proteins, YTHDCI1 is involved
in pre-mRNA splicing and nuclear RNA processing (43).
So far, several families of m°A readers have been identi-
fied, including the YTH domain proteins, hnRNP family
and KH domain proteins (44). The hnRNP-H2 protein of
the hnRNP family is an m°A reader with a binding motif
similar to M41 of CD8T (Figure 4D). Moreover, FMR1, a
negative regulator of translation, may preferentially interact
with m®A-containing RNAs in certain sequence contexts,
and its two paralogs FXR1 and FXR2 are also m°A read-
ers (45). The PWM M9 of HEK293, matching the RNA
motif of FXR1, shows enrichment in the upstream region
near m®A sites, but not at m®A sites, which is consistent with
the finding that FMRI1 is an indirect reader of m®A sites
(45). Other RNA-binding proteins with motifs matching
the PWMs learnt by TDm6A are shown in Supplementary
Table S6. Previous studies suggest that m°A modifications

can be dynamically changed in different cell stages such as
spermatogenesis (46), and their dysregulation can alter vari-
ous pathways such as cytokine responses and tumorigenesis
(47). In addition to METTL3/14/16 and FTO/ALKBHS5
as m°®A writers and erasers, respectively, about 20 other pro-
teins have been shown to be m°A regulators. It is likely
that additional cell-type-specific regulators of m®A modifi-
cations are to be identified (48). The RNA-binding proteins
matching the PWMs learnt by TDm6A provide new can-
didates of m®A regulators, and further investigations may
give insight into the cellular processes controlled by m°A
modifications in a cell-type-specific manner.

Prediction of m®A sites on human IncRNAs

Protein-coding genes only comprise a small portion of the
human genome, and non-coding transcripts fulfill a rich
diversity of regulatory and functional roles. In particular,
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Figure 4. Cell-type-specific features learnt by TDm6A models. (A) Cross-cell-type prediction of m®A modifications by TDm6A models. The ROC AUC
value of a TDm6A model tested on each cell type is indicated. (B) Comparisons of TDm6A-learnt PWMs among cell types A549, CD8T and HEK293



long non-coding RNAs (IncRNAs) are transcripts greater
in length than 200 nucleotides, but not encoding proteins.
LncRNAs are dynamically regulated and involved in nu-
merous cellular activities. Although some IncRNAs have
been demonstrated to be key regulators of gene expression
and 3D genome organization (49-51), most of them are still
uncharacterized. It has been shown that m®A modifications
can be required for IncRNA functions through inducing lo-
cal structural changes for protein binding (9,52). We thus
utilized our TDm6A models to predict m°A modifications
on human IncRNAs. The distribution of the predicted m®A
sites on IncRNAs appears to be different from that on mR-
NAs; m°A modifications may be enriched in the middle
region of IncRNA sequences (Supplementary Figure S6).
Moreover, the m®A modifications on IncRNAs predicted by
the cell-type-specific TDm6A models show slightly differ-
ent distributions in the three cell types (A549, CDST and
HEK293).

To further evaluate the validity of TDmO6A predic-
tions, we examined two IncRNAs, XIST and MALATI1
(metastasis associated lung adenocarcinoma transcript 1),
for which m®A modifications have been experimentally de-
termined by mi-CLIP in HEK293 cells (4). As shown in
Figure 5, the highly m®A-methylated regions detected by
mi-CLIP were also predicted positively as m®A clusters by
the TDm6A model trained with the HEK293 dataset. For
MALATI, the four sites at positions 2515, 2577, 2611 and
2720 were predicted positively by TDm6A, and also con-
firmed by the SCARLET technology to be consistently
m®A-methylated in multiple cell lines (53). Interestingly,
the m®A modifications at positions 2515 and 2577 may
change the local RNA structures to facilitate the interac-
tions with the RNA-binding proteins HNRNPG and HN-
RNPC, respectively (10,39,54). Compared with mi-CLIP
data, TDm6A predicted more m°A sites, some of which
might be false positives, but the others could be true m°A
sites that were not detected by m®A-seq techniques. The
m®A-seq experiments may only detect a limited amount
of m°A modifications in the epitranscriptome (25), es-
pecially for IncRNAs which often have lower expression
than protein-coding genes (55). The regions predicted by
TDm6A to be highly m®A-methylated may be regarded as
candidate m°A clusters for experimental validation, such as
the region between 5000 and 10000 on XIST (Figure 5).

Based on the predictions by TDm6A, IncRNAs may
be prioritized for high-level m°A modifications in human
cells through count-based or frequency-based rank-
ing (see ‘Materials and Methods’ section). From the
count-based list (Supplementary Table S7), we can select
candidate IncRNAs with the most predicted m°A sites,
such as ENST00000597346.1 and ENST00000604411.1.
They are the non-coding transcripts produced from
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the genes KCNQIOT1 (ENSG00000269821) and TSIX
(ENSG00000270641), respectively. Interestingly, both
KCNQIOT1 and TSIX have been shown to play im-
portant roles in chromatin structure and gene regulation
(56). The transcript of KCNQI1OT1 is a long chromatin-
interacting non-coding RNA, which is moderately stable,
nucleus-localized and a product of RNA polymerase
II. Through the recruitment of chromatin and DNA-
modifying proteins, KCNQI1OT]1 can establish a repressive
higher order chromatin structure to silence multiple genes
in the KCNQI1 domain (57,58). The IncRNA TSIX is
antisense to XIST, and negatively regulates the expression
of XIST in cis through the establishment of repressive
epigenetic modifications and chromatin structures at the
XIST locus (59,60). Although the molecular mechanisms
of the IncRNA-—chromatin interactions remain unclear, the
m®A modifications may play an important role as indicated
by the finding that XIST has about 78 m°A sites essential
for the transcriptional silencing of the future inactive X
chromosome (9). The frequency-based ranking takes into
account the length of a IncRNA (the total count of pre-
dicted m®A sites normalized by the length of a IncRNA),
and the list can be used to select candidate IncRNAs with
the highest frequency of m®A modifications. However, the
top candidate IncRNAs in the frequency-based list are
poorly annotated with unknown functions (Supplementary
Table S8). We hope that the candidate IncRNAs ranked by
TDm6A predictions in both lists can provide good targets
for further investigations into m®A modifications, IncRNA
functions, and chromatin structures.

CONCLUSIONS

In this study, we have developed the cell-type-specific deep
learning model TDm6A for understanding RNA m°A
modification patterns in human cells. The sequence-derived
features allow the broad application of TDm6A to the
transcriptome-wise prediction of m°A sites in both protein-
coding mRNAs and non-coding transcripts such as long
non-coding RNAs (IncRNAs). Several previous studies fo-
cused on the prediction of pan-cell-type m®A modifications
for one or more species. In contrast, TDm6A has been de-
veloped as a cell-type-specific model for accurate prediction
of human m°A modifications. The available methods for the
single-nucleotide-resolution mapping of m®A sites may only
offer limited coverage of m®A modifications, and these ex-
periments can be expensive, laborious and difficult (25). It
is thus likely that only a limited number of m°A sites for a
cell type under a certain condition can be detected, which
may not be sufficient for building an accurate model. In this
study, we have demonstrated that transfer learning can be

using the TOMTOM server (38). E value <= 0.05 was used as the statistical threshold. The numbers of common PWMs between cell types are indicated
in the overlapping regions. (C) Sequence logos and distributions of two common PWMs learnt by TDm6A. The motif GGACTG enriched at m®A sites
is similar to the known DRACH pattern, and the motif GGTAAG with a conserved T residue at the third position shows enrichment at non-m°A sites.
(D) Some cell-type-specific PWMs significantly match the known RNA-binding motifs in the Ray2013 Homo sapiens database. The PWM M5 of A549
matches the RNA motif of LIN28A, an m°A anti-reader protein. The PWM M41 of CDST shows similarity with the RNA motif of HNRNPH2, an m°A
reader protein. The PWM M9 of HEK293 matches the RNA motif of FXR 1, which is a paralog of the m®A reader protein FMR 1. Density plots of M5,
M41 and M9 in the 1001-nt flanking region centered on the target adenosine are also shown.
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Figure 5. TDm6A-predicted m®A sites for the human IncRNAs XIST and MALATI. The X-axis indicates the nucleotide positions on a IncRNA. The
Y-axis in the top panel shows the probability of a possible m°A site predicted by the HEK293 model of TDm6A, and the Y-axis in the bottom panel
indicates the peak score of an m°A site detected by mi-CLIP in HEK293 cells. Of the TDm6A-predicted mPA sites, the true sites that are also detected
by mi-CLIP are indicated in red. For MALATI, four m°A sites at positions 2515, 2577, 2611 and 2720 were also detected by the SCARLET technology
(53), and the m°A modifications at positions 2515 and 2577 may facilitate the interactions with the RNA-binding proteins, HNRNPG and HNRNPC,

respectively (10,39,54).

an effective method for building an accurate TDm6A model
for a cell type with low coverage of m®A modifications.

Although several models have been developed for m®A
site prediction, the sequence determinant for m®A modifica-
tions is still limited to the known DRACH motif pattern. In
this study, sequence features learnt by TDm6A for each cell
type (A549, CD8T or HEK293) were converted into posi-
tion weight matrices (PWMs), most of which were found to
be cell-type-specific. Common PWMs among the cell types
included the known consensus motif DRACH and several
new motifs. Interestingly, some PWMs learnt by TDm6A
were found to match the known motifs of RNA-binding
proteins, including m®A readers and anti-readers such as
LIN28A, HNRNPH2 and FXR1.

Previous studies suggest that m®A modifications can be
critical for the functions of some non-coding RNA tran-
scripts. In this study, we have utilized TDm6A to predict
the possible m®A sites on human IncRNAs, and found that
m®A modifications might be enriched in the middle re-
gion of IncRNA sequences. Based on the predictions by
TDm6A, IncRNAs have been prioritized for high-level m°A
modifications in human cells. Particularly, the highly m°A-
methylated candidate IncRNAs include KCNQI1OT1 and
TSIX, which have been shown to be chromatin-interacting
IncRNAs involved in gene regulation. Since most IncRNAs
are still uncharacterized functionally, the candidate IncR-
NAs predicted and prioritized in this study provide good
targets for further investigations into m®A modifications
and IncRNA functions.

In the future, we will try to improve our models in the
following two areas. First, additional features can be incor-
porated into our deep learning system. Besides the genomic
features used by WHISTLE (25), other features such as
predicted RNA secondary structures and various types of

RNA modifications within the sequence region will also be
examined for the prediction of m®A modifications on both
protein-coding and non-coding RNAs. Our present work
used only RNA sequence as the model input to discover
novel motifs underlying m®A modification patterns, and
achieved comparable performance with the previous mod-
els. With additional relevant features, TDm6A model per-
formance may be enhanced. Second, more m®A datasets are
needed for further development and evaluation of TDm6A
models. The existing models for human m°A site predic-
tion, including TDm6A, SRAMP (24) and WHISTLE (25),
have been constructed using the limited data from two pre-
vious studies (3,4) for single-nucleotide-resolution mapping
of human mCA sites in only three cell lines (A549, CDST
and HEK293). Hopefully, more high-quality m®A datasets
will become available so that TDm6A models can be trained
to be more robust for RNA m°A site prediction and com-
prehensive analyses can be performed to elucidate the de-
terminants of m®A modifications in human cells.
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