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Simple Summary: Recurrent patients with gynecologic cancer experience a difficult situation when
using immune checkpoint inhibitors based on mismatch repair gene immunohistochemistry and
microsatellite instability. Six machine learning algorithms were used to create predictive models with
seven prospective features (four MMR IHC [MLH1, MSH2, MSH6, and PMS2], MSI, Age 60, and
tumor size). The experimental results showed that the RF-based model performed best at predicting
gynecologic cancer recurrence, with AUCs of 0.818 and 0.826 for the 5-fold cross-validation (CV)
and 5-fold CV with 10 repetitions, respectively. This provides novel and baseline results of patients
with recurrent gynecologic cancer using immune checkpoint inhibitors by using machine learning
methods based on Lynch syndrome-related screening markers.

Abstract: To support the implementation of genome-based precision medicine, we developed ma-
chine learning models that predict the recurrence of patients with gynecologic cancer in using
immune checkpoint inhibitors (ICI) based on clinical and pathologic characteristics, including Lynch
syndrome-related screening markers such as immunohistochemistry (IHC) and microsatellite insta-
bility (MSI) tests. To accomplish our goal, we reviewed the patient demographics, clinical data, and
pathological results from their medical records. Then we identified seven potential characteristics
(four MMR IHC [MLH1, MSH2, MSH6, and PMS2], MSI, Age 60, and tumor size). Following that,
predictive models were built based on these variables using six machine learning algorithms: logistic
regression (LR), support vector machine (SVM), naive Bayes (NB), random forest (RF), gradient boost-
ing (GB), and extreme gradient boosting (EGB) (XGBoost). The experimental results showed that the
RF-based model performed best at predicting gynecologic cancer recurrence, with AUCs of 0.818 and
0.826 for the 5-fold cross-validation (CV) and 5-fold CV with 10 repetitions, respectively. This study
provides novel and baseline results about predicting the recurrence of gynecologic cancer in patients
using ICI by using machine learning methods based on Lynch syndrome-related screening markers.

Keywords: machine learning; immune checkpoint inhibitors; Lynch syndrome; recurrence

1. Introduction

Gynecologic cancers are among the emerging focuses of genome-based medicine [1].
They comprise cancers of the cervix, endometrium, and ovary. Furthermore, since pub-
lications about the high proportion of their target gene were reported during the data
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release of The Cancer Genome Atlas project [2–4], they have gradually drawn attention to
precision treatment. The discovery of PARP inhibitors in BRCA mutation ovarian cancer
was one of the publication’s promising results [5,6]. In addition to that therapy, germline
gene-related hereditary cancer prevention surgeries have been used in the prevention of
gynecologic cancer for decades [7]. Therefore, with the early adoption of new technology,
target treatment, including the use of immune checkpoint inhibitors (ICIs), has proven
effective in treating cancers of the cervix, endometrium, and ovary with or without avail-
able features, such as Lynch syndrome-screening-related biomarkers [8–10]. Furthermore,
genome-related hereditary cancer syndrome has been well established in gynecologic clini-
cal practice for a long time. Thus, in addition to Lynch syndrome, which is associated with
the endometrium, the hereditary ovary and breast cancer syndrome, which affects these
organs but also a small portion of the ovary, has received considerable attention for a long
time Lynch syndrome is a hereditary genome-driven cancer syndrome affecting multiple
organs, primarily the bowel and endometrium. This syndrome originates from mismatch
repair (MMR) gene mutations as reported by Dr. Henry Lynch (1928–2019) [11]. As a result,
prior to confirmative tests, several screening factors, such as family history, based on the
Amsterdam criteria, in addition to tumor-based tests, such as immunohistochemistry (IHC)
or microsatellite instability (MSI), have been proposed and are still used to treat patients
around the world. These therapies are also used in clinical trials, even after attributable
gene discovery and large-gene next-generation test adoption for cost-effectiveness [12].

Hence, new chemotherapy medicines, especially immunotherapy based on the target
material have surprisingly been used in cancer treatments and patients with MMR-related
cancer therapies, including those with Lynch syndrome with remarkable effects [13]. Recent
studies show the predictive role of Lynch syndrome-screening factors in addition to IHC
and MSI; other factors, such as PD-L1 are promising biomarkers [14]. However, inaccurate
proven evidence exists among patients with recurrent gynecologic cancer based on MMR
IHC and MSI receiving ICI.

Computer-based accurate models are another new technology in cancer medicine
that is rapidly showing moderate importance, especially in the predictive and diagnostics
field [15]. Gynecologic cancer has also embraced new technology in terms of predicting
recurrence and developing prognosis models [16,17]. Furthermore, imaging study substitu-
tions for diagnostic aids and lesion classification aids have recently been evaluated [18–21].
Among the most common Lynch syndrome-related cancer CRC studies are those using
Lynch syndrome-screening markers and artificial intelligence, which has demonstrated
that machine learning can predict MSI/dMMR with high accuracy in high-quality, curated
datasets [22]. Recently, the possibility of machine learning models in ovary cancers has
been demonstrated in terms of platinum sensitivity [23].

In this study, we explored various machine learning approaches for the prediction
and classification of relapse in gynecologic cancers based on genome-based data. We
also explore raw datasets to identify the seven important features (MLH1, MSH2, MSH6,
PMS2, MSI, Age 60, and tumor size) for predicting the recurrence of cancer using one-hot
encoding and Fisher’s exact tests. Furthermore, to provide a comparative analysis of the
relapse of these gynecologic cancers, the performance of six machines, learning classifiers,
LR, SVM, NB, random forest (RF), gradient boosting (GB), and extreme gradient boosting
(XGBoost), was compared.

We hypothesized that by developing successful predictive models that can leverage
genetic information, we can significantly expand the universe of cancer recurrence predic-
tion, thereby creating more general and powerful machine learning tools. The experimental
results showed that tree-based machine learning models, such as RF, GB, and XGBoost,
learned high importance features from genetic data, resulting in a robust cancer recurrence
prediction. Furthermore, the RF-based model predicted gynecologic cancer recurrence
best, with AUCs of 0.818 and 0.826 for 5-fold CV and 5-fold CV with 10 repetitions, re-
spectively. As a result, we created a suitable machine learning model for predicting the
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relapse of gynecologic cancers, allowing pathologists and clinicians to better diagnose
cancers individually.

2. Materials and Methods

As mentioned earlier, this study investigated the impact of biomarkers, including
Lynch syndrome screening markers, in classifying the performance for recurrent gyneco-
logical cancers using ICI. To achieve this goal, we followed experimental methodology,
wherein we constructed datasets of various features that can affect the treatment and
recurrence of cancer. Then, we looked at how certain features affected classification per-
formance. Following preprocessing, six widely used classification models were trained
on these datasets. Following that, the classifiers’ performance was assessed using various
metrics for binary classification tasks and AUC. In the sections that follow, we will go over
dataset selection, preprocessing, classification models used, and performance evaluation
metrics. Figure 1 shows the overall block diagram of the machine learning model-based
prediction of gynecologic cancer recurrence presented in this study.

Figure 1. The simple architecture of the machine learning model to predict gynecologic cancer
recurrence.

2.1. Data Collection

We conducted a multicenter, retrospective study at three tertiary academic medical
institutions in South Korea. Between January 2015 and December 2020, we reviewed the
medical records of patients who were diagnosed with recurrent gynecological cancers
using ICIs. Patient demographics, clinical data (age and tumor size based on imaging
study results), and pathologic results, including MMR IHC staining for MLH1 (MutL
homolog 1)/MSH2 (MutS Homolog 2)/MSH6 (mutS homolog 6)/PMS2 (PMS1 Homolog 2),
and MSI analysis, were all collected. As a result, 114 patients were included (Table 1). In
addition, we added in Table 2 regarding MMR/MSI/Recur status of the study population
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Table 1. Baseline characteristics of the patients treated with immune checkpoint inhibitors (n = 114).

Age, Years Variable

Median (range) 54 (21–86)

ECOG performance status
0–1 47 (41.2%)
2–4 67 (58.8%)

FIGO stage at diagnosis
I/II 22 (19.3%)

III/IV 84 (73.7%)
N/A 8 (7.0%)

Origin of cancer
Cervix 37 (32.5%)
Vulvar 1 (0.9%)

Ovary/Peritoneum/fallopian tube 43 (37.7%)
Endometrium 23 (20.2%)
Uterine corpus 8 (7.0%)

Gestational trophoblast 2 (1.8%)

PD-L1 expression *
≥1 65 (57.1%)
<1 28 (24.6%)

N/A 21 (18.4%)

MMRd 26 (22.8%)
MMRp 88 (77.2%)
MSI-H 11 (9.6%)
MSI-L 6 (5.2%)
MSS 97 (85.1)

MMRd or MSI-H 38 (33.3%)
MMRp or MSS 76 (66.7%)

Target lesion size, mm #

Median, range 60 (10~1230)

Number of previous lines of chemotherapy
1 29 (25.4%)
2 39 (34.2%)
3 18 (15.8%)
4 15 (13.2%)
≥5 13 (11.4%)

Type of immune checkpoint inhibitor
Pembrolizumab 101 (88.6%)

Nivolumab 13 (11.4%)
ECOG, Eastern Cooperative Oncology Group; FIGO, International Federation of Gynecology and Obstetrics; N/A,
nonavailable; PD-L1, programmed death-ligand 1; MMRd, mismatch repair deficiency; MSI-H, microsatellite high;
MMRp, mismatch repair proficiency; MSS, microsatellite stable. * Determined by either the tumor proportion
score or the combined positive score. # Sum of the diameters of the target lesions.

Table 2. MMR/MSI/Recur status of the study population.

Origin MMRd MMRp MSI-H MSI-L MSS Recur

Cervix 7 (18.9%) 30 3 (8.1%) 0 34 25 (67.6%)
Ovary 7 (16.3%) 36 2 (4.7%) 5 36 36 (83.7%)

Endometrium 9 (39.1%) 14 4 (17.4%) 1 18 16 (69.6)
Others 3 (33.3%) 8 4 (18.2%) 0 9 4 (36.4%)

Total 26 (22.8%) 88 11 (9.6%) 6 (5.2%) 97 81 (71.1%)
Ovary: Ovary/Peritoneum/fallopian tube; Others: Vulvar/Uterine corpus/Gestational trophoblast.

Among these patients, we reviewed serial radiological records of those diagnosed
with recurrent or persistent gynecologic cancers who received at least one cycle of ICI
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treatment. Patients who were treated with ICIs underwent intravenous administration of
200 mg pembrolizumab every 3 weeks or 3 mg/kg nivolumab every 2 weeks until disease
progression, unacceptable toxicity, or patient withdrawal. The institutional review board
of each participating institution (CHA IRB 2020-12-034) approved the study protocol used
in this research.

The clinicopathological characteristics of these patients are listed in Table 1. As stated,
their median age was 54 years (range: 21–86). Among them, 41.2% (47/114) had an Eastern
Cooperative Oncology Group (ECOG) performance status of ≤1, and 73.7% (84/114) had
stage III or IV disease progression at initial diagnosis. Thus, eight tumor types were
represented among the patients, with ovarian, cervical, endometrial, and uterine corpus
cancers being the most common. Following that, PD-L1 expression was determined in
93 patients (81.6%), 65 (69.9%) of whom were PD-L1 positive. However, 38 (33.3%) of
patients had tumors with abnormal MMR IHC (MMRd) and MSI (MSI high[h]: unstable
MSI). Following that, specimens were labeled as MSI high if at least two allelic loci sizes
shifted among the five microsatellite markers were examined. MSI-L was the abnormal one
(low). MSS was the other classification (stable MSI). Both Bethesda (BAT25, BAT26, D5S346,
D17S250, and D2S123) and Promega (NR21, NR24, NR27, BAT25, BAT26) markers used the
MSI method. After DNA amplification using fluorescent-labeled primers, a panel of the five
National Cancer Institute recommended microsatellite markers (BAT25, BAT26, D5S346,
D17S250, and D2S123) or (NR21, NR24, NR27, BAT25, BAT26) were applied according
to the manufacturer’s manual. IHC staining was performed on tumor specimens with
4 MMR genes (MLH1, MSH2, MSH6, and PMS2). Mouse monoclonal antibodies against
MLH1 (Novocastra Laboratories, Newcastle, UK), MSH2 (Novocastra Laboratories), MSH6
(BD Transduction Pharmingen, San Jose, CA, USA), and PMS2 (Zytomed Systems, Berlin,
Germany) were used. Bond–Max (Leica Biosystems, Newcastle, UK) immunostaining was
carried out according to the manufacturer’s instructions. The slides were then reviewed
and IHC data were evaluated by a gynecological pathologist. The intensity of the staining
was graded as follows: negative, no discernible staining in tumor cells (loss: MMRd) total
absence of nuclear staining in tumor each case had an adjacent normal stoma or infiltrating
lymphocytes as an internal positive control; and positive, dark brown staining in tumor
cells, completely obscuring the cytoplasm, nucleus, or membrane (intact: MMRp). The
median sum of the target lesion size was 60 mm (range: 10–1230). Next, we classified
the tumor burden according to tumor size based on the four classifications for machine
learning (Size 1, 2, 3, and 4: <2, 2–5, 5–10, and ≥10 cm, respectively). The median number of
lines before chemotherapy, including neoadjuvant chemotherapy, was two (range: 1–7), as
observed. Nonetheless, pembrolizumab (88.6%, 101/114) and nivolumab (11.4%, 13/114)
were the specific agents of ICIs administered. At the time of data cutoff on 28 February
2021, the median follow-up time was 4.9 months (range: 0.1–36.8). Eighty-five patients
(74.6%) had stopped taking ICIs, most commonly due to disease progression. As a result,
the patients received a median of four cycles (range: 1–40) of ICI-based chemotherapy. We
first included 4 MMR IHC staining and 1 MSI analysis result. MMR IHC staining and MSI
analysis results, also known by Lynch syndrome-screening markers, have been adopted
in biomarkers in using ICI among several cancers. In addition, we discovered general
risk factors in common among our diverse gynecologic cancers (43 ovaries, 37 cervices,
23 endometrium, 8 corpus, 2 GTT, and 1 vulvar cancer). As a sixth prospective feature, a
60-year-old age limit was adopted. Age is widely regarded as a significant factor in cancer
prognosis. The definition of old age and its relationship to cancer and treatment differs
depending on cancer and treatment type, but comorbidity situations are a more important
indicator, and we could not find consistent age criteria based on evidence. But in Korea, the
general retirement age by law is set as 60. It is based on common sense defining decreasing
human function including patients with cancer and subdivided age classification like >50,
50–60, 60–70, >70 was not considered due to small numbers. However, in a future large
study, other possible risk factors and subclassification will be used. Finally, measurable
tumor size (Size 1, 2, 3, and 4: <2, 2–5, 5–10, and ≥10 cm) at recurrence was chosen as the
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7th feature. Other probable prognostic factors (pathologic type and grade at first diagnosis,
lymph node invasion, lymph vascular space invasion, initial clinical/surgical staging,
variable tumor markers (CA 125, SCC, CEA, ß-hcg), previous platinum chemotherapy
sensitivity, radiosensitivity) were not included due to specific characteristics of the study
population (6 heterogeneous gynecologic cancers, recurrent cancer, ICI usage) and limited
medical information from a retrospective study

2.2. Preprocessing and EDA

Among the features collected by the participating institutions, seven independent
features that can affect cancer recurrence were considered and underwent exploratory anal-
ysis. The selected features for predicting cancer recurrence are MLH1, MSH2, MSH6, PMS2,
MSI, Age 60, and size, which contain a mix of numeric and text datatypes (Table 3). The
categorical data were then converted to vectors of real numbers to apply machine learning
techniques to these qualitative data. For this analysis, we used one-hot encoding, which
assigned each biomarker its own bit-encoded string (MLH1_intact: [1, 0, 0]; MLH1_loss:
[0, 1, 0]). The input dataset for machine learning comprised 114 instances and 21 features.

Table 3. Dataset descriptions.

Attributes Notation Attributes Raw Data Type One-Hot Encoded Attributes

MLH1 MutL homolog 1 Text
MLH1_intact
MLH1_loss

MLH1_none

MSH2 MutS homolog 2 Text
MSH2_intact
MSH2_loss

MSH2_none

MSH6 MutS homolog 6 Text
MSH2_intact
MSH6_loss

MSH6_none

PMS2 PMS1 homolog 2 Text
PMS2_intact
PMS2_loss

PMS2_none

MSI Microsatellite instability Text
MSI_high
MSI_low

MSI_stable
Age 60 Age greater/less than 60 Numeric Age60

Size Tumor size Numeric

Size_1
Size_2
Size_3
Size_4

To derive relevant information from the observed correlation between the relapse of
tumors and the occurrence of genetic information, Fisher’s Exact Test was used as shown
in Table 4. A p-value < 0.05 was considered statistically significant. As detected, we found
a significant association between cancer occurrence, MLH1 intact (p = 0.0193), and PMS2
intact (p = 0.0147). However, the remaining features had a relatively weak correlation,
which did not necessarily imply that there was no effect on gynecologic cancer recurrence.
As a result, in this study, the machine learning model was built using all the obtained
categorical data, as shown in Table 4.
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Table 4. Associations between recurrence of gynecologic cancers and categorical feature set based on
Fisher’s exact test.

Attributes Fisher Odd Ratio Attributes Fisher Odd Ratio

(p-Value) (p-Value)

MLH1 intact
3.1233

PMS2 intact
3.6571

(0.0193) (0.0147)

MLH1 loss
0.8

PMS2 loss
0.9062

(0.7167) (1.0)

MSH2 intact
1.84 MSI high 0.448

(0.2079) (0.2920)

MSH2 loss
1.6623

MSI low
2.1052

(1.0) (0.6706)

MSH6 intact
1.5180

MSI stable
0.7169

(0.4018) (0.5216)

MSH6 loss
1.7846 Age 60 1.2606

(0.4221) (0.6610)

Size 1
1.0706

Size 2
0.8172

(1.0) (0.8107)

Size 3
1.2392

Size 4
0.9455

(0.8171) (1.0)

2.3. Classification Models

We developed predictive models using selected features and evaluated the perfor-
mance of these models. Next, we used six different widely used classifiers, which included
LR, SVM, NB, RF, GB, and XGBoost. Below, we summarize these classification models:

(1) LR: An LR is a parametric classification model type and a particular form of the
generalized linear model. This algorithm predicts a dependent data variable by
analyzing the relationship between one or more existing independent variables.

(2) SVM: AN SVM is among the most popular machine learning models wherein a con-
straint finding the most stable discriminant boundary is added to, thereby forming
a perceptron-based model. SVM defines a decision boundary with support vectors
and classifies unclassified points by comparing them to the corresponding decision
boundaries. The linear kernel is a fundamental function in SVM; however, the ra-
dial basis function (RBF) kernel is a popular kernel function used in a variety of
kernelized learning algorithms.

(3) NB: The NB algorithm is a probabilistic machine learning algorithm that uses the
Bayes theorem. Under the naive assumption that all events are independent, it makes
probabilistic predictions by inferring posterior probabilities from prior probabilities.
The NB classifier has the advantage of being very efficient to train and requiring a
small amount of training data to estimate the classification parameters.

(4) RF: The RF algorithm can predict an output variable based on a majority vote
after generating multiple decision trees. As a result, a decision tree can schematize
decision rules and their outcomes in the form of a tree structure. The data is then split
into multiples by a tree-based model based on specific cutoff values of the feature
values. The RF can then improve on the performance of a single tree algorithm by
combining decision trees and bagging, where various samples can be extracted from
the training set using bootstrap.

(5) GB: Alternatively, the GB algorithm creates a more accurate and stronger learner
by combining a simple and weak decision tree. Although the accuracy of the weak
tree model reveals a flaw in prediction error, it can be compensated for using the
second model. As a result, combining these successively weak tree models yields
a more accurate model than the first. In GB, the residual is fitted with a weak tree
model, and the predicted value is then updated by adding the predicted residual to
the previous prediction.
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(6) XGBoost: XGBoost is another model that has been in the spotlight recently in tree-
based ensemble learning. Although XGBoost is based on GB, it can overcome GB’s
drawbacks, such as slow execution time and a lack of overregulation. XGBoost,
in particular, can learn histories in a parallel CPU environment. Therefore, it can
complete training faster than the existing GB model.

2.4. Performance Evaluation

For a machine learning model to be robust, it is required to use many observations to
reach acceptable performance levels. This gynecologic cancer diagnosis-based machine
learning study, on the other hand, has a small sample size. Furthermore, when using the
machine learning approach, the compositions of the training and test sets differ because the
dataset was randomly divided. According to our observations, the results varied greatly
depending on how datasets were divided into training and test sets, particularly with a
small sample size.

Note that no fixed rule exists for separating training and testing data sets, and the
common split ratio is 80%:20% for train and test sets, respectively. However, the size of
our study population’s dataset is limited. As a result, we divided the oversampled data
set 85 percent for training and 15% for testing. We also used the training set to learn and
tune the machine learning algorithm’s hyperparameters. Furthermore, to select the best
hyperparameters, we validated our model on the validation dataset to obtain unbiased
estimate results. We performed 5-fold CV by dividing the training set up into five equal-
sized portions. Then, to examine the generalized performance of the proposed scheme
and minimize the effect of data composition by a random training test set split, the split
was subsequently repeated 10 times by changing the random state numbers and providing
average results.

Performance measures play a critical role in machine learning model development,
hyperparameter tuning, and evaluation. Various performance measures were used in this
study to evaluate different machine learning algorithms for classification. In this study,
false-positive rates (FPR), true positive rates (TPR), specificity, positive predictive values
(PPV), negative predictive values (NPV), accuracy, and F-scores have widely used metrics
for evaluating classifier performance for a specific threshold. At certain threshold values,
these metrics can be calculated. Receiver operating characteristic (ROC) curves are also
used to represent a tradeoff between different classifiers in a variety of scenarios. As a
result, rather than being dependent on a specific threshold, the area under the ROC curve
(also known as AUC) can be used to provide a summary of how well a classifier performs
at various threshold settings for the classification task. In this case, the larger the AUC
area, the more accurate the classifier model. Moreover, AUC scores can assess the quality
of classification more reliably compared with accuracy in various situations based on the
given dataset.

Furthermore, ROC curves summarize classifier performances over several FPRs (or
fallout) and TPRs (or recall) for every possible cutoff. The TPR sensitivity or recall is thus
defined as the percentage of recurrence of cancer that is correctly identified as the patients
with cancer of relapse:

Recall = Sensitivity = TPR =
TP

TP + FN
, (1)

However, the specificity or true negative rate (TNR) is defined as the percentage of
cancer recurrence that is correctly identified as the patients with cancer of relapse:

Specificity = TNR =
TN

TN + FP
, (2)

In contrast, the FPR or fallout is defined as 1-Specificity. For all possible cutoff
values, ROC curves are drawn by plotting the sensitivity (TPR) along the Y-axis and the
corresponding 1-specificity (FPR) along the X-axis. It is the set of all ordered pairs in
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mathematics (FPR, TPR). Alternatively, PPV (or precision) is the probability that a positive
observation is truly positive, whereas NPV is the probability that a negative observation is
truly negative.

3. Results

In the following sections, the experimental results obtained are presented for the
classification models using the collected gynecologic cancer datasets. Following that, we
created a binary classification task for the six machine learning classifiers to perform on
the experimental dataset. We used Python 3.9 with the Scikit-learn library 1.0 to create
machine learning models, which provides a wide range of machine learning techniques.
The experiments were carried out on a computer with a 3.6 GHz CPU, a Core i9 processor,
and 64.0 GB of memory. Because the number of cancer relapse cases was significantly
lower than the number of cases in the other class, the raw dataset obtained was unbalanced.
Learning from imbalanced data affects the training process of classifiers, leading to an
unfavorable bias toward the majority class and resulting in low accuracy for the minority
class. To build the balanced dataset, the Synthetic Minority Oversampling Technique
(SMOTE) is used, which generates new synthetic training data for the minority class by
adding random values to some features of the original training data and providing new
data that is as close to the original as possible. For each sample in the minority class,
synthetic training data are generated by randomly selecting one or more of the k-nearest
neighbors. As a result of SMOTE, 162 instances were obtained, with 81 cases of recurrence
and no recurrence, respectively.

By dividing the oversampled data set into 85% for training and 15% for testing,
training and parameter tuning of the machine learning model were conducted using
training data. Then, for RF, GB, XGB, SVM, NB, and LR, we tuned hyperparameters to get
the optimal hyperparameter combination with the highest means of validation for AUC
values. The best parameters were then identified using the grid search method, and the
model’s performance was validated using two CV methods. In addition to the standard
5-fold CV without repetition, a 5-fold CV with 10 repetitions was performed and compared.
CV was repeated 10 times with data shuffling for each combination of hyperparameters in
CV with 10 repetitions. Furthermore, the AUC score was used as the model’s performance
evaluation metric. Table 5 summarizes six classification models and their hyperparameter
ranges for using the grid search approach.

Table 5. Classification models and hyperparameter ranges for the grid search.

Classification Model Hyperparameter Ranges

Random forest
Gradient boosting

XGBoost

Maximum depth of tree = [1, 3, 5, 10, 15, 20, 25, 30]
Number of estimators = [10, 50, 100, 200, 500, 1000, 1500, 2000]

Learning rate = [1, 0.1, 0.01, 0.001, 0.0001, 0.00001]

Support vector machine
C = [0.001, 0.01, 0.1, 1, 10, 100, 1000, 10,000]

Kernel = [“linear,” “rbf”]
Gamma = [0.5, 0.1, 0.01, 0.001, 0.0001]

Logistic regression C = [0.001, 0.01, 0.1, 1, 10, 100, 1000, 10,000]

3.1. Classification Results

To validate the prediction performance of our machine learning algorithms, a ROC
curve analysis was employed to determine the AUC. The performance of the six classifi-
cation models—RF, GB, XGBoost, NB, LR, and SVM (linear kernel, RBF kernel)—when
trained on the dataset is presented in Table 6 for the AUC score. Depending on which
samples comprised the training or test set, AUCs in CV, training, and testing varied widely.
Thus, the split was repeated 10 times by changing random state numbers, which provided
the average AUC results.
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Table 6. Classification results.

ML Algorithms 5-Fold CV 5-Fold CV Rep. 10

RF (train) 0.972 0.978
RF (test) 0.818 0.826

GB (train) 0.952 0.900
GB (test) 0.779 0.782

XGBoost (train) 0.917 0.883
XGBoost (test) 0.767 0.778

LR (train) 0.872 0.876
LR (test) 0.803 0.801

Linear SVC (train) 0.871 0.875
Linear SVC (test) 0.782 0.792

Kernel SVC (train) 0.729 0.729
Kernel SVC (test) 0.675 0.675

NB (train) 0.855 0.855
NB (test) 0.791 0.773

rep, repetition.

The six models’ ROC curves for training datasets created from the two CV methods
are shown in Figure 2. The ROC curve is generated by plotting the TPR against the FPR
at various threshold settings, as explained in Section 2.4. The steeper the curve toward
the upper left corner, the better the classifier’s ability to distinguish between classes.
When comparing different ROC curves, especially when they intersect, the area under the
ROC curve can be used to evaluate models. Among the six models, the RF-based model
performed the best in identifying cases of recurrent cancer across all CV methods. Moreover,
other tree-based approaches, such as GB and XGBoost, present robust performances in
classifying patients with recurrent cancer.

Figure 2. Seven models’ ROC curves for training datasets: (A) 5-fold CV; (B) 5-fold CV with 10 repetitions.

Figure 3 further depicts ROC curves for test datasets using seven machine learning
algorithms. Similar to the results of the training datasets, the RF-based model outperformed
the other seven candidates for all CV methods. It can also be seen here that the LR technique
outperformed the RF technique. However, when compared to other tree-based methods,
LR did not perform well on the training data set. As a result, this result incorporated
the impact of fluctuations caused by the absence of the test data set. It can be observed
as well that the tree-based method showed satisfactory cancer recurrence classification
performance even for the test data.
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Figure 3. Seven models’ ROC curves for test datasets: (A) 5-fold CV; (B) 5-fold CV with repetitions.

Table 6 shows their classification results for the test datasets in the two CV methods.
Decision tree-based classifiers, including RF, GB, and XGBoost, worked well in the cancer
recurrence classification task because their AUC values were approximately 0.8. Among
these candidates, the RF algorithm had the highest AUC score of 0.818 for 5-fold CV and
0.826 for 5-fold CV with 10 repetitions, respectively. Other tree-based schemes, such as GB
and XGBoost, performed similarly to RF in terms of AUC scores for various CV methods.
Nevertheless, in all cases, a performance difference was observed between the 5-fold CV
and 5-fold CV iteration techniques, which is caused by the small number of instances in
the dataset.

3.2. Classification Performance on Tree-Based Approaches

Figure 4 displays confusion matrices of the tree-based approaches, including RF, GB,
and XGB. A confusion matrix is a specific table layout that allows for the visualization of
algorithm performance, and it is most used in classification performance. Each row of the
matrix represents data samples from an actual class, while each column represents samples
from a predicted class. This provides us with a comprehensive picture of how well our
classification model is performing and the types of errors it is making. Because the number
of test dataset instances was too small, confusion matrices were expressed for the entire
dataset. Table 7 displays their classification results based on popular performance metrics.
Furthermore, in terms of accuracy and sensitivity (or recall), the RF algorithm showed the
best performance of 88.88% and 90.12%, respectively. However, except for the sensitivity,
the GB algorithm also showed similar performances to the RF. In contrast, for specificity
and PPV, XGBoost outperformed other tree-based schemes.

Table 7. Classification results.

ML Algorithms Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Random forest 88.88 90.12 87.65 87.95 89.87
Gradient boosting 88.27 88.88 87.65 87.8 88.75

XGBoost 85.8 82.71 88.88 88.15 83.72
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Figure 4. Confusion matrices with the tree-based machine learning approach: (A) Random forest; (B) Gradient boosting; (C)
XGBoost.

4. Discussion

Machine learning technology enables the development of high-performance predictive
models and can be used in various cancer diagnostics and therapeutics. To the best of our
knowledge, this is the first study to assess machine learning for patients with recurrent
gynecologic cancer under ICI using Lynch syndrome-related screening markers such as
MMR IHC and MSI. However, because this gynecologic cancer diagnosis-based machine
learning study was conducted with a limited number of samples, when clinicians use the
machine learning approach, the compositions of the training and test sets differ because
the dataset was randomly split. When the RF algorithm was used to predict cancer
recurrence, it achieved accuracy, sensitivity, and specificity of 88.88 percent, 90.12 percent,
and 87.65 percent, respectively. For other tree-based schemes such as GB and XGBoost, the
classification results outperform SVM, LR, and NB in terms of various performance metrics.

The current study has several limitations. The first issue is the small size of the study
population. However, recurrent gynecologic cancer under ICI is in a difficult situation,
and previous reports show a limited but durable and sometimes striking repose with
specific genomic [24]. That could be the reason for using machine learning in this machine.
The design of a large prospective trial is centered on combining Lynch syndrome-related
screening markers with previous PD L1 or other clinical markers (tumor burden or size)
or performance score-like age. Our study’s seven figures are unique in that they combine
clinical and genomic information in this rare population. Second, no specific criteria were
used to select ICI between pembrolizumab and nivolumab. Therefore, there was no specific
better recommendation of ICI regimen for this specific population [25]. After several ICI
clinical combination trials may have a better solution in the future. Third, there is a scarcity
of incomplete follow-up data and periods for predicting disease responses and recurrence.
This study population has a low-performance status (ECOG 2–4 58.8%), a high initial
advanced stage (II/IV 73.7%) and has been heavily treated (previous chemotherapy was
40.4%). We conducted our research based on short-term follow-up due to the poorer per-
formance status, most advanced stage population, and heavily treated history. Pathologic
markers, on the other hand, are not included. Because of the high initial advanced status
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(II/IV 73.7%), only half of the full staging operations (57/114) were completed. Imaging
studies such as CT, MRI, and/or PET-CT were used to assess staging. The majority of
IHC and MSI were performed on biopsy specimens. This is our study limitation. Initial
surgical specimen tumor factors like LVSI (lymph vascular space invasion), LN meta were
not considered in this study population. Instead of clinical lymph node invasion or surgical
LVSI information, we added LN meta sized at recurrence and divided it by 4 groups (Size 1,
2, 3, and 4: <2, 2–5, 5–10, and ≥10 cm) based on imaging result. If data obtained through
15 [High-grade serous carcinoma (n = 32), Squamous cell carcinoma (n = 23), Endometri-
oid adenocarcinoma (n = 22), Clear cell carcinoma (n = 7), Mucinous carcinoma (n = 6),
Leiomyosarcoma (n = 5), Mixed adenocarcinoma (n = 5), Adenosquamous carcinoma
(n = 4), Neuroendocrine carcinoma (n = 2), Carcinosarcoma (n = 2), Endometrial stromal
sarcoma (n = 2), Gestational thromboplastic tumor (n = 1), Mesonephric adenocarcinoma
(n = 1), Endocervical adenocarcinoma (n = 1), Germ cell tumor (n = 1)] pathologic type is
added to existing data, an attempt can be made to increase the accuracy of cancer recur-
rence prediction thanks to the diversity of variables used as inputs for machine learning.
In general, if the number of variables is increased for implementing the machine learning
algorithm, the number of data samples should also increase. However, since the number of
data samples used in this study is small, the performance evaluation of cancer recurrence
prediction was conducted without considering pathology variables. When a larger number
of patient data samples are provided in the future, we will conduct a study to further
increase the probability of predicting cancer recurrence by including pathology data.

In a previous study on ovarian carcinoma prediction [21], a machine learning model,
which can predict platinum sensitivity with high-grade serous ovarian carcinoma, obtains
an LR model with an AUC of 0.741 performed best at identifying platinum-resistant cases.
The LR model is one of the most basic models in machine learning, and it cannot solve
nonlinear problems because it has a linear decision surface. The performance of the LR-
based model for ovarian carcinoma prediction [21] was reported to be comparable or
superior to that of the RF, SVM, or DNN. This means that the ovarian carcinoma prediction
problem is linearly separable, which is uncommon in real-world scenarios. However, when
it came to the relationship between gynecological cancer recurrence and genetic factors, this
study found that the tree-based machine learning method outperformed LR. This means
that the problem of gynecological cancer recurrence is close to a nonlinear problem, and a
more powerful and complex prediction method is required.

Clinicians and patients are curious about the progression of cancer but statistical
analysis and individual courses are different according to complex pathogenic situations
affecting a patient’s illness with the advance of modern technology including diagnostic
and therapeutic modalities [26]. In addition to conventional scarce epidemiology, low
incidence rare diseases such as Lynch syndrome may necessitate special consideration to
improve accuracy and wise decision-making for patients [27]. Because there are many
ambiguities and uncertainties in modern pathology and radiology, there should be an
additional system to support and assist clinicians in making cancer-related decisions [28].
Commercially available information technology is assisting in the efficient enrollment of
clinical trials [29]. This research could be crucial in the future for rare cancer population
standard treatment and clinical trial development. Patients with recurrent cancer face a
slightly different situation than those who were initially diagnosed. The goals of recurrent
patients differ depending on the recurrent location sites and performance status. ICI
has rapidly contributed to cancer treatment also in patients with gynecologic cancer p
but prediction parameters are not solely dependent on specific factors [30]. As of now,
current biomarkers such as PD-L1 IHC are expected to be not adequate for response
under ICIs [31]. Although there are many maps to cancer treatments, there is not yet an
accurate navigator. Our machine-learning-based approach holds promise for predicting
the recurrence of gynecological cancers based on genetic factors, thereby reducing over-
and under-treatment.
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5. Conclusions

This study developed machine learning models to assist clinicians in efficiently treat-
ing gynecologic cancer recurrence with ICIs from genome-based data. Using one-hot
encoding and Fisher’s-exact tests, we identified important features in the given datasets.
Predictive models were developed with selected features using six machine learning al-
gorithms (LR, SVM, NB, RF, GB, and XGBoost), and their performances were compared
in terms of various classification evaluation metrics and AUC. Because of the small size
of the dataset used in this study, we only performed 10 random splits of the training and
test datasets to provide average AUC values. The model’s performance was then assessed
using the 5-fold CV and 5-fold CV with 10 repetitions methods. The experimental results
demonstrated that the RF model had the best prediction performance in gynecologic cancer
recurrence, with AUCs of 0.818 and 0.826 for 5-fold CV and 5-fold CV with 10 repetitions,
respectively. Our findings can help improve the efficiency and accuracy in treating and
predicting treatment response in this rare and specific population.
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