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Abstract
This article focuses on the analytic modeling of responses of cells in the body to ionizing radiation. The related mechanisms are
consecutively taken into account and discussed. A model of the dose- and time-dependent adaptive response is considered for 2
exposure categories: acute and protracted. In case of the latter exposure, we demonstrate that the response plateaus are
expected under the modelling assumptions made. The expected total number of cancer cells as a function of time turns out to be
perfectly described by the Gompertz function. The transition from a collection of cancer cells into a tumor is discussed at length.
Special emphasis is put on the fact that characterizing the growth of a tumor (ie, the increasing mass and volume), the use of
differential equations cannot properly capture the key dynamics—formation of the tumor must exhibit properties of the phase
transition, including self-organization and even self-organized criticality. As an example, a manageable percolation-type phase
transition approach is used to address this problem. Nevertheless, general theory of tumor emergence is difficult to work out
mathematically because experimental observations are limited to the relatively large tumors. Hence, determination of the
conditions around the critical point is uncertain.
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Introduction

The development of cancer in the body by transition of normal

cells to cancerous ones is a complicated multistep process in

which many nonlinear processes play a significant role. A liv-

ing cell is a very complex biophysical system. Radiation-

induced adaptive response, the bystander effect, and abscopal

effects at low-radiation doses and dose rates are the key pro-

cesses that need to be addressed when modeling radiation

carcinogenesis.

According to the classical theory, cancer is initiated by a set

of mutations in certain genes in a cell. The mutations arise

because of inefficient DNA lesion recognition and/or repair.

Unrepaired lesions that result from the DNA replication errors

and the activity of metabolic free radicals can produce sponta-

neous mutations occurring at the rate from about 1�� 10�7 to

5�� 10�6/gene/cell/year.1 This relatively broad range, which is

important for further considerations, may be due to variable

output and/or activity of repair proteins. Their activity, in turn,

can be modified by exogenous stimuli.

Exogenic lesions, caused, for example, by exposure to inter-

mediate and high doses of ionizing radiation, may lead to the

development of cancer through radiation-induced genetic and

epigenetic changes. Within this framework, biological effects

of ionizing radiation are modeled by a step-by-step introduc-

tion of key processes that lead from single changes in the DNA

to a full-blown cancer. In contrast to exposures at intermediate-

and high-radiation doses, absorption of low-radiation doses,

especially when delivered at low dose rates, is unlikely to

produce multiple irreparable DNA lesions but still alerts the

DNA damage surveillance system. This results in a stimulated

repair of numerous DNA lesions in genes, including those

associated with cell replication and metabolism. In this case,

the increased repair capacity of the cells (and therefore of the

whole organism in the case of whole-body exposure), which is
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manifested by a decreased overall rate of fixed mutations in the

DNA, can translate into reduced risk of neoplastic transforma-

tion of cells and of cancer development. The degree of natural

protection stimulated by low-radiation doses depends on the

type of radiation, its dose, and dose rate.

Within a standard adaptive response study design, a small

priming dose is used to upregulate adaptive response mechan-

isms (which represent a mild stress response and in vivo can

involve a hierarchy of natural protective mechanisms).2,3 A large

challenging dose is then administered (usually shortly after the

priming dose), and biological end points (eg, the rates of cell

deaths, mutation or neoplastic transformation) of such a com-

bined exposure are compared to the ones when only the challen-

ging dose is used. A reduced frequency of adverse biological

effects in the presence of the priming dose indicates a rapid

adaptive response (i.e., rapid adaptation) induced between the

2 exposures, which may involve epigenetic changes.4 The prim-

ing dose can be brief or protracted for these effects to take place.

In addition, the priming dose can lead in vivo to reduction in the

rates of mutations5 and neoplastic transformation6 to a level

below the spontaneous frequency, presumably as a result of

upregulation of the body’s natural defenses.2,3

An important role in cancer formation may be played by

close-by and distant cells in a tissue through intercellular sig-

naling. These signals are responsible for induction of bystander

(nearby cells) and abscopal (distant cells) effects. However,

detailed mechanisms of these effects have not yet been fully

resolved and there are inconsistencies in their understanding.

For example, some authors reported that in studies of the

bystander effect, signals from irradiated cells to a unirradiated

cells surrounding an irradiated one exacerbate lesions in the

latter.7,8 However, other studies demonstrate elimination of

such lesions (e.g., Mothersill and Seymour9) through the induc-

tion of apoptosis (eg, self-destruction of both hit and not hit-

transformed cells). The latter is now considered a different

form of adaptive response and relates to stimulated upregula-

tion of natural protective mechanisms.2 In the case of the

bystander effect, one can try to model it (eg, Hattori et al10 and

Khvostunov and Nikjoo11) and use Monte Carlo simulations

(eg, as in the article by Fornalski et al12 and Hattori et al10), and

the result will clearly depend on the employed model. It is

believed that mechanisms of bystander effects and adaptive

response (commonly associated with low-dose exposures) are

basic components of the cellular homeostatic response.7 Adap-

tive response to radiation has been described theoretically and

modeled in a number of ways. However, none of the currently

available quantitative risk models have covered the path from

the deposition of radiation energy in a cell to a developed (i.e.,

neoplastically transformed) cancer cell. As will be discussed in

the sixth section, in order to fully describe this process, it is

evident that any change from a simple collection (set) of can-

cerous cells to a more complex system of a malignant tumor

must be associated with a basic reorganization of the initial set

into a new entity, the properties of which cannot be readily and

uniquely derived from the properties of the initial system. Until

a more precise understanding of the underlying mechanisms is

reached, we will focus only on description of hit cells. Thus,

one has to accept the fact that the calculations presented in this

article will have to be corrected for the 2 aforementioned

effects once their mathematical form and relative strengths are

worked out.

Describing (or modeling) the development of radiogenic

cancer from the initial radiation-induced/exacerbated genetic

and/or radiation-exacerbated genetic and/or epigenetic changes

to a clinically detectable neoplasm may be regarded as an

unattainable task. Moreover, since there are different ways for

cancer to arise, different conceptual models have to be intro-

duced. One of these models was introduced by Hanahan and

Weinberg in their 2 seminal articles.13,14 Their conceptual

model focused on the hallmarks of cancer which provide gui-

dance on the key processes that should be addressed when

developing a quantitative, mechanism-based model for the

development (risk) of cancer.

We propose a possible biophysical interpretation of the pro-

cesses of creation of radiation-induced changes in the DNA and

the ensuing mutations in exposed cells. Transformation of a

mutated cell into a neoplastic one is also discussed. In all these

processes, the adaptive response mechanism (which has been

proposed and successfully used in earlier theoretical studies) is

implemented and discussed. Most of the mathematical formu-

lae will be presented as proper probability functions that can be

used in Monte Carlo simulations.

The article is organized as follows: In the second section, we

address the possible outcomes of exposing a cell to ionizing

radiation. In the third section, the path from lesions to muta-

tions is described, mainly basing on the Random Coincidence

Model—Radiation Adapted (RCM-RA).15 The fourth section

describes adaptive responses of cells exposed to acute or pro-

tracted (continuous) irradiation. This leads to considerations of

transformation of a mutated cell into a cancer cell, including

the relationships between the dose rate and the number of

mutations on the number of the developed cancer cells (fifth

section). A more detailed description of the inception of a

tumor from precancerous cells is the subject of the sixth sec-

tion. Conclusions are presented in the final section of the arti-

cle. The general idea of this modeling utilized by us is

presented as a flowchart in Figure 1. Every step is described

in each section of the article.

Creation of Lesions in a Cell After Deposition
of Radiation Energy

The interaction of ionizing radiation with matter depends on

the type R of radiation and on its energy, E. This interaction is

typically described by the cross-section for a given process, s
(R, E). The cross-section of interaction of ionizing radiation

with matter (or a cell) depends on many physical effects. As an

example, an interaction of a single photon with matter is briefly

described in Appendix A.

Ionization events in the cell may lead to several biophysical

effects. Here, only lesions that may lead to neoplastic transfor-

mation will be considered, such as radiation-induced
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single-strand breaks (SSBs) and double-strand (DSBs) breaks

will be considered.

As an example, for electrons of energies 5.6 eV and 9.6 eV,

the values of SSB cross-sections are 2.4�� 10�14 cm2 and

4.7�� 10�14 cm2, and those of the DSB cross-sections are

4.1�� 10�15 cm2 and 4.5�� 10�15 cm2, that is, the former are

by an order of magnitude smaller than the latter.16

In addition to the cross-sections, one needs also to consider

the probability of a radiation hit at the DNA, Phit, which

depends on the flux of impinging particles, and the surface

density (number per cm2) of the elementary objects (e.g., the

DNA or its secondary structures) to be hit. The probability of a

hit can be combined with the dose D (i.e., dose rate, _D, multi-

plied by time of exposure) absorbed by the object. Such a

dependence may be linear at a low dose; however, one could

postulate that it must saturate at a high dose. Thus, the total

probability function describing the creation of a DNA damage

(lesion) after the radiation hit, PL, can be described as:

PL ¼ AsPhit ¼ As ð1� e�cDÞ; ð1Þ

where A is a normalization constant and c denotes a scaling

constant. Because cross-sections are expressed in barns b (1b¼
10�24 cm2), constant A must be expressed in cm�2. Obviously,

it is the product of the thickness of the target (in cm) and the

numerical density of the interacting objects, (eg, number of

cells per cm3). The concept of Phit in Equation (1) was origi-

nally used by us in the Monte Carlo chain cellular model,17 but

the validity of this formula has not been verified. Now, such a

validation is presented in Appendix B.

Phenomenological Descriptions of Lesions
and Mutations in Irradiated Cells

When a damage to the DNA is identified as a single lesion with

probability PL, one can consider the probability of creating a

mutation resulting from an unrepaired or improperly repaired

lesions. The process of mutation creation may be described by

a polynomial, presumably dependent on the linear energy

transfer (LET) of a given type of radiation R.18 In particular,

one can assume that the probability of a mutation caused by a

mixed radiation field may have the form:

p1 ¼ 1� e
�
P
R

P
i¼0

ai;RDR
i

; ð2Þ

Figure 1. Flowchart of the model used. The meanings of symbols are explained in Table 1 and in the text of the article.

Table 1. Summary of Main Probability Functions in the Presented
Model.

Probability
Function Described Process or Explanation

Phit radiation DNA hit in a cell
PL Creation of the DNA damage from the hit
S1 initiation of single base change or a SSB per unit of time
St any of all considered types of DNA breaks occurring in time
Pm mutation creation per unit of time
PR repair process, reduction of number of lesions per unit of time
PAR radiation-activated mechanism of the adaptive response
PNR natural repair of DNA lesions
Pc(m) cell transformation into a cancer cell due to number of

accumulated mutations in time

Dobrzyński et al 3



where DR represents an absorbed dose of radiation R, and ai,R

are experimentally derived parameters for a given type of

radiation R. Obviously the units of ai,R must ensure the dimen-

sionless product in the exponential function. At low doses,

Equation 2 can be approximated by:

p1 ¼
X
R

X
i¼0

ai;RDR
i: ð3Þ

Equation 3 is used by International Atomic Energy Agency

in biodosimetric standards,19 where aberrations (such as

dicentrics) are used to assess the dose received by the irradiated

person. According to conclusions by Kellerer and Rossi18 and

Szłuińska et al,20 this probability (p1) is linear for high-LET

radiation, such as neutrons (i ¼ 1), and linear-quadratic (i ¼ 1,

2) for low-LET radiation, such as g- or X-rays.

A different approach was proposed by Fleck et al15 who

presented a biophysical model initially considering the prob-

abilities of SSBs and DSBs induced in the DNA either one after

another (SSBs) or during a massive attack of reactive oxygen

species (ROS) or ionizing radiation (DSBs). In their RCM-RA

model, the dose rate serves as a crucial parameter in the role of

ionizing radiation in this process. Assuming that the metabolic

chemical burden production rate is C (per unit time) and the

dose rate is _D, the probability of a single base change or an SSB

per unit of time is (original abbreviations):

S1 ¼ aC þ b _D; ð4Þ

where a and b are weighting factors. The first term on the

right side of Equation 4 describes the probability of damage

(per unit time and a nucleotide) arising from the natural meta-

bolism. The second term describes a similar effect, caused by

ionizing radiation. The b constant (in Sv�1 times the time

unit) has also been calculated (for low-LET radiation only)

by Fleck et al15 as seen in their equation (A.10). The a coeffi-

cient is dimensionless.

Let the average time needed for error-free repair be t. It

may be expected that this must depend on the efficiency of

repair enzymes. The average number of repaired lesions

within t is:

S2 ¼ ðaC þ b _DÞt: ð5Þ

Consequently, the probability per unit time of the devel-

opment of a DSB as a result of the sequential production of

2 SSBs closely related in space and time should be propor-

tional to:

St ¼ ðaC þ b _DÞ2t: ð6Þ

In this model,15 the rate of the poorly repairable DSBs is

linear in the time needed to repair single lesions. Even if this

assumption may not necessarily hold true, it may be accepted

as a first approximation. The kinetics of a DSB repair in

humans was recently considered in greater detail by Jain

et al21 who demonstrated that irradiation at low dose rates

increases the efficiency of such a repair. This finding is impor-

tant in view of the level of complexity of such repair of the

naturally created DSBs. This involves a synchronized action of

dozens of proteins involved in the 2 repair pathways, homo-

logical and nonhomological, occurring with different accumu-

lation speeds. In the meta-analysis carried out by Kochan

et al,22 the kinetics of the DSB proteins behaves with time t

as 1� expð�t=t1Þ, where the characteristic time t1 is the

inverse accumulation speed, which could be modified by adap-

tive mechanisms.

Assuming that the production of the repair enzymes

increases up to the saturation at a certain equilibrium, Fleck

et al15 argue that it is reasonable to assume that the average

repair time must decrease in a manner inversely proportional to

ð1þ d _DÞ, where d is a coefficient related to the enzyme pro-

duction rate, possibly dependent on LET. This assumption

stems from the following reasoning: The higher the radiation

dose rate, the greater the number of the induced repair enzymes

per time unit. With the elevated efficiency of the repair

enzymes, the probability of their presence in a close proximity

to a damaged DNA fragment must increase. Hence, the average

repair time of the damaged fragments should decrease with

increasing dose rate. Equation 6 will then take the form:

St ¼ ðaC þ b _DÞ2 t0
1þ d _D

; ð7Þ

where t0 denotes the characteristic repair time for the

nonradiation-induced lesions. At a sufficiently large aC, this

equation exhibits an apparent hormetic-like dip of St at the low-

dose rate exposure:

_Dmin ¼
daC � 2b

bd
: ð8Þ

Instead of reliance on the postulated Equation 7, one could

alternatively assume:

St ¼ ðaC þ b _DÞ2t0e�d _D; ð9Þ

which, at small values of d _D, is not very different from Equa-

tion 7. Equation 9 represents a reverse situation: Instead of

observing the minimum, the function in Equation 9 exhibits a

maximum at the value:

_Dmax ¼
2b� daC

bd
: ð10Þ

This shows that the final description of St is very sensitive to

assumptions, so one should be careful with postulating a defi-

nite formula for the dependence of repair time on the dose rate.

In fact, the main assumption which led Fleck et al15 to propose

such a dependence (Equation 7) was that production of the

repair enzymes increases linearly with dose rate, which may

not necessarily be the case. To conclude, we note that Equation

8 offers a limit on the coefficient d, namely, d must be �2b/

(aC) if one accepts the shortening of t with the dose rate as in

Equation 7, and <2b/(aC) if one accepts Equation 9. Appar-

ently, since the number of DNA lesions should initially

increase and decrease only after maximal accumulation of the

4 Dose-Response: An International Journal



repair enzymes,22 Equation 9 could also be accepted based on

such phenomenological considerations.

Let us note that at very low dose rates the St values

behaves as:

St* const ð1� d _DÞ; ð11Þ

where const ¼ ðaCÞ2t0. Let us also note that the positive value

of ð _DÞmin may equally well bind any of the 4 constants appear-

ing in the Equation 8. The hormetic-like minimum observed in

Figure 1 of Fleck et al15 can be explained based on the assump-

tion of reduction in repair time with the dose rate as in Equation

7 without considering that the repair time may vary with time

after irradiation. Last but not the least, at high dose rates, St

becomes either proportional to the dose rate, if Equation 7 is

used, or tends to zero, if Equation 9 is used. In the former case,

one observes a linear no-threshold (LNT) behavior, while

Equation 9 demonstrates the decreasing probability of DSBs

production due to the shortening of the time of the first SSB

repair. In such a situation, a DSB would be expected to mainly

be produced by a mechanism different than the consecutive

induction of 2 juxtaposed SSBs. At very low dose rates or at

small value of d, the use of either Equation 7 or Equation 9

practically yields the same results.

Fleck et al15 assumed that the repair of double lesions of all

possible kinds cannot be successful (is error-prone) and that the

rate of their appearance is proportional to the dose rate. With

this assumption, Fleck et al15 showed that the proportionality

constant has the form ð1=fnucÞzFb2, where fnuc denotes the aver-

age fraction of the volume of a cell nuclei (about 0.3), and zF is

the mean specific energy per event deposited in a critical vol-

ume. Thus, the modified St of Equation 8 is:

St ¼ ðaC þ b _DÞ2t0e�d _D þ ð1=fnucÞzFb2 _D: ð12Þ

It is easy to check that the second term on right-hand side of

this equation has the dimension of the inverse of time, for

example, 1/s. Equation 12 can still be supplemented by a term

accounting for cell killing. Again, this model leads to LNT-

type relationship at high dose rates and should not be used in

the considered range of dose rates. In the modification of the

RCM-RA model23 published 2 years later after the report of

Fleck et al,15 the average deposited energy zF was substituted

by zFþ ¼ D
1�e�D=zF , where D denotes the person’s lifetime dose

(whether it includes natural background radiation is not clearly

stated in the cited article), and zFþ corresponds to the “mean of

the specific energy deposited in the affected cell volumes, that

is, volumes that have experienced at least one energy deposi-

tion event.”

Equation 12 can be modified by taking SSBs into account,

using the same notion as in Equation 3 (or Equation 2 in gen-

eral). However, SSBs are usually efficiently repaired, and the

unrepaired DSBs dominate, so, for practical reasons, there is no

need to make such a modification.

Using Equation 12 with the first term as in Equation 7, the

authors of the RCM-RA model15,23 obtained an almost perfect

fit to the Cohen data,24 corrected for smoking, which means

that within the scope of the cited articles, SSBs appear to play a

minor role in the creation of mutations and the ensuing neo-

plastic transformations of cells. The authors of the RCM-RA

model got a relatively shallow minimum of the lung cancer

mortality after exposures at a very low dose rate (roughly

1 mGy/y) and the apparently steady increase at higher dose

rates. Such an increase has been attributed to the differential

inhibition of the body’s natural anticancer defences.4 Within

the indicated article (which introduces a hormetic relative risk

[HRR] model), stochastic thresholds for inhibition apply. In

view of some other reports on the effects of radon exposures,25

this increase in the considered range of doses/dose rates is

questionable.

For a more complete description of the development of a

mutation, one needs to include the probability of the creation

of a lesion, PL, which is represented by Equation 1. As men-

tioned earlier, some additional appropriate repair mechanisms

need to be accounted for in that modified formula as well to

allow for a reduced probability of the creation of a mutation.

Only after considering the expected reduction in the number

of lesions by the repair of the DNA damage sites (such as

SSBs and DSBs), one can reliably calculate the expected

number of point mutations. In addition, as discussed subse-

quently, one mutation is not likely to produce a cancer cell.

Thus, the joint probability function of mutation’s creation per

unit of time can be presented as:

Pmutation ¼ PL � p1� � ðSt � PRÞ; ð13Þ

where p1 represents probability of stable mutation and PR is the

general probability function (per unit of time) that describes

repair mechanisms additional to the one already used in St (time

dependent probability of creation of unrepairable DSB lesion

with included repair mechanism of SSB). Let us recall that

probabilities PL and p1 are dimensionless. Equation 13 is con-

sistent with (but different from) the Feinendegen’s model of

dual action.26,27 The probability of the occurrence of detrimen-

tal effects, St, can be described by Equation 12 or by other

forms, such as the one presented by Dobrzyński et al.28

The repair probability, PR, can be generally composed of

2 main components (PR ¼ PNR þ PAR): natural repair of the

DNA lesions (cell age dependent and possibly genetically

determined), PNR, and the radiation-activated mechanism of

adaptive response, PAR. That these 2 repair mechanisms can

be simply added is the assumption only, valid when the

radiation-induced repair is not making use of the natural

protective mechanisms. If this is not the case, PAR should

be considered as PNR (1 þ RI), where RI is describing sti-

mulation of the natural protection due to radiation. PNR can

likely be approximated by the inverted sigmoidal function

(the Mehl-Avrami equation), where the repair possibilities

decrease over time:

PNR ¼ C e�a Kn

; ð14Þ

where C and a are scaling constants and K is the normalized age

of the irradiated cell, that is, the real time divided by an

Dobrzyński et al 5



accepted characteristic time constant. The parameter n is of

crucial importance because it is determined by downregulation

of the repair enzymes with the cell’s age.

A large fraction of unrepaired cells also undergo mitotic

death or apoptosis (programmed cell death) and thus do not

contribute to the mutation load.29 In the context of oncogenesis,

both types of cell death offer a “successful” resolution of inef-

fective repair of the DNA damage, especially after a small

number of dead cells can be tolerated. Moreover, it seems that

removal of already transformed cells is also possible after irra-

diation at low doses through intercellular apoptotic signaling.29

Adaptive Response to Ionizing Radiation

The adaptive response phenomena include triggering of repair

mechanisms, especially in the DNA, after irradiation of cells,

tissues, or whole organisms. The number and efficiency of the

activated repair enzymes are associated with the number of

ionization events, which depend on the dose and dose rate.

Adaptive response is assumed to be reasonably well accounted

for using equations similar to Equations 2 or 3. The main

implication of the latter is that the efficiency of repair is

expected to grow continuously with the dose of radiation. How-

ever, since the effectiveness of repair saturates at high doses,

this equation is expected to be reliable only for low doses.

Additionally, one can assume that the efficiency of the

repair enzymes decreases exponentially with increasing dose.

In what follows, we shall use an exponential decay in which:

p2 ¼ e�bD: ð15Þ

Finally, the dose/dose-rate related probability of the effec-

tiveness of the repair enzymes can be described as a product of

Equations 3 and 15:

PðDÞ ¼ p1p2 ¼
X
R

X
i¼0

ai;RDR
i

 !
e�bD: ð16Þ

As already mentioned, all Equations 2, 3, 15, and 16 are

connected with the dose/dose–rate relation.

With respect to the time dependence, one can assume, as the

first approach, that the number of repair enzymes and their

effectiveness increases with time (after an initiating event) with

a probability:

p3 ¼ m0 þ m t; ð17Þ

where m describes the enzyme production rate after a pulse of

radiation. This assumption should be not far from reality, espe-

cially at short times after the irradiation.

If one considers a single radiation pulse only, the effective-

ness of the activated enzymes, after the initial rise in their

concentration, must also decrease with time with a certain time

constant (lifetime), 1/l.19 Were the probability of such a

decrease per unit of time constant, this decrease would be

described by:

p4 ¼ e�l t; ð18Þ

which finally would lead to the overall time dependence:

PðtÞ ¼ p3p4 ¼ ðm0 þ mtÞe�lt: ð19Þ

The general shape of Equation 19 is similar to the shape of

Equation 16 and can be generalized in an analogous manner:

PðtÞ ¼
X
n¼0

mnt
n

 !
e�l t; ð20Þ

where the index n may be of noninteger type as the proportion-

ality of p3 with time still remaining an arbitrary assumption.

For practical reasons, however, the simplified form given by

Equation 19 is preferred.

Finally, the joint probability function of the adaptive

response should be dependent on both the dose-rate, _D, and

the time, t. Obviously, the product of these 2 parameters is the

absorbed dose. One should also note that at high doses the

consideration of a time-dependent adaptive response makes

no sense because of the smallness or non-existence of adapted-

ness.30 In numerical calculations, one introduces time steps, k 2
{1, . . . , kmax} and the dose per unit time step (D), that is, the

dose rate rather than the dose. The value of the time step has to

be chosen independently. It seems convenient to use the time

step equal to t as introduced in Equation 5. As indicated earlier,

both variables can be used independently in 2 different equa-

tions, depending on the context. Thus, the simplest forms of the

appropriate functions are:

PðDÞ ¼ a1D
ne�a2D; ð21Þ

PðkÞ ¼ a4k
me�a3k : ð22Þ

Let us note that the normalization constants, a1 and a4, are

dependent on the remaining parameters n and m (higher than 1

to obtain a hunchbacked shape of the curves) so that a1¼ a1 (n,

a2), and a4¼ a4 (m, a3). The true dependence is determined by

the assumed ranges of D and k, respectively. This approach was

successfully used in the Monte Carlo modeling, where the joint

probability function of the adaptive response was calculated in

a discrete form12,28,30:

PAR ¼ C
XK
k¼0

DnðK � kÞme�a2D�a3ðK�kÞ; ð23Þ

where C represents a normalization constant and K the cell’s

age given as the number of elementary time steps. This equa-

tion may be written in a continuous form12,28,30:

PAR ¼ C

ZT
t¼0

_D
n ðT � tÞme�a2 _D�a3ðT�tÞ dt: ð24Þ

Let us note that D in Equation (23) denotes the dose per time

step, whereas the dose rate in the continuous form (Equation

24) means the dose per unit of time. Obviously, such a mod-

ification requires the appropriate change in interpretation of the

coefficients a2 and a3.
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The subtle point in calculations is that one should distin-

guish whether the dose was delivered in a single step or con-

tinuously over a period of time. If the dose is delivered in the

l’th step only, its effect at the h’th time step will be described

by the simplified version of Equation 23. However, if the dose

is delivered continuously from time h0 to time h1, the situation

at each time step becomes more complicated and for the v’th

time step:

PðD; v; h0; h1Þ ¼ C Dne�a2D
Xh1
h0

ðv� hÞme�a3ðv�hÞ; ð25Þ

where summation runs over h and v � h1, and the dose D

should be understood as a constant dose/step, that is, effec-

tively, the dose rate. If the time step is small enough, the sum

of the discrete values on the right-hand side of Equation 25 can

be changed to an integral as in Equation 24:

PðD; tÞ ¼ C Dne�a2D IðtÞ; ð26Þ

where D denotes a single-dose pulse delivered time t ago.

The appropriate formulas of the function I(t) are given in

Appendix C.

In experiments like those carried out by Jain et al,21 the time

of observation after the irradiation was close to t or not more

than a few times longer.

The abovementioned considerations are important if one

wants to characterize specific situations in regions with the

elevated background radiation. In the aforementioned article

by Jain et al,21 the level of background radiation was regarded

as a priming dose relative to the additional challenge dose to

the cells. The first dose was absorbed during chronic

(environmental) irradiation, whereas the second dose (up to

2 Gy) was applied over 0.5 to 2 minutes, that is, in a much

shorter time than the one needed for the development of any

adverse reactions as well as of repair mechanisms. In a typical

experiment31,32 demonstrating the adaptive response in cells,

both priming and challenging doses were acute, that is, applied

within a short period of time.

Figure 2 shows a typical priming-dose effect as a special

example of the adaptive response (as modeled by us, Equations

21 and 22), when m ¼ 1 for 2 irradiation times. For ease of the

comparison, both curves were normalized to the same maxi-

mum. Figure 2 displays the case of m ¼ 2 (Equations 21 and

22) and the irradiation applied between the 2nd and 20th time

step. One can note the qualitative behavior of this response

versus time which is not much different from the assumed

response in each time step. During the irradiation, the response

smoothly increases with every time step but does not saturate,

indicating that the assumed model may not work. If it worked

with chronic irradiation (eg, during environmental exposures),

we should grow more resistant to it with age (the probability of

adaptation saturates at older age). Obviously, our own immu-

nological fitness deteriorates with time, so this effect must be

included in such considerations. The problem is resolved when

the calculated irradiation time increases. Figure 3 shows

response to the irradiation time 5 times longer than in the case

shown in Figure 2. The response is apparently flattening out

and decreases relatively soon after discontinuation of the irra-

diation. Such a dependence shows that chronic exposures cause

a constant adaptation of the organism to radiation which was

also demonstrated in the earlier Monte Carlo studies.30

Although the strength of the maximal adaptive response is

Figure 2. Normalized adaptive response (as modeled by us, Equations 21 and 22). Irradiation time 2-5 steps (red), and 2-20 steps (blue) for
m ¼ 1 (figure on the left) and m ¼ 2 (figure on the right).
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limited, it can still be substantial. Therefore, as observed by

Jain et al,21 inhabitants of regions with a substantially ele-

vated background radiation can indeed present a higher

radio-resistance.

If the dose rate becomes too high for the enzymes to perform

the error-free repair, the constant parameter related to the dose

rate (e.g., b in Equation 15) should have the meaning of the

inverse of characteristic dose rate which describes the effec-

tiveness of the enzymes. In a more restrictive reasoning, one

should bear in mind that the formula like Equation 2 may be

different for low- and high-dose rates. We know that different

groups of genes are involved in repair actions in these 2

regimes, so to stay on the safe side one has to limit our con-

siderations to low-dose rates. Thus, the fundamental back-

ground of the adaptive response effect is described by

Equations 21 and 22, with the most general form of:

PðxÞ ¼ a xne�l x; ð27Þ

where x may denote the dose, dose rate, as well as the time.

Were the validity of Equations 2 and 3 questioned, Equation

27 would still look reasonable. The hunchbacked shape of

Equation 27 is commonly encountered in the literature. For

example, Feinendegen found that the probability of the

induction of adaptive response should be given by the prob-

ability distribution function with the maximum at low doses

and the strongest effect being apparent after some period of

time.33 The shape of this simple function is governed by 2

parameters, n and l, only.

The maximum value of Equation 32 is attained at:

xmax ¼
n

l
; ð28Þ

where it reads:

Pmax ¼ a
n

l e

� �n
: ð29Þ

In a special case of chronic irradiation, one can easily cal-

culate the mean lifetime or the mean survival fraction of the

repair enzymes (or their effectiveness):

< x > ¼
R1
0 xnþ1e�lxdxR1
0 xne�lxdx

: ð30Þ

Because:

Ptotal ¼
Z1
0

axne�l xdx ¼ a
n!

lnþ1
; ð31Þ

the mean lifetime < x > becomes equal to:

< x > ¼ nþ 1

l
ð32Þ

One can note that the chronic low-rate irradiation can be

treated as an infinite series of small radiation pulses. Indeed,

integrating the sequence of Equation 27 from time zero to

infinity after the irradiation time, one obtains:

Pt ¼ a
Z1
0

ðt þ yÞe�l ðtþyÞdy ¼ a
1þ lt

l2
e�lt: ð33Þ

This result shows that in spite of a linear increase in total

dose at longer times, this probability exponentially decreases

with time with the rate of the initial reaction to dose, that is, 1/

l. Initially, the probability increases although nonlinearly. The

same effect is observed when the leading coefficient in

Equation 27 is changed to t2. Then Pt changes to:

Pt ¼ a
Z1
0

ðt þ yÞ2e�l ðtþyÞdy ¼ a
2þ 2lt þ l2t2

l3
e�lt: ð34Þ

Neoplastic Transformation of Mutated Cells

While the description presented earlier was given in terms of

dose rates, the cumulative dose itself can be considered as well.

In fact, so far, the only need for the time variable has been to

address repair of individual SSBs and the adaptive response.

This repair time is stochastic rather than deterministic and is

relatively short (according to Fleck et al,15 it takes about 40

minutes), so one speaks about very low doses when one con-

siders low dose rates. At such doses, the epigenetic term in, for

example, Equation 4 dominates, and therefore the second term

on the right-hand side of Equation 11 can make a difference.

This term strictly relates to a specific cell response to irradia-

tion: production of the hard-to-repair DSBs. This response,

however, even if happens in individual cells, in tissues should

also strongly depend on the time elapsed since the irradiation.

At a constant dose rate, the number of the repair-resistant DSBs

should increase with time as should the number of the mutated

cells. In Equation 11, the second term reflects the LNT

approach. Thus, one must take into account that the organism

counteracts a defective DSB and other lesions in tissues using

Figure 3. Same as Figure 2 for longer irradiation time (1-100 time
steps).
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repair mechanisms (natural and adaptive responses) as pro-

posed in Equation 13.

Neglecting cooperation between cells, Fleck et al15 sug-

gested that the time-dependent generation of cells with the first

mutation (the number of cells per person at time t which

incurred 1st mutation, M1) should be governed by the equation:

dM1

dt
¼ ðB0M0 � B1M1ÞPm ð35Þ

where Pm denotes Pmutation, see Equation 13. M0 in this equa-

tion denotes the number of nonmutated cells, while B0 is

interpreted as the “number of critical DNA bases in critical

codons of all tumour associated genes per cell.” According to

the Human Genome Project (note 1), a human genome con-

tains about 25 000 coding genes composed of approximately 3

billion DNA base pairs. It seems that the genome includes 291

cancer-associated genes, and more than 1% of all genes are

thought to be involved in carcinogenesis.34 Hence, about 1%
of all the DNA bases are likely to represent such a critical

value of B0.

For cells of the same tissue, one can assume that B1 (the

value similar to B0, but after the first mutation) should not be

much different from B0. It would seem that there should be a

minor error if both of these coefficients were substituted by a

single one, B ¼ B0 ¼ B1. Let us note that in the original for-

mulation by Fleck et al,15 the last multiplier on the right-hand

side of Equation 35 is St. In order to preserve our reasoning, this

function was replaced by the probability of mutation, Pm,

which is much closer to reality.

The solution of differential Equation 35 is:

M1 ¼ M0ð1� e�BPmtÞ; ð36Þ

which shows at small values of time a linear growth of M1 with

time (as in equation B37 in Fleck et al15) and at high t-values a

saturation (equilibrium), hence M1 ¼ M0.The saturation, how-

ever, most likely overestimates the number of single mutated

cells, as M1 ¼ M0 means that the number of mutated cells is

equal to the number of all cells.

To find the expected number of cells with 2 mutations, Fleck

et al15 consistently suggests equation similar to Equation 36:

dM2

dt
¼ ðM1 �M2ÞPm: ð37Þ

The solution is:

M2 ¼ M1 1� e�BPmt
� �

¼ M0 1� e�BPmt
� �2

: ð38Þ

With the increase in time, the number of such cells must be

smaller than M1. Equation 38 can next be easily generalized to

the case of m mutations per cell (see Equation 40). It is impor-

tant to note that according to this procedure, the number of

mutated cells grows sigmoidally with time. This may indeed

be expected as was shown in aforementioned article28 in which

the sigmoidal dependence on dose resulted from overlapping

number of linear dependencies.

It is not easy to calculate how the number of repair enzymes

depends on time. However, one can assume that the growth

should also be described by a sigmoidal function, so the pos-

tulated Equation 37 must be modified. Furthermore, since the

number of mutations necessary for a neoplastic transformation

of a cell is between 2 and 8,35-38 one can use a formula analo-

gous to Equation 38 but with powers 2 to 8. It may be noted that

in order to employ their modeling approach to fitting the

Cohen24 data on lung cancer versus dose, Fleck et al15 used

the power m ¼ 5, which seemed optimal.

The number of mutations in a cell, m, is critical for a pos-

sible neoplastic transformation to occur. One can assume that

the probability of this transformation is 1 at, say, 10 mutations

and may depend on the number of mutations in sigmoidal

fashion using the Avrami-Mehl equation28 as:

PcðmÞ ¼ 1� e�0:0277m
k

; ð39Þ

which for m ¼ 5 and k ¼ 2 is close to 0.5 and saturates quickly

to 1.0 at larger m values. Obviously, that form of the sigmoidal

curve with its ad hoc assigned parameter value, as proposed

here in Equation 39, does not follow from any first princi-

ples.35-37 Generalizing Equation 38 to the case of m mutations:

Mm ¼ M0 1� e�B Pm t
� �m

: ð40Þ

Using Equation 39, one should get some estimation of the

number of cells with m mutations that transform to cancer cells:

Ncancðm; tÞ ¼ M0 1� e�BPmt
� �m

1� e�0:0277m
k

� �
: ð41Þ

Equation 41 does not take into account any cooperative

action within a collection of cells. It relates only to the

creation of cancer cells from the mutated ones. As an exam-

ple, Figure 4 shows contour plots in the coordinate system

m-t for B�Pm ¼ 0.01 and for the exponent k in the Equation

41 equal to 2 and 4.

The development described by Equation 41 must terminate

when the number of cancer cells, that is, the sum of Ncanc (m, t)

over m:

NcancerðtÞ ¼
X
m

Ncancðm; tÞ; ð42Þ

attains some critical value at which the voluminous tumor

growth starts. Let us denote the time at which such a situation

happens by tcr. Figure 5 shows Ncancer (t) calculated under the

assumption that the factor B is constant (independent of m)

which to our understanding may be the case. Figure 5 shows

that the calculated proliferation rate of cancer cells with time

increases with the increasing critical index of cancer growth.

This is reasonable as the increase in the critical index means

that the rate of transformation to a cancer cell must rise. In all

cases, the curves Ncancer (t) in Figure 5 exhibit a saturation and

resemble the sigmoidal Gompertz curves. Of note, this satu-

rated value, after summing up contributions from all values of

m, can be calculated as:
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Ncancmax ¼ lim
t!1

X
m

Ncancðm; tÞ ¼
X
m

M0 1� e�0:0277m
k

� �
ð43Þ

In a special case when m � 4 and k � 4, one can write that

Ncancmax � m�M0. The curves in Figure 5 are qualitatively

similar to the ones obtained by an analytical approach of Dobr-

zyński et al,28 (see their Figure 3). The shape of all of the curves

is virtually identical, differing only by a multiplication factor.

These curves are, however, quite different from the ones

obtained by Fornalski et al17 who used Monte Carlo simula-

tions of the cancer cells’ growth. As mentioned earlier, these

curves can be perfectly described by the Gompertz curve; Fig-

ure 6 shows the fit of the Gompertz curve Ncancer (t) ¼
8.27844�exp[�6.51319�exp(�0.010028�t)] to the calculated

points for the exemplary case of k ¼ 4 from Figure 5. To the

best of the authors knowledge, this is the first demonstration of

the Gompertz curve (which traditionally describes the time of

growth of cancer cells39) to be obtained from the combination

of the probabilities and the basic biophysical properties con-

sidered in this article. (It is particularly noteworthy that the

presented calculations, especially Equation 42, do not take into

account the processes of cell divisions and deaths that could

modify the curves Ncancer (t).)

As was shown by Dobrzyński et al,28 in Equation 13, the

tumor growth can be also described by the Mehl-Avrami type

of equation, which is based on the nucleation and growth the-

ory. It is important to understand that “it takes a tissue to make

a tumour,”40 and that “the cancer induction is more a function

of the tissue response and not a single cell response.”41 Thus,

consideration of what happens in specific cells rather than in a

whole tissue is not sufficient. The tumor growth over time is

governed by a critical index n showing the spatial type of

the growth: linear, 2-dimensional (2D), or 3-dimensional

Figure 4. Relative number of cancer cells versus time, t, and the
number of mutations per cell, m, for various critical exponents
k ¼ 2 (upper figure) and 4 (lower figure).

Figure 5. Number of cancer cells versus time. The curves in ascend-
ing order (from brown to blue) correspond to k ¼ 1, 2, 3 and 4,
calculated using Equation 42 and the assumption of B�Pm¼0.01.

Figure 6. Calculated number of cancer cells versus time (open cir-
cles) from the special case of k¼ 4 from Figure 5, with B�Pm¼ 0.1. The
fitted Gompertz function Ncancer(t) ¼ 8.27844�exp[-6.51319�exp(-
0.010028�t)] (solid line).
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(3D; n ¼ 2, 3, and 4, respectively). Finally, the achieved tumor

volume expressed in terms of the number of cells is character-

ized by:

V ¼ Ncancmax½1� e�gðt�tcrÞ
n

�; ð44Þ

where Ncancmax denotes the number of cancer cells in this

volume, so Ncancmax corresponds to the maximum given by

Equation 43 (see Figure 6). Similar reasoning was used by

Laird39 who originally connected the Gompertz function with

tumor growth. The coefficient g must be proportional to the

dose rate with the same power index, n, so the argument of the

exponent in Equation 44 is directly connected with the dose as

indicated by Dobrzyński et al.28

One can wonder when exactly begins the growth of a 3D

cancer. This may be just a singular (critical) point as is common

in phase transitions or in catastrophes. Transition to a self-

organized state may also be considered. Whether or not this

relates in any way to the self-organized criticality theory42 is

not yet clear.

In fact, it can be assumed that in a multistep process of

carcinogenesis,13 each step marks a phase transition. Conse-

quently, the “cancer energy” landscape of a biological system

can be represented by a multitude of energy valleys separated

by potential barriers.

The choice of the critical index, n, is not trivial; however, it

seems reasonable to limit it to 4. Because of the complex nature

of a tumor, growth this index may not even be an integer. Once

again, it is crucial to recognize whether one is considering the

acute or chronic radiation exposure.

On Cancer Growth

Modeling carcinogenesis is an extremely difficult task because

of the multitude and diversity of cancers as well as their many

biological and geometrical features that have to be taken into

account. As an example, one can consider a hypothetical case

of a spherical tumor that obtains its nutrients from the sur-

rounding tissues before the development of its own vascular

system. The nutrients enter the tumor by diffusion, and their

supply decreases with time. A solid tumor itself can contain the

inner sphere of dead cells and the outer shell of live cancer

cells, both quiescent and actively proliferating (eg, Aguda and

Friedman43 and La Porta and Zapperi S 44). In a slightly more

mathematically complicated model than the ones considered

heretofore by us, after neglecting the shell of the quiescent cells

and assuming a constant rate of the nutrients’ consumption, one

finds45 that the volume of the tumour changes with time

according to equation:

_V ¼ kV

g
1� V

W

� �g� 	
; ð45Þ

where g ¼ 2/3, k ¼ 2a (cz-ca)/3, a is a scaling constant,

W ¼ 4p
3

15
G ðcz � caÞ

 �3=2

; where cz denotes the concentration of

nutrients available outside of the tumor, ca is a constant that

relates to apoptotic cell death, and G denotes the rate of the

consumption of nutrients. If not for the exponent g, the Equa-

tion 45 would be identical to a logistic equation (if g ¼ 1) with

limiting value of the volume.

A more advanced approach to spherical tumors is presented

by Jiang et al.46 Valuable reviews of other analytical models of

tumor growth can be found in the already cited book by Aguda

and Friedman43 and a recent monograph by La Porta and Zap-

peri.44 Most of these models describe in mathematical terms

the biology of cancer formation. In this respect, Equation 45

and the ones discussed by us in the previous sections present

simplified approaches to this very complicated problem. A

multiscale model of avascular tumor growth was also consid-

ered in detail in the book by Aguda and Friedman.43 By using

the real data on the colorectal cancer, which has a spheroid

shape, these authors showed excellent agreement of their

experimental results with those of the Monte Carlo calculations

shown in Figure 5 of the work presented by Jiang et al.46 The

time dependence of the elementary volumes of clusters has

been assumed to fulfill special requirements related to the

capacity of cell division. As a result, the growth of the tumor

volume turned out to be fairly well described, while the growth

curve could be fitted with the Gompertz function. On the other

hand, the solution of Equation 45 leads to time dependences

with shapes similar to the logistic curve as well as to the one

showed in Figure 6.

The models presented thus far may be useful in characteriz-

ing the time dependence of the carcinogenic process. They rely

on the following simplistic reasoning: the DNA in cells is

attacked by ionizing radiation (which is our focus) as well as

by free radicals (produced during normal aerobic metabolism)

that evoke lesions in the DNA structure. If unrepaired, these

lesions may be passed on to the next-generation cells and give

rise to mutations which, when expressed in proto-oncogenes

and tumor suppressor genes, may lead to neoplastic transfor-

mations of cells.

As indicated earlier, the existence of radioadaptive

responses induced by low-dose irradiations invalidates LNT

model employed as a basis for radiation protection regula-

tions.3 This is because radiation doses used to demonstrate the

adaptive response (a small dose followed by a large dose) are

not additive as required by the LNT model. Moreover, accord-

ing to this model, potential mutations and neoplastic transfor-

mations caused by absorption of low-radiation doses add to the

number of spontaneously produced mutations and transforma-

tions. However, actual data show that exposures at small radia-

tion doses downregulate rather than increase the amount of

such spontaneous effects.2,3,5,47

It is now commonly accepted that cancer indeed arises from

a single cell transformed through a series of genetic mutations,

epigenetic events, and environmental determinants that cause

and sustain ectopic expression of growth-related genes (see the

reviews by Kreso and Dick48 and Islam et al49). The cardinal

property of this single cell is its “stemness,” that is, the capacity

for self-renewal and multilineage differentiation into subclones

of daughter cells that, after further genetic and epigenetic

changes, produce heterogenous populations of cancer cells that
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shape the complex ecosystem of each neoplasm (Allison and

Sledge50).

Let’s look at this evolving ecosystem of cancer from another

angle. It is clear that by passing from single cells to tissues and

to organs, the organization of the system changes significantly.

Since one deals with a complex system,51 description of the

changes should closely follow the rules of phase transitions (eg,

Stanley52) and of self-organization and complexity (eg, Hey-

lighen53 and Kauffman54). As pointed out by Heylighen,53

“complex systems consist of many (or at least several) parts

that are connected via their interactions. Their components are

both distinct and connected, both autonomous and to some

degree mutually dependent.” The other feature of a complex

system is that its main units (in this case, cancer cells) are free

in the sense that they can multiply or die. Obviously, this

description fully reflects cancer development in the environ-

ment of normal cells and the extracellular matrix. Notably,

however, a rather fundamental question of the nature of cancer

cells has not been answered so far. According to Soto and

Sonnenschein,55 a cancer represents a problem of tissue orga-

nization in which emergent phenomena (characteristic for com-

plex systems) are of primary importance. Likewise, Mansury

et al56 highlight the fact that “linear adding-up of individual

cell behavior is invalid in the presence of the hypothesized

nonlinear interaction among tumor cells and their environment.

Moreover, nonlinearity would render it virtually impossible to

predict the long-run dynamics of the system using a purely

analytical approach.” Consequently, one must expect the dis-

continuities in a description of the transitions “from a photon/

particle to a cell to a tissue and to a cancer.” In fact, even on the

level of genes and cells, one observes emergent phenomena and

the self-organized criticality (eg, Tsuchiya et al57). Notably,

Mansury et al56 who claim that “malignant tumors behave as

complex dynamic self-organizing and adaptive biosystems”

also indicate that distinct phase-transition properties can be

found in the number of cancer cell clusters and their temporal

behavior versus the intrinsic capability of a single cancer cell to

migrate. In this context, another important question is whether

the once formed cancer cell stays as such until its death.58

Apparently, none of the earlier discussed analytical approaches

addresses this question. One can also point out the remark by

Prehn59 that a cancer may not be caused solely by mutations in

the DNA, and a cancer cell may not stay as such forever (ie, can

reverse to a normal cell state). Sotto and Sonnenschein55 sug-

gest therefore that “it may be more correct to say that cancers

beget mutations than it is to say that mutations beget cancers.”

In their seminal articles, Hanahan and Weinberg13,14 indi-

cate that during carcinogenesis, neoplastically transformed

cells acquire critical features called “the hallmarks of cancer.”

These include growth factors self-sufficiency, insensitivity to

antigrowth signaling, evasion of programmed cell death (apop-

tosis), limitless replicative potential, sustained angiogenesis,

ability to invade and metastasize, genome instability and

enhanced mutation rate, reprogramming of the energy metabo-

lism, and evasion of immune destruction. Additionally, Freder-

ica Cavallo and coworkers60 proposed 2 “immune hallmarks,”

that is, the ability of cancer cells to thrive in a chronically

inflamed environment and to suppress immune reactivity.

At the beginning of the 21st century, Schreiber and his

colleagues described a process called “cancer immunoediting,”

whereby the immune system, the most potent guardian against

neoplasia, prevents cancer development at the early stages of

carcinogenesis but also shapes (“edits”) immunogenicity of

neoplastic cells and contributes to cancer development.61-63

The cancer immunoediting process can be divided into 3

consecutive phases: (1) elimination during which incipient can-

cer cells are recognized by the alarmed innate immune system

that triggers adaptive immune responses that specifically detect

and destroy neoplastic cells; (2) equilibrium, when humoral

and cellular immune mechanisms (eg, interferon-g,

interleukin-12, granulocytes, macrophages, and T and B lym-

phocytes) hold persisting cancer cells in check (cancer dor-

mancy) but also shape the immune status of these cells and

their environment; and (3) elimination during which the extant

and “immunoedited” (ie, resistant to immune attack) cancer

cells proliferate in the immunosuppressive environment facil-

itating cancer progression toward a full-blown, clinically

detectable disease (reviewed in Janiak et al64).

From the perspective of this article, the most important is the

third phase of cancer development. Apparently, during all

phases of cancer immunoedition, there is a competition

between stimulation and inhibition of cell proliferation and

between dynamic disorder and order. Hence, the use of a deter-

ministic approach, as we did in earlier sections and in Equation

45, cannot satisfy the needs: Our system is nonlinear and

should not be described by linear equations as stated explicitly

by Mansury et al.56 Moreover, there is little hope that a reduc-

tionists point of view will help us to comprehend how a cell is

functioning until we fully understand the variety of molecular

interactions in a normal cell and how cells function within

normal tissue, an organ, and a cancer. As indicated by Saetzler

et al,65 “the upward causation assumption completely neglects

the contribution of the environment and of the emergent struc-

ture itself (by downward causation).” The popular somatic

mutation theory (SMT) of cancer turns out to be insufficient

to explain the variety of cancer behavior. A tissue organization

field theory was proposed to better accommodate and explain

the emerging experimental evidence related to cancer

development.58

With regard to phase transition in a complex system, the

natural question is what happens close to the point at which

phase transition takes place? To what extent can such a transi-

tion be treated as an emergent phenomenon? Is the loss of

control over tumor growth a sort of catastrophic event, such

as an avalanche,42 treated as an indicator of self-organization at

the phase transition, or is it just a phase transition of the first or

second order similar to the reentrant and other transitions of

frustrated systems from disordered to ordered states.66 In the

case of self-organization, an essential difference between what

is going on before and after the transition relates to the fact that

before the transition every cell more or less individually inter-

acts with its closest tissue constituents. In contrast, after the
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transition, all cells work together: What happens in one place of

the tumor has a direct influence on what happens at any other

place. How the situation in one place will change the situation

in another place of the tumor is hard to predict (possibly absco-

pal effects may be involved). At the beginning, all incipient

tumor cells are fed by diffusion from the surrounding tissues

and can proliferate. With time, however, the inner core of a

tumor is formed. Probably, Equation 45 may roughly describe

the evolution of a tumor volume, mainly of its outer shell. From

the organization point of view, the larger the tumor, the more

external, unbounded cancer cells can be accommodated on its

surface, and the tumor would exponentially grow up to infinity.

In any case, within the scope of the theory of complexity, one

has to admit that the process of tumor growth cannot be

reduced to individual interactions between cells as was possible

during the equilibrium phase of the immunoediting process.

Once the tumor is formed after passing the critical point, the

tumor cells lose their individuality and become totally subor-

dinated to the properties of this new entity. Of course, any

stress, such as exposure to ionizing radiation, may change this

self-organized behavior. Because of such complexities, one has

to accept that the description of an organism cannot be reduced

to interactions between its principal entities and that the organ-

isms are subject to rules of organization and its variations as

discussed by Mossio et al.67 From a purely physical point of

view, an organism is an open system capable of exchanging

energy and matter with its environment. These important prob-

lems are, however, beyond the scope of the present article.

Phase transition as discussed here may also be well under-

stood based on the so-called percolation type of phase transi-

tion. In this case, the main assumption is that a single cancer

cell is not a cancer itself, and only a group of these cells may

constitute a tumor. So, at first, individual cancer cells may

occasionally form contacts (or links) between each other, and

the functional links may lead to the formation of clusters.

Within the scope of the continuous time branching processes

theory, one can calculate a cumulative distribution of the can-

cer colony sizes versus the number of cells in these colonies

(see Figure 3.3 in La Porta and Zappero44). This distribution

depends on the time of observation, qualitatively is not very

different from the logistic curve, and pretty well describes the

observations.

In a further development of such an intertwined network, all

the clusters may fill up the space in such a way that nutrients

provided to one of them can be transferred to any other—the

percolation transition is achieved. Likewise, a disturbance

occurring in one place can be propagated to any other place.

In terms of the second-order phase transitions, one should talk

about spatial and temporal fluctuations that grow, on average,

below the transition point and, upon passing this point, freeze

to a single ordered phase.

As mentioned in the previous section, a single cancer cell

created during the neoplastic transformation of a mutated cell is

not yet a cancer. Equations 44 and 45 described the tumor

growth with time. To make a group of cancer cells a tumor, a

certain number of them, h:

h ¼ Ncanc

Ncanc þ Nnon canc
; ð46Þ

where Nnon_canc is a sum of damaged, and mutated cells

(Nnon_canc ¼ Nlesion þ Nmut) must interact with each other

and start to proliferate in a coherent way after passing a

certain critical value, hc.

With time, the value of h changes, but as long as cancer cells

or their clusters are disconnected, the tumor has not yet

emerged as a separate entity. As already indicated, such an

emergence can be identified with a phase transition similar to

the re-entrant phase transitions known from the physics of

magnetics or the percolation theory. In both cases, the final

formation of a given object (eg, a tumor) appears when h

exceeds some critical value (eg, the number of cancer cells,

hc) as mentioned earlier. Within the scope of the percolation

theory, which refrains from purely physical or biological para-

meters, one needs to define the parameter that should control

the occupancy of pixels (voxels) into which a given space is

subdivided. This parameter should reflect not the relative num-

ber of cancer cells as in Equation 46 but rather the probability

of the creation of a cancer cell at a given pixel (voxel). Let this

probability be denoted by p. With time, cancer cells aggregate

and form clusters that combine with each other and finally a

critical state is attained: The “infinite cluster” (a tumor) is

formed in which any information sent from one location in the

object can reach all other locations with a consequence to the

whole object—the tumor starts to behave as an entity whose

behavior cannot be derived from individual properties of cells

and their interactions. This is similar to the sand-pile experi-

ment42: Although the grains of sand drop to the sand’s cone

from the top onto a single point, at a certain height and radius of

the cone avalanches appear in an unpredictable manner (the so-

called self-organized criticality). In the case of percolation, the

situation may be visualized by imagining a number of pixels or

voxels into which one drops small grains or small spheres.

Next, let us connect randomly any 2 such small spheres. If

we repeat this procedure, the number of the connected spheres

will increase, and the number of locally connected spheres

(clusters) will increase. At a certain moment, the size of

those clusters will start to suddenly rise. This illustrates a case

of self-organization.

In a typical simulation of a percolation phenomenon,66 one

has to choose the size of the object divided into pixels and by

the “infinite cluster” one understands the cluster extending

from one edge of the object to another one. Ideally, the object

should have infinite dimensions so that the meaning of “infinite

cluster” is literal. In our case, the situation is somewhat differ-

ent. An organ is close to be infinite with respect to the size of

the cells. The size of tumors in it may not be as large as the

organ, for example, the lack of nutrients needed the cancer to

grow.39 Nevertheless, one can still treat the maximum size of

the tumor as roughly equivalent to an infinite lattice of cells,

and the percolation theory68 with its purely geometrical statis-

tical ingredients can be useful for the description of at least a
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region close to the phase transition point pc. In the case of a site

percolation on the square lattice pc � 0.593, the “infinite

cluster” may exist only above pc. Inside the organ, which rep-

resents a truly infinite lattice, one can imagine formation of

more than 1 “infinite cluster,” that is, of more than 1 tumor.

According to this theory, the probability that a given cell

belongs to the collection of tumor cells grows at p > pc in a

critical way, and the percolation probability, Pmax, that is, the

fraction of the occupied sites belonging to the “infinite cluster,”

is ruled by the critical index b which may in general be of the

fractal type:

Pmax*ðp� pcÞb: ð47Þ

This behavior is displayed in Figure 6. It is neither sigmoidal

type nor logistic type; however, one should remember that the

relation (Equation 47) must describe the behavior mainly in the

critical region, that is, relatively close to pc. Alas, the width of

the critical region is difficult to predict.

A very illustrative example of this kind of behavior can be

found in many disordered magnetic systems, such as a diluted

ferromagnet which below pc becomes a paramagnet and

becomes ferromagnetic above pc. In addition, over a certain

concentration range of magnetic species (Co, Fe, and so on),

the spin-glass phase can be formed. In such a system, the con-

trol parameter is temperature in Figure 769,70 —with increasing

temperature, the value of the percolation probability pc

increases as well. As an example, the onset of ferromagnetism

in a percolating 3D network of the random face-centered cubic

alloys can be satisfactorily described within the framework of

the percolation theory, where pc ranges from 0.16 to 0.20.71

Often, the phase diagram of such diluted ferromagnets can be

described within the framework of the so-called Ising model. In

the case of cancer, one encounters a more complex situation

because the number of states representing cells with different

degrees of lesions and mutations is much higher than the num-

ber of up- and down-spins in Ising model. This makes statistical

description of the state below pc more difficult.

It should be mentioned that the sharp transition shown in

Figure 8 may be smeared if one finds correlations between the

cells below pc. If such correlation exists between the states of 2

cells separated from each other by a distance R, one can find a

function describing such a correlation. In a typical magnetic

system, it would be described by a function decreasing expo-

nentially with the distance. This would lead to a substantial

change in Figure 8: the whole curve becoming sigmoidal-

like, such as the one in figure 3.9 of Binder and Kob66.

Just below the transition point, the average distance between

the cells within a cluster (correlation length), x, behaves as:

x*ðpc � pÞ�n; ð48Þ

where n denotes another critical exponent. The values of both

exponents depend on grid and slightly differ depending on case

(note 2). For example, for a 3D net b ¼ 0.418 + 0.001 and

n ¼ 0.875 + 0.008. The mean cluster size also exhibits

nonanalytical behavior:

S* ðpc � pÞ�g; ð49Þ

with g ¼ 1.793 + 0.003. In the case of 2D growth, the critical

exponents change to 5/36, 4/3, and 43/18 for b, n, and g,

respectively. Let us note that the critical exponents depend

on the dimensionality of the problem and not on the micro-

scopic properties of the system. The whole situation resembles

the behavior of magnetic systems: Our p plays a role similar to

temperature, percolation probability Pmax—magnetization,

x —correlation length, and S—magnetic susceptibility. Below

Figure 7. Schematic phase diagram of a diluted ferromagnet (eg,
Au-Fe, Co-Cu, and so on) showing phase transitions between para-
magnetic (PM), ferromagnetic (FM), and spin-glass (SG) phases
depending on temperature and concentration X of the magnetic
sample.

Figure 8. Transition to percolation after passing the pc point assumed
to be pc ¼ 0.5 at different critical indices b.
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the transition point, one can also make intuitive use of the so-

called mean field approach. Namely, let the number of cancer

cells be Ncanc, whereas Ncanc,0 is the number of cancer cells

whose growth seem to be inhibited by immunological forces

and represent dormant cells. The development of cancer cells

may depend on their number that form a special field due to

interaction of these cells with their environment (in fact, it is

the question of competing forces between natural expansion of

cancer cells and the immune restrain of such a development,

see Janiak et al64). This field describes something analogous to

a promotion of the development of cancer with a multiplication

factor, say, w. Then one can write a simple equation:

Ncanc ¼ Ncanc;0 þ wNcanc: ð50Þ

Thus:

Ncanc ¼
Ncanc;0

1� w
; ð51Þ

which shows how the number of cancer cells can be strongly

enhanced by the interaction of these cancer cells with their

environment. In an extreme case, the number of cancer cells

can reach the total number of cells if w ¼ 1, that is, when

immunological protection against cancer development breaks

down. Equation 51 is a typical result obtained within the frame-

work of the mean field theory of phase transitions. The problem

to be solved is the description of the form of w. It is not a single

number but a function depending on the processes of immuno-

logical protection against cancer. In fact, all the aforemen-

tioned steps in cell behavior represent some phase transitions,

although an appropriate mathematical description of these tran-

sitions is rather difficult. Consequently, one needs to define the

so-called order parameter that changes upon transition. This

parameter must have defined dimensionality, while one should

also define whether the main interaction mechanism with envi-

ronment is short- or long ranged. Besides, it seems that one

deals with 3 space–time scales: the one of signal transduction,

the short-range adaptive response and bystander effect, and the

long-ranged abscopal effect.

Presently, the above-described critical phenomena are dif-

ficult to observe at present, as the minimum size of the detect-

able tumor is of the order of a few millimeters when the tumor

is already formed. In spite of this obstacle, one should under-

stand that the general properties of phase transitions, including

self-organization and/or self-organized criticality, have to be

included in a rigorous description of the tumor development.

Conclusions

There are several problems covered in this article. Its intention

was to separate the evolution of individual cells from that

taking place in a tissue. With this aim in mind, the approach

of Fleck et al15 was initially examined. Although the ideas

behind their model are quite different from the ones presented

previously by us,28 the final result for the number of cancer

cells versus time has turned out to be qualitatively similar.

Notably, in contrast to Fleck et al15 who used dose rate,

Dobrzyński et al28 employed dose in their calculations. More-

over, a more fundamental difference in the way a cell repairs its

DNA lesions is presented in this article. In the model of Fleck

et al,15 the dependence of the time of repair of a single DNA

lesion on the dose rate plays an essential role. Apart from the

fact that a postulated modification of the repair time with

increasing dose rate may be described by a different function,

the model of Fleck et al15 explains Cohen24 data on lung cancer

mortality versus radon-specific activity. However, it seems that

one cannot go too far with a function fitted to data, as the

mortality calculated in this way soon exceeds the hormetic

minimum. Such an increase is not confirmed by the numerous

other data collected for much higher radon concentrations.25,72

Our attention has also been paid to the dependence of adap-

tive response on the time and the dose associated with acute or

protracted radiation exposures. We demonstrate that in the case

of a protracted exposure, the organism attains a certain satura-

tion in its ability to repair lesions (Figure 5). This observation

permits us to treat absorbed dose as a priming dose that allows

to better toleration of higher and more challenging doses.

Increase in the number of cancer cells in an organism

depends on the timing and the dynamics of the critical number

of mutations in a cell needed for its transformation into a cancer

cell. As demonstrated by us, this may be described by a pretty

complicated function (Equation 41). However, the increase in

the total number of tumor cells (Figure 5) when graphed resem-

bles a sigmoidal shape of the Gompertz function. As previously

indicated by Dobrzyński et al,28 the 3D growth of the tumor

volume may generally be described by a sigmoidal curve given

by the nucleation and growth according to the Avrami-Mehl

theory as discussed in Dobrzyński et al.28

Finally, we have discussed at length the problem of tumor

growth. Description of this process is inherently difficult. First,

it essentially deals with the phase-transition phenomenon, and

the type of this transition is not clear. Essentially, there is a

transition from a disordered phase (represented by individual

cancer cells and their clusters) to an ordered one (the developed

tumor) which exhibits properties not directly connected to indi-

vidual processes occurring in its basic units (cells). If this is the

case, one is dealing with an emergent phenomenon, the self-

organization, and the possible self-organized criticality. How-

ever, even if the phase transition can be viewed as a continuous

one (of second order), it is difficult to specify its most impor-

tant parameters: the order parameter and its dimension, as well

as the interaction range between cells and the control parameter

(usually temperature in a magnetic system or in, e.g., liquid–

gas transition). Depending on these parameters, one could spe-

cify the values of critical exponents characterizing the transi-

tion. An important property of such critical indices is their

universality—they are not directly related to microscopic inter-

actions between the basic units of the system. However, when a

mathematical description is given, its experimental verification

can be difficult. Today, a tumor cannot be detected if its dia-

meter is around 2 to 3 mm. This means that it is already far

beyond the phase-transition region where critical properties

can be observed. To illustrate the problem, phase transitions
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of the percolation type were considered. Additionally, a simple

application of the mean field theory shows that nonanalytical

behavior is to be expected if a phase transition takes place. We

plan to address these problems in a future publication.

Appendix A

In the case of a single photon of g- or X-ray radiation, one must

consider cross-sections for the photoelectric effect (sph), for

Compton scattering (sC), for electron-positron pair production

in the nuclear field (spair), and for similar pair production in the

electron field, the so-called triplet production (striplet). Thus,

the total cross-section for the interaction of g- and/or X-rays

with matter can be described by:

sðR;EÞ ¼ sph þ ZsC þ spair þ Zstriplet; ðA1Þ

where Z is the atomic number of the absorbing material (note

that Compton and triplet effects cross sections are calculated

for single electrons). In fact, Equation A1 describes the ioniza-

tion processes that can happen in a cell. The equation written in

extended form is rather complicated and will not be presented

here—all necessary terms on the right-hand side of Equation

A1 can be found in the literature.73

Appendix B

The basis for the quasi-linear dependence of Phit
17:

Phit ¼ 1� expð�cDÞ ðB1Þ

stems from a simple observation: Let us imagine that single cell

is composed of N pixels which can be hit by radiation. Some

number of them, say n, are important from radiobiological

point of view and represent, for example, cellular DNAs. Thus,

the probability of DNA damage made in a pixel by a single

particle hit is n/N. In case of two particles impinging on the

considered cell this probability changes to:

P2 particles ¼ 2
n

N
� N � n

N

� �
þ n

N

� �2
ðB2Þ

because one shall consider three scenarios: (1) first particle

hit DNA and the second not, (2) analogical to the previous one,

but the opposite, and (3) 2 particle hit DNA. For many (k)

particles, where some of them hit DNA, one can use the sum

of binomial distribution functions as:

Pk particles ¼
Xk
r¼1

k!

r! ðk � rÞ!
n

N

� �r
1� n

N

� �k�r
: ðB3Þ

If not the lack of the term with r ¼ 0 (none of particles hit

DNA), Equation B3 would be nothing else than binomial of [n/

Nþ (1�n/N)]k which is obviously equal to 1. The missing term

is

P0 particles ¼
k
0

� �
n

N

� �0
1� n

N

� �k
¼ 1� n

N

� �k
; ðB4Þ

which should be added to the probability Pk particles for r

E [1, k], as in Equation A1. Thus

1 ¼ Pk particles þ 1� n

N

� �k
ðB5Þ

and

Pk particles ¼ 1� 1� n

N

� �k
ðB6Þ

In the case of n<<N (which is always correct in our case), the

second term on right-hand side of (B6) presents first-order

expansion of exp(�kn/N) (Maclaurin series equation) and

finally one finds that

Pk particles ¼ 1� e�
n
Nk � Phit ðB7Þ

which is the same as Phit from the Equations 1 and B1, where

c¼ n/N represents the probability of DNA hit, and k (number of

particles) corresponds to the dose (dose per numerical step). The

presented approach is analogous to the Target Theory74 applied

originally to the survival of a group of irradiated cells.

Appendix C

For t0	 t	 t1 the time-dependent integral term can be written as

IðtÞ ¼
Zt
t0

ðt � hÞme�a3ðt�hÞdh; ðC1Þ

and for t � t1:

IðtÞ ¼
Zt�t0
t�t1

ðt � t0 � hÞme�a3ðt�t0�hÞdh; ðC2Þ

which for m ¼ 1 or m ¼ 2 is easy to calculate:

for m ¼ 1:

Iðt0 	 t 	 t1Þ ¼
1

a23
� 1

a23
þ t � t0

a3

� �
e�a3ðt�t0Þ; ðC3Þ

Iðt � t1Þ ¼
1

a23
þ t � t1

a3

� �
e�a3ðt�t1Þ

� 	
� 1

a23
þ t � t0

a3

� �
e�a3ðt�t0Þ

� 	
;

ðC4Þ

and for m ¼ 2:

Iðt0 	 t 	 t1Þ ¼
2

a33
� ðt � t1Þ2

a3
þ 2ðt � t1Þ

a23
þ 2

a33

" #
e�a3ðt�t1Þ;

ðC5Þ

Iðt � t1Þ ¼
ðt � t1Þ2

a3
þ 2ðt � t1Þ

a23
þ 2

a33

" #
e�a3ðt�t1Þ

� ðt � t0Þ2

a3
þ 2ðt � t0Þ

a23
þ 2

a33

" #
e�a3ðt�t0Þ:

ðC6Þ
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