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Abstract: Tissue-nonspecific alkaline phosphatase (TNAP) is a key enzyme responsible for skeletal
tissue mineralization. It is involved in the dephosphorylation of various physiological substrates, and
has vital physiological functions, including extra-skeletal functions, such as neuronal development,
detoxification of lipopolysaccharide (LPS), an anti-inflammatory role, bile pH regulation, and the
maintenance of the blood brain barrier (BBB). TNAP is also implicated in ectopic pathological calcifi-
cation of soft tissues, especially the vasculature. Although it is the crucial enzyme in mineralization
of skeletal and dental tissues, it is a logical clinical target to attenuate vascular calcification. Various
tools and studies have been developed to inhibit its activity to arrest soft tissue mineralization.
However, we should not neglect its other physiological functions prior to therapies targeting TNAP.
Therefore, a better understanding into the mechanisms mediated by TNAP is needed for minimizing
off targeted effects and aid in the betterment of various pathological scenarios. In this review, we
have discussed the mechanism of mineralization and functions of TNAP beyond its primary role of
hard tissue mineralization.
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1. Introduction

Skeletal tissues are extraordinary structures and their biomechanical strength is at-
tributed to the orchestrated process of biomineralization-an intricately controlled event
involving the cell driven deposition of hydroxyapatite from ions largely present in body
fluids [1]. Physiological mineralization is observed in hard tissues [2,3] and pathological
mineralization is widely observed in soft tissues [4–9]. Mineralized extracellular matrix is a
unique feature of the vertebral system in animals. Bone is a multifaceted organ undergoing
remodeling throughout the lifetime by balanced actions of osteoblasts, osteoclasts and os-
teocytes. Hydroxyapatite (HAP) mineral is hierarchically organized on the type I collagen
matrix [10,11]. Osteoblasts are responsible for the laying of organic mineralized matrix.
They secrete type 1 collagen which is templated for mineral nucleation and subsequent
crystal growth. HAP nucleation results in growth of the crystal following a continuous
cross-fibrillar pattern [12–15]. The hierarchical arrangement of bone structure and model
of collagen microfibril along with HAP arrangement is depicted in Figure 1. The process
of mineralization is involving direct mechanism mediated by extracellular vesicles (EV’s)
released from osteoblasts and an indirect mechanism in which non collagenous proteins
that are negatively charged, associate with collagen and direct various mineral precursors
for nucleation [16,17]. As a result of the mechanical properties of mineralized tissues,
they act as a depot for various minerals that are essential for numerous physiological
processes in the body. Alkaline phosphatases (E.C. 3.1.3.1) regulate mineralization in hard
tissue under both physiological and pathological conditions. Moreover, they catalyze the
dephosphorylation of various physiological and non-physiological substrates [18].
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Figure 1. (a) Hierarchical structure of bone depicting the arrangement from macro to nanoscale.
(b) Collagen microfibril model indicating different levels of mineralization from 0% to 40% indicating
the alignment of hydroxyapatite crystals. The c-axis of HAP aligns with the collagen fibril axis. Green
color indicates Ca atoms, red and white denote OH groups and phosphate groups are visualized in
the tetrahedron structure. The image was taken from Arun et al. [19].

2. ALP Isoforms

ALP, first discovered zinc enzyme, belongs to homodimeric metalloenzymes com-
posed of several isoenzymes. Three metal ions such as two Zn2+ and one Mg2+ are present
in each monomer and additionally, five cysteine residues (Cys474, Cys467, Cys183, Cys121
and Cys101) are present in placental alkaline phosphatase (PLAP). The Cys121-Cys183
and Cys467-Cys474 residues form two disulfide bonds, whereas the Cys101 residue re-
mains free. His153, His320, His358, His360, His432, Asp316, Asp357, Asp42, Ser92, Ser155,
and Glu311 are among the amino acid residues involved in PLAP’s catalytic activity [20].
Among the two Zn2+ ions present on PLAP’s active site, (1) one is directly coordinated with
three amino acids (His 320, His 432, and Asp 316), while the fourth coordination is occupied
by a water molecule or specific substrate surface. (2) The penta-coordinated second Zn2+

ion is coordinated to four amino acid residues: Asp42, Asp357, His358 and Ser92; the fifth
coordination site is held by water or a substrate molecule. The hexa-coordinated Mg2+ ion
consists of three links of three amino acid residues (Asp42, Ser155 and Glu311), and three
more links with three water molecules that can be substituted by substrates. In addition,
Ca2+ ion is required for the correct operation of the enzyme in all mammalian ALPs [21].
Every membrane anchored ALPs isoenzymes are made up of glycoproteins with various
gene loci encoding it. (1) tissue nonspecific, (2) intestinal, (3) placental, and (4) germ cell
ALP are the four loci that have been discovered so far. In humans, a number of structural,
biochemical, and immunologic approaches can be used to distinguish the three enzymes
(intestinal, placental and L/B/K) [18].

2.1. Liver/Bone/Kidney Alkaline Phosphatase

Tissue non-specific alkaline phosphatase (TNAP) is found in many different organs,
but abundant in the skeletal, hepatic and renal tissues. TNAP is a homodimeric protein and
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in its structure, in addition to one phosphate anion, each monomer is composed of three
metallic ions (one Mg2+ and two Zn2+ cations). Each subunit contains an extended central
core β-beach with α-helices, while an extended N-terminal α-helix has a “crown domain”.
The crown domain can be characterised as a loose interfacial loop with amino acid residues
involved in stabilizing the binding of non-competitive inhibitors to the enzyme [22]. Al-
though it’s likely that their protein moieties are encoded by independent but related genes,
differences in electrophoretic mobility and thermal stability between the L/B/K ALPs from
different organs are related to variations in post-translational modifications. Additional
information is discussed in the section below.

2.2. Intestinal Alkaline Phosphatase

The gene responsible for IAP is mapped on the long arm of chromosome 2. IAP is a
heat stable isozyme and more active at pH 9.7. Unlike other AP’s the side chain of IAP
lacks terminal sialic acid residues [23]. IAP is essential for lipids absorption and is involved
in reducing inflammation. IAP suppresses inflammation, particularly by modifying the
gut microflora and dephosphorylating LPS [24]. Any alteration in IAP expression and
activity increases the vulnerability to inflammation. Inflammatory bowel disease (IBD) is
an indication of a condition where the patient’s endogenous IAP production and activity
are reduced. Exogenous IAP injection may be a good option for treating IBD and other
disorders caused by the disruption of gut microbiota [24,25].

2.3. Placental Alkaline Phosphatase

The human placental ALP (PLAP) gene was identified on chromosome 2 and possesses
87% similarity with IAP gene. But, there are differences observed at the carboxyl terminal
end of their chains. High concentration of enzyme is seen in placenta and marginal levels
are found in blood [26,27]. Neutrophils are responsible for a portion of the serum placental-
type ALP. Interestingly, cancer cells can re-express PLAP gene as Regan isoenzyme. In
contrast to the other ALP isoenzymes, PLAP is a polymorphic enzyme with up to 18 al-
lelozymes originating from point mutations [25–28]. As a result of the low catalytic activity
in comparison with the other isoenzymes, PLAP is considered to be inefficient due to the
neutral pH of placenta. PLAP is highly heat stable and is not active at temperatures below
75 ◦C [29]. In its homodimeric structure, Asn122 and Asn249 are potential glycosylation
sites, and its activity depends on the level of glycosylation. Furthermore, the structure
of PLAP consists of two disulfide bridges: the first one stabilises the PLAP orientation,
which is situated near the anchor of the Asp481 Glycosylyphosphatidylinositol (GPI) and
the second stiffens the anchor of the carbohydrate chain and is situated close the first
part of the glycosylation. There are several roles by PLAP, including the transmission of
mother-to-fetus immunoglobulins G (IgG). PLAP stimulates DNA synthesis and fibroblast
cell proliferation with insulin in the presence of Zn2+ and Ca2+. It is a synthesiser for a
single tissue called syncytiotrophoblast and responsible for transfer of substances such as
nutrients and oxygen. PLAP is an essential modulator of foetal growth. PLAP is also a
potential marker for various cancers [23].

2.4. Germ Cell Alkaline Phosphatase

The germ-cell ALP (GCAP, placental-like ALP) gene has also been localised at chro-
mosome 2, and it is a heat-stable isozyme found at low levels in embryonal tissues, germ
cells and some neoplastic tissues [30]. GCAP appears to be limited to the cell membrane of
immature germ cells in the testis, and it is attached to the cell membrane by a phosphatidyl-
inositol-glycan anchor, as do the other ALP isoenzymes [31]. Cancer cells (or NAGAO
isozyme) can re-express it, just like the placental ALP gene [27,31,32]

3. TNAP

Tissue-nonspecific alkaline phosphatase (TNAP) is highly expressed on the plasma
membrane of osteoblasts, odontoblasts and hypertrophic chondrocytes and also highly con-
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centrated in the extracellular vesicles (EVs) originating from these cells [33,34]. Pyrophos-
phate (PPi) and pyridoxal phosphate (PLP), phosphoethanolamine (PEA) are believed to
be the physiological substrates [35,36]. TNAP catalyzes the hydrolysis of PPi, an inhibitor
of bone mineralization and provides inorganic phosphate ions for hydroxyapatite nucle-
ation and formation [37–39]. PLP is essential for the formation of neurotransmitters such
as dopamine, histamine, serotonin, taurine and Gamma-aminobutyric acid (GABA) [40].
Pyridoxal administration to Alpl−/−mice prevents epileptic seizures indicating its role
in PLP metabolism. PLP entry into the cells is mediated by TNAP which dephosphory-
lates PLP into pyridoxal and again transformed back into PLP in neurons [41,42]. Unlike
PPi and PLP, the confirmed role of phosphoethanolamine as a substrate for TNAP is
not known but TNAP deficient patients and knockout mice display elevated levels of
phosphoethanolamine [43]. Recent reports also depict that di-phosphoryl lipopolysaccha-
ride (LPS) [44,45], adenosine triphosphate (ATP) [46–48] and phosphorylated osteopontin
(pOPN) [49–51] are TNAP natural substrates.

3.1. Gene Structure

Four human ALP isoenzymes are present. TNAP is ubiquitously expressed in bone,
liver, kidney, white blood cells and neuronal cells. Human TNAP is encoded by ALPL gene
(NCBI Gene ID: 249) which is located on the chromosome 1 short arm (1p36.1-34). The
ALPL gene possesses 1.5 kb of coding region, spans more than 50 kb of genomic DNA and
contains 12 exons, including 11-proetein coding exons with 2536 transcript length [34,52].
The promoter region of ALPL gene contains a TATA box, Sp1 binding site and retinoic acid
responsive element (RARE) which regulates TNAP gene expression [53,54]. The regulation
of TNAP expression by retinoic acid is through RARE and active vitamin D is regulated
by modifying the stability of TNAP mRNA [55]. In addition to this, phosphates produced
by the enzymatic activity of ALP are also known to regulate TNAP expression [56]. The
methylation of promoter regions of the ALPL gene is known to be involved in epigenetic
regulation [57]. Genes encoding tissue-specific ALPs are present on chromosome 2 long
arm and possess a compact gene arrangement [26,58,59].

3.2. Protein Structure

TNAP is an ectoenzyme approximately 80kDa, linked to the outer plasma membrane
via glycosylphosphatidylinositol (GPI) anchorage [60]. The GPI consists of an ethanolamine
phosphate and three glucosamine, mannose, and phosphatidylinositol. It can be sliced
by phospholipases present in plasma membranes explaining the circulatory presence of
TNAP in various biological fluids [61]. TNAP is synthesized initially as a 66 kDa peptide
followed by the addition of O-and N-glycosides in the ER. Among mammalian ALPs
58% of aminoacid residues are highly conserved in human TNAP sequences [62]. Until
now, the 3D structure of TNAP is not yet delineated and a simulation-based model of
mouse IAP or human PLAP is used to describe the structure (Figure 2). The presence of
a catalytic serine residue (S92) is marked in the active site of human PLAP and it also
contains two Zn2+ binding sites and one Mg2+ binding site. A Ca2+ binding site is also seen
in human and murine TNAP but it does not possess any direct role on the catalytic activity.
The crown region is present in mammalian ALPs and known to interact with various
extracellular proteins including type 1 collagen [63]. Isoforms of TNAP are distinguished
by their distribution pattern on electrophoresis owing to the difference in O-linked sugar
chains [60]. Dimerization of two TNAP monomers is mediated by two disulfide bonds that
play a prominent role in the severity of hypophosphatasia. TNAP contains five possible
N-linked glycosylation sites (N123, 213, 254, 286 and 413) with sugar chains essential for
its catalytic activity and types of sugars explains its difference in kinetic and biophysical
properties of its isoforms [64].
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Figure 2. (a) 3D structure of human PLAP indicating crown domain, GPI anchor and the homodimer interface regions.
(b) The presence of zinc and calcium ions is clearly indicated in the PLAP structure. The structure was exported from
https://swissmodel.expasy.org/, accessed on 1 August 2021. (P05186 (PPBT_HUMAN)).

3.3. Mechanism of Mineralization-Promotion and Inhibition

Biomineralization diversifies the mechanical properties of various connective tissues
including bone. For instance, mineralization is absent in type 1 collagen of dermis to
maintain skin texture, while it is highly mineralized in bone and teeth to form rigid struc-
tures [65]. Mineralization of bone follows a two-step process. Initial step involves the
formation of HAP inside the EVs and followed by the propagation into the extracellular
matrix. The EVs are typically 50-200 nm in diameter which are produced from the plasma
membrane of osteoblasts, chondroblasts and odontoblasts [33]. The mechanism behind
the release of EVs forms these cells is not yet known. Interestingly, the EVs differ in their
membrane composition compared to the originating cell type, marked with the presence
of several phospholipids, specifically phosphatidylserine which shows high affinity for
calcium ions [66–69]. EVs are also rich in annexins A5, A2, A6 and calbindin D9k, ALP,
carbonic anhydrase, collagen x, type III sodium-phosphate transporter, Phosphatase, Or-
phan 1 (PHOSPHO1), and nucleotide pyrophosphate phosphodiesterase [70–73]. Calcium
binding proteins, phospholipids, and bone sialoprotein (BSP) mediate calcium accumula-
tion in EVs [74]. Incorporation of calcium in EVs is facilitated by the formation of calcium
channels by membrane bound annexins. The role of various annexins and matrix vesicles
in bone mineralization is discussed in depth and more insights can be acquired by reading
Ansari et al. [75]. Next, phosphates are provided by type III Na/Pi cotransporter present
on both EVs membrane and cell membrane [76,77]. In addition to this, PHOSPHO1, a
cytosolic phosphatase also contributes to phosphate levels by catalyzing the hydrolysis
of phosphocholine and phosphoethanolamine [78,79]. When the accumulation of both
calcium and phosphate exceeds solubility point for calcium phosphate it leads to the depo-
sition as hydroxyapatite inside the EVs. In the next step of mineralization, hydroxyapatite
crystals penetrate EVs membrane to reach the extracellular space and undergo crystal
elongation. Elongation is highly dependent on extracellular concentrations of calcium and
phosphate ions outside the EVs [73,75]. Sufficient levels of calcium and Pi support the
formation of new apatite crystals, which propagate in clusters around the EVs and fill in
between collagen fibrils in the ECM in a cross-fibrillar pattern [19]. The mechanism of
mineralization is diagrammatically represented in Figure 3.

https://swissmodel.expasy.org/
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Figure 3. Overall scheme of matrix mineralization mediated by extracellular vesicles (EV) released from osteoblasts. The
growth of hydroxyapatite inside EVs is mediated by the PHOSPHO1 which supplies Pi by hydrolyzing PC and PEA in the
plasma membrane. Pit1 transporter also pumps Pi into the EVs. Calcium is transported inside by Annexin (A1, A2, A4,
A5, A6, A7) channels. Together, hydroxyapatite crystals are formed inside the EV. It then penetrates through the vesicle
membrane and elongates extracellularly utilizing Pi and Ca2+ ions. PPi inhibits mineralization which is produced by ATP
hydrolysis mediated by NPP1. TNAP hydrolyzes PPi into Pi, essential for hydroxyapatite growth. Extracellular PPi is also
provided by ANKH and ENPP1 situated in the plasma membrane of osteoblasts. Mineralization is regulated tightly by
maintaining the balance between PPi and Pi ratio. The components in this figure were modified from Servier Medical Art,
licensed under a Creative Common Attribution 3.0 Generic License. (http://smart.servier.com, accessed on 1 August 2021).

Propagation around clusters is mediated cooperatively by EVs and adjacent collagen
molecules. Since mineralization is central to bone, our body prevents ectopic biomineraliza-
tion by various ingenious inhibitors. In bone, to eliminate the inhibitors of biomineraliza-
tion especially PPi, osteoblasts express TNAP to annul its inhibitory effect via hydrolysis
and generate phosphate ions promoting mineralization. TNAP not only provides phos-
phate ions for mineralization it also promotes the formation of HAP nanocrystals in the
collagen matrix of bone by destabilizing the amorphous phase of the mineral. Also, local
inhibitors of biomineralization attenuates pathological mineralization in soft tissues such
as cardiac arteries, valves and hard/soft tissue interfaces such as tendon-bone attachments,
ligament-bone attachments and cranial sutures. It is noteworthy to mention that, the
inorganic phosphate (Pi) to pyrophosphate (PPi) ratio is crucial for mineralization as PPi
inhibits hydroxyapatite formation [80]. ANKH, a human homolog of ank gene product,
is essential for the extracellular transportation of cytosolic PPi [81,82]. An increase in
PPi/Pi ratio will inhibit spontaneous precipitation of HAP. The PPi concentration is rightly
maintained in forming bone by osteoblasts and acts as a repository of compartmentalized
phosphate till it is hydrolyzed [80]. Extracellular polyphosphate (polyPi) also participates
in phosphates transport and compartmentalization. Poly-Pi granules chelate calcium ions
to form neutrally charged amorphous complexes [83,84]. Fetuin A is a systemic inhibitor
of mineralization which prevents growth of nascent crystal nuclei in blood and facilitates
its recycling by macrophages [85–88]. One fetuin is known to sequester 54–72 phosphate
ions and 90–120 calcium ions. Fetuin A possesses strong affinity to bone and constitutes
25% of the non-collagenous proteins in bone [89]. It binds with both Ca and PO4

2− ions

http://smart.servier.com
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to form calciprotein particles about 30–150 nm in size [90]. TNAP, expressed highly in
osteoblasts, is very essential for the second step of mineralization by decreasing the levels
of PPi and providing Pi for hydroxyapatite formation. Therefore, in bone, mineralization is
a well-coordinated, cell mediated dynamic process allowing the exchange of phosphate
and calcium ions. In soft tissues, mineralization is generally inhibited by high PPi/Pi ratio.
The polyPi granules are also known to contain alkaline phosphatases and when activated,
hydroxyapatite crystals nucleate inside the granules displacing protein components to the
surface forming a crystalline core surrounded by an amorphous shell [84]. Skeletal tissue
biomineralization is also promoted by bone sialoprotein (BSP), i.e., a calcium-binding small
integrin-binding ligand N-linked glycoprotein (SIBLING) aids in nucleation of hydroxyap-
atite mineral [91]. It is only present in the ECM of mineralized tissues such as bone and
teeth. Another promoter of ECM mineralization, Dentin matrix acidic phosphoprotein1
(DMP1) is involved in the stabilization of disordered mineral precursors and directs them
to collagen fibrils [92,93]. DMP1 binds with mineral forming mineral-protein complexes
facilitating electrostatic interaction with collagen fibrils during mineralization. Patients
with DMP1 gene deletions or mutations are characterized by osteomalacia with autosomal
recessive hypophosphatemic rickets [94]. OPN and matrix Gla protein (MGP) are mineral-
ization inhibiting proteins which regulate mineral growth in bone and dentition to adjust
mineralization or involve complete inhibition of mineralization [95,96]. Nascent mineral-
ization foci are associated with osteopontin (OPN) and found widely in the bone matrix.
For instance, OPN deficient mice exhibit a hypermineralized skeleton postnatally starting
at 12 weeks [97]. OPN plays a crucial role as interfacial protein in adjoining new bone to
old bone and also to implant surfaces following bone graft surgeries. It is actively found
in sites where mineralization should be abolished abruptly such as periodontal ligament,
and entheses [98]. OPN knock-out mice failed to curb crystal growth with increased size of
mineral crystals but do not show any visible skeletal changes [99].

Despite the precise inhibition of mineralization at soft-tissue sites, arteries and articu-
lar cartilage are susceptible for ectopic mineralization which leads to detrimental effects.
Therefore, mineralization inhibition requires strict regulation involving additional elements.
Vascular smooth muscle cells and chondrocytes orchestrate this inhibition by secreting
Matrix Gla protein (MGP) into their extracellular matrix (ECM) [100]. Singleton Merten syn-
drome and Keutel syndrome associated with defects in MGP gene results in rupture of the
aorta and premature fusion of growth plates in the long bone due to pathological mineral-
ization [101]. Other mineralization inhibitors such as aspartic acid-rich motif (ASARM) and
matrix extracellular phosphoglycoprotein (MEPE) also fine tune mineralization [102,103].
MEPE knock out mice show increased bone mass and trabecular density but abnormalities
in cancellous bone [104]. MEPE along with dentin matrix protein (DMP1) and Phosphate-
regulating neutral endopeptidase (PHEX) regulates mineralization, phosphate levels and
turnover of bone by affecting fibroblast growth factor (FGF)-23 expression [105]. Imbalance
in mineralization promotion and inhibition at required areas in the body leads to various
pathologies. The following sections, we will discuss the pivotal role of TNAP in various
organs with respect to mineralization.

3.4. Hypophosphatasia-Physiological Substrates of TNAP

In humans, endochondral ossification and intramembranous ossification is dependent
on TNAP activity. A common manifestation of loss of TNAP activity or mutations to
ALPL gene causes a systemic bone disease called hypophosphatasia (HPP) resulting in
hypomineralization of hard skeletal tissues including bone and teeth [106,107]. Several
missense mutations are reported in human ALPL gene corresponding to aminoacid changes
in the protein [106–108]. At the time of writing this review, 409 mutations in TNAP have
been reported owing to its clinical heterogeneity. The mutant form of TNAP possesses
variable kinetic properties for PLP and PPi [109]. The clinical expression of this disease is
highly variable affecting patients of all ages. It is a multisystemic disease affecting various
tissues such as bone, kidney, muscle, GI tract, lung and central nervous system (CNS).
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Milder forms of the disease include deformities of extremities, early deciduous teeth loss
and other dental manifestations. In severe cases of HPP, prenatal death of foetuses is
seen due to complete absence of minerals in their skeleton [106–108]. Epileptic seizures,
craniosynostosis, respiratory failure and death are also associated in extreme forms of
HPP. As far as treatment regime is concerned, there are no curative treatment options
available for HPP and it is treated symptomatically requiring a multidisciplinary team
and approach [110]. Enzyme replacement therapy (ERT) includes Human recombinant
enzyme Asfotase alfa which is approved for patients with pediatric onset of HPP to treat
various skeletal and respiratory manifestations (NCT02797821). ERT improves growth,
motor function, agility, strength and reduced pain in children with HPP [111]. Patients
with a severe life-threatening form of HPP also showed substantial improvement in bone
mineralization and survival. In humans and mice models of HPP, the TNAP-deficient EVs’
extracellular growth of HA crystals is blocked by excessive extracellular accumulation
of PPi [112]. Combined ablation of PHOSPHO1 and TNAP results in the absence of HA
crystals within EVs, absence of skeletal mineralization and embryonic deadliness [113].
Between TNAP and PHOSPHO1 exists a cross talk in the mineralization initiation [114].
PHOSPHO1 is essential for Pi generation within MVs which is necessary for the initiation
of HA formation inside the vesicle. TNAP is a crucial PPiase essential for the extracellular
growth of HA by supplying Pi via PPi hydrolysis [112]. Ecto-Nucleotide Pyrophosphatase/
Phosphodiesterase-1 (NPP1), a cell surface enzyme on EVs is a potent ATPase which
produces PPi and acts as a phosphatase in the absence of TNAP [115]. NPP1 may modify
HPP phenotype in experimental models. For instance, in PHOSPHO1 deficient mice,
increase PPi levels was detected in plasma caused by reciprocal decrease in TNAP activity
and elevated NPP1 expression. Interestingly, pOPN circulatory levels were increased,
an inhibitor of mineralization which furthers the risk of fracturing in HPP [50]. The
convergent step involving influx of Pi produced by NPP1 and TNAP and production of Pi
by PHOSPHO1 inside the EVs suggests the combined interactions between TNAP, NPP1
and PHOSPHO1 during EVs mediated calcification [50].

By investigating HPP patients, PLP, which is a circulating form of vitamin B6, was
found to be another natural substrate of TNAP. PLP is coenzyme essential for various
neurotransmitter’s synthesis [116] and its entry into neuronal cells is promoted by removal
of Pi mediated by TNAP [22]. Increased plasma PLP levels were seen in HPP patients
with TNAP deficiency. In the severe form of HPP, infants display vitamin B6-dependent
seizures resulting from low circulatory levels of PL and inefficient incorporation into
CNS [117,118]. The importance of TNAP in CNS is shown by its presence in developing
murine neural tube and areas of the mature brain [119,120]. Increased amounts of less
developed cortical synapses, hypomyelination and spinal nerves thinning are seen in
TNAP KO mice [41,42,121]. Ingestion of PL temporarily suppressed epilepsy in TNAP KO
mice. This evidence suggests the role of TNAP in both developing and mature CNS.

Another biological substrate of TNAP is PEA, whose level was elevated in urine and
blood of HPP patients [122]. PEA is a component of glycosylphosphatidylinositol link
for proteins like TNAP. TNAP is essential for the extracellular hydrolysis of PLP to PL
and transport into cells for PLP formation, a vital cofactor in many reactions. Hepatic
O-phosphorylethanolamine phospholyase (PEA-P-lyase) enzyme is reported to be involved
in PEA hydrolysis using PLP as cofactor [123]. In HPP patients, insufficiency in the intra-
cellular levels of PLP in hepatic cells could be the reason for elevated PEA accumulation
and its rise in blood and urine levels. Despite this, the exact mechanism is yet to be known
behind this PEA accumulation in HPP patients.

Yet another pathogenicity in HPP is increased plasma OPN (encoded by Spp1) levels
suggesting that it may be another potential substrate of TNAP. Phosphorylation of OPN
inhibits mineral deposition [124]. However, the exact role of OPN is not completely under-
stood. OPN is known to anchor osteoclasts to HA minerals by poly-aspartate sequences
and bind CD44 and αvβ3 integrin with RGD, which mediates cell migration and cell
signaling [125]. Phosphorylated form of OPN inhibits mineralization in vascular smooth
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muscle cells [126]. High levels of phosphorylated OPN and extracellular PPi levels were
observed in Alpl KO mice. Double knockout of Alpl−/− and Spp1−/− in mice models
partially improved hypomineralization compared to Alp−/− KO mice [127]. Therefore,
TNAP loss leads to accumulation of phosphorylated OPN which in turn results in impaired
bone mineralization in murine HPP. Similarly, PHOSPHO1 deficient mice models exhib-
ited an increase in levels of both PPi and phosphorylated OPN. Ablation of Spp1 reverts
the skeletal deficiency in Phospho1 deficient mice [50]. Altogether, it is clear that TNAP
exhibits a wide range of substrates and whose levels are disrupted in TNAP dysfunction.

3.5. Role of TNAP as An Anti-Inflammatory Enzyme

TNAP is available as a soluble isoform in blood primarily originating from bone and
liver tissue. Bone is the main source of TNAP during skeletal growth and it slowly pro-
gresses down with the aging process, thus the liver becomes the major source of TNAP in
blood. It is very challenging to distinguish between bone and liver TNAPs in blood as bone
TNAP exhibits 18% cross reactivity with liver TNAP [128,129]. Circulating TNAP exert an
anti-inflammatory role by contributing to the generation of adenosine from AMP, detoxi-
fication by LPS dephosphorylation and regulating postprandial endotoxaemia [130,131].
In the HPP model with TNAP deficiency, bone marrow edema [132], osteomyelitis [133],
tendinitis [134] and increased predisposition to periodontitis is widely seen among both
children and adults [135]. TNAP through its ectonucleotidase activity exerts a major role
in balancing pro-inflammatory ATP levels and anti-inflammatory role through adenosine,
a breakdown product of ATP [136]. Owing to this, it has gained much attention leading
to various studies investigating several agonists and antagonists. Impairment in TNAP
ectophosphatase activity leads to PPi accumulation initiating the formation of calcium py-
rophosphate dihydrate crystals [137]. These crystals which accumulate in tissue and joints
of HPP patients trigger necroinflammation and NLRP3 inflammasome activation [138].
OPN is a natural substrate of TNAP is thought to be involved in mineralization. However,
it is a potent proinflammatory protein and status of pro- and anti-inflammatory proper-
ties are attributed to the status of its phosphorylation and dephosphorylation mediated
by TNAP. Very recently, recombinant OPN was found to mediate anti-inflammatory cas-
cades in microglia of the brain by inhibition of NLRP3 inflammasome [139]. OPN also
regulates inflammatory processes in kidney and liver. However, in-depth investigation
dissecting the role of TNAP mediated OPN dephosphorylation in balancing pro- and
anti-inflammatory effects is necessary. The ectophosphatase activity of TNAP is also associ-
ated with the dephosphorylation of TLR ligands, such as double-stranded RNA; mimic
poly-inosine:cytosine, a TLR3 agonist; and microbial LPS, a TLR4 ligand that mitigates
the activation of inflammasome and the secretion of cytokines in sepsis [131]. TNAP is
also known to modulate T-cell function in a preclinical model of intestinal colitis [140].
TNAP balances P1 and P2 receptor mediated signaling in modulating the level of the
inflammatory process. TNAP present in the neutrophil cell membrane hydrolyze AMP,
LPS and PLP and controls autocrine effects of adenosine on neutrophil migration, survival
and IL-1α secretion [136,141,142]. TNAP in the membrane of endothelial cells may be
involved in LPS dephosphorylation [131]. In 7-day old Alpl+/− mice bone metaphysis, the
levels of IL-1α and IL-6 were increased and IL-10 anti-inflammatory levels were decreased
compared with Alpl+/+ mice. In hypertrophic chondrocytes, TNAP inhibition had no
effect on ATP and adenosine associated changes including the modulation of autocrine
pro-inflammatory effects. In neutrophils, inhibition of TNAP worsened ATP induced
secretion of IL-1α and reduced cell survival [136]. AP infusion in several phase 2 clinical
trials has shown improvement in the outcome of various inflammatory diseases such as
sepsis, inflammatory bowel disease and ischemia/reperfusion [143]. Overall, the role of
TNAP in modulating inflammation and further investigations are needed to decipher the
exact mechanisms behind its mode of action.
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3.6. Role of TNAP in Central Nervous System

TNAP is also expressed by neuronal and endothelial cells where it plays a crucial role
in brain development. Interestingly, TNAP is very active in the arterial part but not at
the venal part of the microvasculature [144,145]. It can be detected in human brain blood
vessels right from gestational ages and this distribution of TNAP hints its involvement
in active transport of molecules across the blood brain barrier [146,147]. It is very active
in both luminal as well as abluminal sides of the endothelial cell membrane mediating
transport across these cells. The possible role of TNAP includes PLP dephosphorylation
and pyridoxal transport across epithelial cells of capillary. Epileptic seizures, decreased
GABA production and elevated levels of PLP in blood of Alpl-deficient mice with HPP
dictates the vital role of TNAP in the nervous system. Apart from endothelial TNAP, its
presence in neurons is very important in normal brain development as it is widely seen in
both white and grey matter during developmental stages of the brain [148]. Surprisingly,
elevated TNAP activity is also observed in adult neurogenesis. Delayed myelination and
spinal abnormalities are seen in Alpl-deficient mice. MRI investigations of HPP infants
shows hypodensity of white matter, multicystic encephalopathy, dilated ventricles, and
parenchymal lesions [149,150]. Dephosphorylation and interaction with ECM proteins
including collagen and laminin is also contributed by TNAP in brain development [151].
Post mortem of the brain from patients with Alzheimer’s disease (AD) showed increased
TNAP protein levels and its activity in temporal gyrus and hippocampus, regions targeted
by tau protein accumulation [152,153]. TNAP may exhibit dual effects in AD. First, it ame-
liorates neuroinflammation by adenosine synthesis through ATP dephosphorylation and
maintains a normal functional BBB [154]. In contrast, it participates in dephosphorylation
of hyperphorylated extracellular Tau protein which interacts with muscarinic receptors
disrupting calcium homeostasis which leads to neuronal death [153]. TNAP inhibition may
mediate brain damage induced by ischemic stroke events [155]. Therefore, it is regarded
as an important biomarker and mediates events following ischemic reperfusion injuries.
Patients with acute ischemic stroke show an elevated level of TNAP in serum which is
associated with stroke recurrence and death [156–159]. On the other hand, TNAP may also
attenuate neuroinflammation after stroke by dephosphorylation of ATP which is released in
large amounts following cell necrosis [160]. Thus, TNAP blockade may lead to worsening
of brain damage and contribute to neuroinflammation and therefore, interventions on
TNAP inhibition require a thorough investigation.

3.7. Hepatic Role of TNAP

Although the expression of TNAP is known, its function remains obscure in the
kidney and liver. In hepatocytes, TNAP is located at the canalicular membrane and in the
apical area in the cytoplasm, in bile duct of epithelial cells [161,162]. It is involved in bile
excretion and participates in bile pH regulation by dephosphorylating ATP at the surface
of cholangiocytes [163]. Circulatory levels of liver TNAP is largely seen in cholangitis
suggesting its role in bile excretion. In addition to this, it may involve detoxification and
biliary excretion of LPS [164]. During systemic inflammation, in adults, TNAP from the
liver is largely released into the blood when bone formation is compromised and bone
TNAP levels are reduced in blood. However, the exact function of hepatic TNAP is still
unknown.

3.8. Renal Role of TNAP

In the kidneys, proximal renal tubules’ brush border expresses TNAP and is involved
in LPS detoxification by dephosphorylation [164,165]. Renal tissue express TNAP, an
activator of mineralization. One would expect mineralization in renal tissue due to the
presence of TNAP but interestingly, urine mineralization is prevented by PPi. The PPi
production site is at the distal nephron; there is no TNAP expression there, which explains
the inability of TNAP in the renal system to trigger urinary tract calcification [166]. TNAP
inhibitors blocked norepinephrine dependent renovascular and blood pressure responses
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indicating the importance of TNAP in the kidney. The detrimental role of TNAP is seen
in chronic kidney disease (CKD) where its activation leads to arterial media calcification
resulting in stiffening of the blood vessels [167,168]. In CKD, calcification inhibitors such as
MGP and PPi are decreased which results in ectopic mineralization of the artery wall [169].
The precise balance between PPi/Pi is perturbed leads to hydroxyapatite mineralization.
Inhibition of TNAP activity leads to an improvement in CKD pathologies. Additional
information on vascular calcification is discussed below.

3.9. TNAP in Vascular Calcification

Cardiovascular calcification (CVC) is an important risk factor for morbidity and
mortality in patients of all ethnicities and increases with age [170]. Age related calcification
includes aortic valve calcification and atherosclerotic plaque calcification and in chronic
kidney disease and type 2 diabetes, tunica media calcification is largely seen to be associated
with increased mortality risk [171]. Cardiovascular mortality risk is positively linked to
calcium levels [172]. Until recently, TNAP was found to be a central player in CVC
and opened new avenues for treating and managing the disease. All CVC types mimic
either endochondral or intramembranous calcification and both have been seen in the
arterial tunica media of both rodents and humans with CKD and diabetes (Figure 4). Both
physiological and pathological calcification share the same molecular events leading to
ECM mineralization.

Figure 4. Schematic representation of the role of TNAP in vascular calcification by determining
PPi/Pi ratio and balancing induction and inhibition of mineralization. The components in this figure
were modified from Servier Medical Art, licensed under a Creative Common Attribution 3.0 Generic
License (http://smart.servier.com, accessed on 1 August 2021).

Calcifying vascular specimens shows the presence of osteoblasts, osteoclasts and
chondrocytes which were derived from stem cells or by transdifferentiation of vascular
smooth muscle cells [173–176]. Local TNAP activation triggers massive vascular calcifica-
tion in arteries owing to its overexpression in vascular smooth muscle cells and endothelial
cells [177,178]. Likewise, circulating TNAP is also associated with increased mortality in
patients with CKD where the serum TNAP is found to be elevated. In patients undergo-
ing hemodialysis, plasma pyrophosphate levels are reduced following dialysis and it is
associated with aortic wall vascular calcifications [179,180]. Involvement of the TNAP/PPi
system is interesting and is worth investigating to subdue and inhibit VC. Both TNAP and
NPP1 enzymes are present on the cell membrane of calcifying cells to precisely regulate

http://smart.servier.com
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levels of PPi, inhibitor of mineralization by blocking the expansion of nascent hydroxya-
patite crystals. Routine administration of exogenous pyrophosphate prevented vascular
calcification (VC) in mice and rat models [181,182]. In mice models with ank mutation
or NPP1-/- exhibit vascular changes through the alteration of cartilage specific genes. In
humans, NPP1 deficiency causes idiopathic infantile arterial calcification which affects
children resulting in medial calcification of arteries [183,184]. Early microcalfications is
targeted by bisphosphonates (non-hydrolysable PPi analogues) preventing vessel wall
mineralization. TNAP activity is more prominently observed in uremic rats and mouse
models of medial calcification [185]. The dual functions of ALP well known to release Pi by
phosphomonoesters hydrolysis and act as pyrophosphatases in bone. However, its function
outside bone is uncertain. In HPP patients, with elevated TNAP activity there is no clear
evidence of vascular calcification indicating that only membrane bound TNAP and other
cofactors are required to induce VC. Finally, transdifferentiation of SMCs to chondrocytes
via BMP-2 activation and calcium deposition is stimulated by TNAP which explains the
role in VC [186]. Overexpression of TNAP induces medial vascular calcification in an ex
vivo model of rat aortic rings [9,187]. Although pharmacological inhibition of ALP and
PHOSPHO1 also suppressed vascular smooth muscle cell calcification, it induced loss of
skeletal mineralization [188,189]. Despite various reports, it is very hard to conclude the
involvement of amplified TNAP levels in vascular calcification. Greater understanding
of the mechanisms involving TNAP in vascular calcification is needed to better study the
clinical consequences and develop therapeutic agents.

4. Pharmacological Inhibition of TNAP Needs Careful Consideration

Stable PPi/Phosphate ratio is crucial in maintaining physiological bone mineraliza-
tion and to protect soft tissue ectopic calcification. Increased TNAP expression leads
to increased degradation of PPi into phosphate ions thereby generating a procalcifying
microenvironment in the vessel wall which leads to calcification in arteries [190]. Until
recently, TNAP inhibitor levamisole was used to prevent CVC but it had TNAP inde-
pendent effects on voltage gated sodium channels [191]. MLS-0038949 (arylsulfonamide
2,5-dimethoxy-N-(quinolin-3-yl) benzenesulfonamide) is a selective TNAP inhibitor and do
not inhibit IAP but had very modest pharmacokinetic properties and only tested in vitro
on cultured VSMCs [189]. Its ability to differentially inhibit bone and liver TNAP (differing
only in the glycosylation residues) has not yet been explored. JL Millan and his team
developed a potent selective TNAP inhibitor SBI-425, inhibited plasma TNAP activity and
decreased arterial calcification [192]. Single dose of SBI-425 at 10mg/kg/day administered
orally or through an intravenous route produced promising results in the TNAP over
expressing mice. SBI-425 at 10 or 30mg/kg/day also exerted a positive role in preventing
VC in mice models, impairing PPi generation and preventing aorta calcification in CKD
mice fed with phosphorous and an adenine rich diet [168]. Oral administration of SBI-425
decreased accumulation of coronary calcium and LV hypertrophy in wicked high choles-
terol mouse models [178]. An alternative approach to lessen TNAP activity is by targeting
it at the protein level. In this aspect, an orally available bromodomain and extraterminal
protein inhibitor namely apabetalone used in CVD treatment was found to be a potent
TNAP inhibitor at mRNA level [193]. It reduced ALPL mRNA levels, TNAP protein,
and the activity of human hepatocytes and VSMCs, leading to reduced VC. Apabetalone
also diminished TNAP levels in circulation in CVD and CKD patients [194]. However, it
had no cardiovascular beneficial effect in patients with type 2 diabetes, acute coronary
syndrome and low HDL levels. TNAP level is also elevated in patients with MI both in
serum and hearts. Rat MI models also indicated the elevation of TNAP and subsequent
administration of tetramisole, TNAP inhibitor improved cardiac function and reduced
fibrosis post MI [195]. TNAP inhibition in neonatal rat cardiac fibroblasts attenuated the
expression of collagen related genes through TGF-1/Smad signaling suppression and p53
and p-AMPK upregulation [196]. In a rat model, warfarin was used to induce calcification
in the aorta and other peripheral arteries, suggesting a protective role of SBI-425 [197]. Oral
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administration of SBI-425 decreased calcium content in aorta and peripheral arteries with
discernible reduction in calcified areas. However, it decreased the rate of bone formation,
mineral apposition and lengthened osteoid maturation time which opens up the platform
for debate regarding its clinical translation. Owing to the fact that TNAP is expressed
ubiquitously in the body with various bodily functions (Figure 5), its pharmacological
inhibition needs controlled evaluation in vivo prior to its clinical translation.

Figure 5. Diagrammatic representation of the central role of TNAP in our body exhibiting mineralization and non-
mineralization functions. Dotted arrow indicates its pathological role. The components in this figure were modified from
Servier Medical Art, licensed under a Creative Common Attribution 3.0 Generic License (http://smart.servier.com, accessed
on 1 August 2021).

5. Conclusions

TNAP, an ubiquitously expressed enzyme, is ancient yet an active enzyme with
multifaceted roles in the body. It is involved in various physiological and pathological
conditions owing to its enzymatic activities utilizing varieties of substrates. The well-
established function of maintaining PPi/Pi ratio is crucial. Considering the dual role
of TNAP, it is a double-edged sword with both positive and negative effects based on
the working microenvironment. Activation at unintended sites such as soft tissues and
inactivation or loss of function at intended sites mainly in bone leads to detrimental effects.
Although there is an unbalanced view on the importance of TNAP in the past, there is
a pressing need to perform various studies to better study and understand associated
functions and design therapeutic regimens.
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