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Abstract

Pathogen challenges are often accompanied by reductions in feed intake, making it difficult

to differentiate impacts of reduced feed intake from impacts of pathogen on various

response parameters. Therefore, the objective of this study was to determine the impact of

Porcine Reproductive and Respiratory Syndrome virus (PRRSV) and feed intake on param-

eters of jejunal function and integrity in growing pigs. Twenty-four pigs (11.34 ± 1.54 kg BW)

were randomly selected and allotted to 1 of 3 treatments (n = 8 pigs/treatment): 1) PRRSV

naïve, ad libitum fed (Ad), 2) PRRSV-inoculated, ad libitum fed (PRRS+), and 3) PRRSV

naïve, pair-fed to the PRRS+ pigs’ daily feed intake (PF). At 17 days post inoculation, all

pigs were euthanized and the jejunum was collected for analysis. At days post inoculation

17, PRRS+ and PF pigs had decreased (P < 0.05) transepithelial resistance compared with

Ad pigs; whereas fluorescein isothiocyanate-dextran 4 kDa permeability was not different

among treatments. Active glucose transport was increased (P < 0.05) in PRRS+ and PF

pigs compared with Ad pigs. Brush border carbohydrase activity was reduced in PRRS+

pigs compared with PF pigs for lactase (55%; P = 0.015), sucrase (37%; P = 0.002), and

maltase (30%; P = 0.015). For all three carbohydrases, Ad pigs had activities intermediate

that of PRRS+ and PF pigs. The mRNA abundance of the tight junction proteins claudin 2,

claudin 3, claudin 4, occludin, and zonula occludens-1 were reduced in PRRS+ pigs com-

pared with Ad pigs; however, neither the total protein abundance nor the cellular compart-

mentalization of these tight junction proteins differed among treatments. Taken together,

this study demonstrates that the changes that occur to intestinal epithelium structure, func-

tion, and integrity during a systemic PRRSV challenge can be partially explained by reduc-

tions in feed intake. Further, long term adaptation to PRRSV challenge and caloric

restriction does reduce intestinal transepithelial resistance but does not appear to reduce

the integrity of tight junction protein complexes.

Introduction

Integrity and function of the small intestinal epithelium is crucial for optimizing the wellbeing,

lean accretion, and feed efficiency of growing pigs [1]. In a production setting, it is inevitable
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that the pig’s small intestinal epithelium will be exposed to a variety of toxins and pathogens,

thus it must provide a barrier to protect the host from injury and infection. Concurrently, the

small intestine is responsible for the majority of nutrient digestion and absorption, which is

vital for maintenance and growth. As such, the gastrointestinal tract has developed a sophisti-

cated system of digestive enzymes, transporters, and barriers. The barrier system primarily

relies on integrity of tight junction complexes, which consist of several transmembrane pro-

teins including claudins and occludin as well as intracellular proteins such as zonula occlu-

dens-1 (ZO-1), which scaffold transmembrane proteins to the cytoskeleton [2]. This system

works to simultaneously prevent pathogen entry whilst allowing for efficient uptake of dietary

nutrients and electrolytes. Stressors that impact the intestine such that barrier integrity and

digestive function are hindered have far reaching consequences on the host that can result in

both suboptimal health and growth performance.

Reductions in intestinal integrity and function have been documented under a variety of

stressors, including heat stress [3, 4], weaning stress [5, 6], and enteric disease challenges such

as with Porcine Epidemic Diarrhea Virus [PEDV; 7, 8, 9]. However, reduced nutrient intake is

often reported in accompaniment of these stressors, which alone can modulate intestinal

integrity and function [10–12]. Our group has previously reported that stress induced hypo-

phagia, or reduced voluntary feed intake, may explain the majority of changes reported in

intestinal integrity and function in pigs during heat stress [4], however if the same holds for

pigs during disease challenge remains unclear.

Reduced nutrient intake under health compromised conditions, known as disease anorexia

or hypophagia, is an aspect of sickness behavior conserved across nearly all animal species [13–

15]. In pigs, disease anorexia is a major reason for the loss in lean tissue growth observed during

both viral [16–18] and bacterial [19–21] challenges. One viral disease characterized by a marked

reduction in feed intake is Porcine Reproductive and Respiratory Syndrome, which remains one

of the most problematic swine diseases worldwide [22]. The causative pathogenic agent for this

disease is the double-stranded RNA Porcine Reproductive and Respiratory Syndrome Virus

(PRRSV), which induces respiratory disease in growing pigs accompanied by a reduction in both

feed intake and growth performance [18, 23] that can even result in weight stasis or loss [16].

In addition to reducing growth via reductions in feed intake, activating the immune system

to respond to a viral challenge is energetically demanding [24]. Fueling inflammatory responses,

cellular migration, respiratory burst, fever, and proliferation and maintenance of immune cell

populations likely demands a reallocation of dietary nutrients and tissue reserves [25, 26]. As

such, it is possible mounting an immune defense competes with other host maintenance and pro-

duction processes for resources, although the extent to which this occurs in pigs is unclear. We

have previously demonstrated that a reduction in feed intake accounts for a significant portion of

the alterations in skeletal muscle accretion and metabolism during PRRSV challenge [16] and

thus aimed to investigate if the same held true for other body systems, such as the intestine. The

gastrointestinal tract is highly metabolic, accounting for 20–30% of the major basal metabolic rate

[27]. Therefore, although the intestine is not the primary system affected by PRRSV, alterations to

its structure and function may still occur to spare nutrients for the immune response. Thus, the

objectives of this study were to evaluate the direct effects of PRRSV challenge versus the indirect

effects of caloric restriction on intestinal barrier integrity and function.

Materials and methods

All animal procedures were approved by the Iowa State University Institutional Animal Care

and Use Committee (IACUC protocol # 8-15-8074-S) and adhered to the ethical and humane

use of animals for research.

Intestinal impacts of PRRSV
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Experimental design, inoculations, and energy calculations

This project was designed as part of a larger project previously described [16]. For the current

study, 24 gilts (Genetiporc 6.0 × Genetiporc F25, PIC, Inc., Hendersonville, TN) confirmed

seronegative by ELISA for PRRSV antibodies and viremia by PCR were weighed and assigned

to blocks of 3 pigs/block based on initial body weight (BW; 11.34 ± 1.54 kg BW). This resulted

in 3 treatment groups: 1) PRRSV naïve, Ad libitum fed (Ad, n = 8), 2) PRRSV inoculated, ad

libitum fed (PRRS+, n = 8), and 3) PRRSV naïve, pair-fed (PF, n = 8) to mirror nutrient intake

of PRRS+ pigs. All pigs were housed individually at the Iowa State Livestock Infectious Disease

Isolation Facility (Biosafety Level 2), with Ad and PF pigs housed in a separate room from

PRRS+ pigs to prevent contamination. For the duration of the study, pigs were fed a common

corn-soybean-meal based diet that met or exceeded their energy and nutrient requirements

(NRC, 2012). Briefly, this diet was formulated to contain 3,332 kcal/kg metabolizable energy

and a standardized ileal digestible lysine of 1.10%.

On days post inoculation (dpi) 0, PRRS+ pigs were inoculated with an ORF5 RFLP_1-3-4

clinical isolate of PRRSV via 1 mL intramuscular injection and 1 mL intranasal inoculation

(106 genomic units per mL). The Ad and PF pigs were administered the same volume of saline

intramuscularly and intranasally as a sham. At and beyond dpi 0, PF pigs were fed daily to the

previous days voluntary feed intake of the PRRS+ pig in its respective block. To implement

pair feeding, voluntary feed consumption of each PRRS+ pig was recorded every morning by

weighing feeders and calculating feed disappearance. That amount of feed was then given to

the PF pig in its respective block the following morning. Over the 17 day challenge period,

start and end body weights, average daily gain (ADG), average daily feed intake (ADFI), and

feed efficiency (Gain:Feed; G:F) were recorded and calculated.

Sample collection

On dpi 17, all pigs were euthanized via captive bolt followed by exsanguination for tissue col-

lection. This timepoint was chosen as it would likely coincide with seroconversion, capturing

an energy demanding time for the immune response and remaining in a period in which peak

growth performance impact would be occurring [28, 29]. Immediately prior to euthanasia,

blood samples were collected from all pigs and were submitted to the Iowa State Veterinary

Diagnostic Laboratory to measure PRRSV viral titers and antibody levels via PCR and ELISA

assays routine to the laboratory. This data confirmed PRRS+ pigs were successfully inoculated

and that Ad and PF pigs remained naïve to PRRSV, as has been presented elsewhere [16]. Jeju-

num sections were collected 3 m proximal to the ileal-cecal junction, flushed with Krebs-Hen-

seleit buffer (containing 25 mM NaHCO3, 120 mM NaCl, 1 mM MgSO4, 6.3 mM KCl, 2 mM

CaCl2, and 0.32 mM NaH2PO4), and placed into continuously aerated containers containing

Krebs-Henseleit buffer. These were transported to the lab to be mounted in modified Ussing

chambers for electrophysiological measurements. Additional adjacent jejunum sections were

collected and used to: 1) collect mucosal scrapings that were snap-frozen in liquid nitrogen

and stored at -80˚C prior to analysis and 2) collect in 10% neutral buffered formalin for fixa-

tion. Fixed samples were switched to 70% ethanol after approximately 24 h of fixation and

were later submitted to the Iowa State Veterinary Diagnostic Laboratory to be paraffin-embed-

ded, sectioned, and mounted on slides for routine histological staining and evaluation.

Ex vivo assessment of jejunal barrier function and integrity

Fresh jejunum sections were mounted in modified Ussing chambers within approximately 1

to 1.5 h of euthanasia. Modified Ussing chambers were assembled and electrophysiological

and fluorescein isothiocyanate-dextran 4 kDa (FD4) macromolecule permeability
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measurements were collected as previously described [30]. Estimates of nutrient transport are

calculated as the change in current (μA) after glucose and glutamine addition. A fluorescent

plate reader (Cytation 5 Hybrid Multi-Mode Reader, BioTek Instruments Inc., Winooski, VT)

was used to determine mucosal to serosal flux changes in relative fluorescence of FD4 in the

serosal samples from 0 to 60 minutes after FD4 addition at 485 and 520 nm excitation and

emission wavelengths, respectively. Permeability coefficients for FD4 flux were calculated as

described by Pearce et al., (2013).

Brush border enzyme activities

Jejunal Na+/K+ ATPase activity was determined in protein extracted from frozen jejunal

mucosal scrapings. Scrapings (0.5 g) were homogenized in sucrose buffer (50 mM sucrose, 1

mM Na2EDTA, and 20 mM Tris base; pH 7.4) and centrifuged at 1000 × g for 10 minutes at 4˚

C. The supernatant was collected, and protein concentration was determined via a Pierce

bicinchoninic acid (BCA) assay (ThermoFisher Scientific, Waltham, MA). The protein extract

was then separated into 4 aliquots: 2 for blanks and 2 for ouabain incubations. Proteins with

either water (blanks) or 20 mM ouabain were pre-incubated at 37˚C with Na+/K+ ATPase

reaction buffer (2000 mM NaCl, 100 mM KCl, 50 mM MgCl2, and 250 mM HEPES, pH 7.0)

for 15 minutes. The reaction was then initiated by the addition of fresh 105 mM ATP and sam-

ples were incubated at 37˚C for 45 minutes. The reaction was then terminated by the addition

of 50% trichloroacetic acid. Samples were centrifuged at 1,500 × g for 10 minutes and the

resulting supernatant was analyzed for the presence of inorganic phosphate using the Molyb-

dovanadate method [31] and assessed in duplicate at a wavelength of 400 nm (Cytation 5

Hybrid Multi-Mode Reader, Biotek Instruments Inc., Winooski, VT). Specific Na+/K+ ATPase

activity was determined by the difference in inorganic phosphate (Pi) production from ATP in

the presence or absence of ouabain (specific Na+/K+ ATPase inhibitor). Activities are pre-

sented as liberated inorganic phosphate (μmol) per mg protein per hour.

Activities of brush border maltase, sucrase, and lactase were analyzed in protein extracted

from frozen jejunum mucosal scrapings. For protein extraction, mucosal scrapings (0.5 g)

were weighed out into 4 ml of PBS buffer containing 1% Triton X-100 and 0.1% protease

inhibitor cocktail, homogenized, and then centrifuged at 2,000 × g for 10 minutes at 4 ˚C. The

supernatant was collected, protein concentrations were determined via BCA, and extracted

protein was stored at -80˚C until analyzed. Activities of maltase, sucrase, and lactase were ana-

lyzed using a modified method previously described [3, 32]. Activity was determined by the

amount of glucose liberated from each sample after correcting for basal glucose levels, mea-

sured using the glucose oxidase kit (Sigma, St. Louis, MO) on plates read at 540 nm (Cytation

5 microplate reader, Bio-Tek, Winooski, VT). Sample activities are presented as liberated glu-

cose (mM) per gram protein per minute.

Activity of brush border aminopeptidase was determined in protein extracted in PBS

extraction buffer as described above. L-alanine aminopeptidase activity was analyzed using a

modified method of Roncari and Zuber [33], using 1-alanine-4-nitroaniline as a substrate to

examine the release of 4-nitroaniline. Sample activities are presented as liberated 4-nitroaniline

(μM) per mg protein per minute.

Western blot

Protein abundance of occludin, claudin 4, phosphorylated adenosine 5’ monophosphate kinase

α (AMPK), and total AMPK were evaluated via western blot to examine markers of both intes-

tinal integrity (occludin, claudin 4) and energy sensing (AMPK). Protein was extracted from

jejunum mucosal scrapings into HEPES cell lysis buffer (50 mM HEPES, 150 mM NaCl, 50
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mM NaF, 2 mM EDTA, 1% Triton X-100, 0.1% protease inhibitor cocktail, 5% glycerol, and

0.1% SDS) and protein concentrations determined via BCA. Equal protein amounts (20 μg per

lane) were separated by SDS polyacrylamide gel electrophoresis and Western blots were run as

previously described [16]. Antibodies used were: occludin (Invitrogen #33–1500), claudin 4

(Life Technologies #329400), total AMPK (Cell Signaling Technology #2532), and AMPKα
Thr172 (pAMPK; Cell Signaling Technology #2535).

Quantitative polymerase chain reaction

Total mRNA was extracted from frozen jejunum scrapings utilizing a Direct-zol RNA Mini-

prep Kit (Zymo Research, Irvine, CA). Quantity and purity of extracted mRNA was deter-

mined spectrophotometrically using a Cytation 5 Hybrid Multi-Mode Reader (BioTek

Instruments Inc., Winooski, VT). All samples had a 260/280 ratio of at least 1.8. Five-hundred

nanograms of extracted mRNA was transcribed using a commercially available kit (Quantitect

reverse transcription kit, Qiagen Inc., Valencia, CA) and resulting cDNA was utilized for

quantitative real-time PCR using an iQ5 Optical System (Bio-Rad Laboratories, Inc., Hercules,

CA) and iQ SYBR Green Supermix (Bio-Rad Laboratories, Inc., Hercules, CA). The mRNA

abundance values were normalized to a reference gene (ACTB) and Ad pigs according to the

2-ΔΔCt method. Gene symbols and primer sequences are listed in S1 Table.

Histology and immunohistochemistry

Jejunum sections were stained with hematoxylin and eosin to evaluate intestinal morphology.

Images were taken at 20X magnification using a DP80 Olympus Camera mounted on an

OLYMPUS BX 53/43 microscope (Olympus Scientific, Waltham, MA). Fifteen to twenty well

orientated villus and crypt pairs were measured using OLYMPUS CellSens Dimension 1.16

software (Olympus Scientific, Waltham, MA).

To evaluate goblet cells, jejunum sections were deparaffinized and were incubated in Alcian

blue (pH 2.5). Slide sections were bathed in Alcian blue for 5 minutes, rinsed with water, dehy-

drated, and then mounted. Using a DP80 Olympus Camera mounted on an OLYMPUS BX

53/43 microscope with a motorized stage, 2–3 images were taken at 20X magnification, to

acquire at least 15 well-orientated villus and crypt pairs. Images were analyzed using HALO

image analysis software (HALO™, Indica Labs, Inc., Corrales, NM). The HALO software out-

put provided a count of Alcian blue positive cells per area, thus individual villi and their adja-

cent crypts were outlined as the region of interest, goblet cells were counted, and presented as

number of goblet cells per 10,000 μm2
.

To further assess jejunal integrity, immunohistochemistry slides were prepared from

embedded jejunal tissue. Commercially available primary antibodies for claudin 2 (Invitrogen

#32–5600), claudin 4 (Invitrogen #32–9400), and ZO-1 (Invitrogen #40–2300) were used.

Slide staining was performed as previously described [7]. Images were taken as described

above and analyzed using HALO image analysis software (HALO™, Indica Labs, Inc., Corrales,

NM). Individual villi and their adjacent crypts were outlined as the region of interest, only

including the epithelial layer of tissue. As the proteins of interest are located at the membrane

under normal conditions, stain intensity at the membrane and within the cytoplasm were both

evaluated. These data were expressed as the average optical density of staining within the

region of interest.

RNA chromogenic in-situ hybridization

Visualization of mRNA transcripts were performed as according to the manufacturer’s

instructions for RNAScope1 2.5 (Advanced Cell Diagnostics, Hayward, CA, USA) using Sus
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scrofa-specific proprietary probe combinations for claudin 4, occludin, ZO-1, and AMPK

(Advanced Cell Diagnostics, Hayward, CA, USA). Slides were then imaged at 40X magnifica-

tion using a DP80 Olympus Camera mounted on an OLYMPUS BX 53/43 microscope. Three

images per slide were taken to acquire approximately 8–9 well orientated villi per pig. These

individual villi and their adjacent crypts were outlined as the region of interest. Images were

analyzed using the RNA in-situ hibridization module of HALO image analysis software

(HALO™, Indica Labs, Inc., Corrales, NM). The module identified chromogenic duplex signals

(red or brown) and these signals were quantified. These data are presented as the mean num-

ber of mRNA transcripts per cell within the region of interest.

Statistical analysis

The SAS 9.4 program (SAS Institute Inc., Cary, NC) was used for statistical analysis of all data.

The following mixed model was fitted to all parameters:

Yijk ¼ mþ PRRSVi þ iBWj þ eijk

wherein Yijk = the phenotype measured on animal k; PRRSVi = effect of treatment (fixed effect;

Ad, PF, PRRS+); iBWj = blocking factor in which pigs were placed into blocks of 3 pigs/block

based on initial body weight (random effect); and eijk = error term of animal k subjected to

treatment i in block j, eijk ~ N(0, σe
2). Least square means were determined using the LS means

statement and differences in LS means were produced using the pdiff option. Histochemistry

count data were evaluated using the GLIMMIX procedure and a Poisson distribution. Contrast

statements were used to determine the effect of reduced nutrient supply (Ad vs others) and the

effect of PRRSV additional to reduced nutrient supply (PF vs PRRS+). All data are presented

as Least Squares means with a pooled standard error. Differences were considered significant

when P< 0.05 and a tendency when 0.05� P� 0.10.

Results

Growth performance

Initial body weights did not differ amongst treatments (P = 0.727; Table 1), however at dpi 17

PRRS+ and PF pigs had a 34% reduction in body weight when compared with Ad pigs (P<
0.001). Average daily gain was significantly reduced in both PF (76%; P< 0.001) and PRRS+

(104%, P< 0.001) pigs compared with Ad pigs (Table 1). Additionally, ADG was further reduced

in PRRS+ (113%, P< 0.015) pigs compared with PF pigs. Average daily feed intake was reduced

in both PF and PRRS+ (P< 0.001) pigs compared with Ad pigs. Consistent with experimental

design and validating the pair-feeding model, ADFI did not differ between PF and PRRS+ pigs

Table 1. Growth performance1.

Treatment P-value

Item Ad PF PRRS+ SEM Ad vs. others PF vs. PRRS+

Start BW, kg 12.7 12.4 13.3 0.733 0.907 0.435

End BW, kg 21.0 14.9 13.0 1.285 <0.001 0.123

ADG, kg/d 0.50 0.15 -0.02 0.047 <0.001 0.015

ADFI, kg/d 0.87 0.48 0.44 0.045 <0.001 0.366

Gain:Feed 0.57 0.29 -0.14 0.105 0.001 0.006

1 Pigs were either challenged with porcine respiratory and reproductive syndrome virus (PRRS+), PRRSV naïve and fed ad libitum (Ad), or PRRSV naïve and pair-fed to

PRRS+ pigs intake (PF). Pigs were euthanized at days post inoculation (dpi) 17.

https://doi.org/10.1371/journal.pone.0227265.t001
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(P = 0.366). Gain:feed was reduced in PRRS+ and PF pigs compared with Ad pigs (P = 0.001).

Gain:feed was additionally reduced in PRRS+ pigs compared with PF pigs (P = 0.006).

Jejunum integrity, digestive enzyme activity, and nutrient absorption

Jejunum barrier integrity as assessed via transepithelial resistance was significantly reduced in

PF and PRRS+ pigs compared with Ad pigs (40%, P< 0.001), but transepithelial resistance did

not differ between PF and PRRS+ pigs (P = 0.679; Table 2). Ex vivo assessment of mucosal to

serosal FD4 macromolecule permeability did not differ amongst treatments (P> 0.10).

Active transport of glucose was greater in PRRS+ and PF pigs when compared with Ad pigs

(P = 0.003; Table 2) and was greater in PRRS+ pigs when compared with PF pigs (P = 0.014).

Active glutamine transport was greater in PRRS+ and PF pigs compared with Ad pigs

(P = 0.002). Active glutamine transport tended to be greater in PRRS+ pigs compared with PF

pigs (P = 0.069).

Activity of the Na+/K+ ATPase was reduced in PF and PRRS+ pigs when compared with

Ad pigs (P = 0.048; Table 2) and did not differ between PRRS+ and PF pigs. Activity of the car-

bohydrases was altered by both PRRSV and nutrient restriction. Interestingly, activity was

reduced in PRRS+ pigs compared with PF pigs for lactase (55%; P = 0.015), sucrase (37%;

P = 0.002), and maltase (30%; P = 0.015). For all three carbohydrases, Ad pigs had activities

intermediate that of PRRS+ and PF pigs. Activity of aminopeptidase was not different amongst

treatments (P> 0.10).

Morphology and goblet cell count

Villus height was reduced in PRRS+ and PF pigs compared with Ad pigs (P = 0.003) and was

additionally reduced in PRRS+ pigs compared with PF pigs (P = 0.036; Table 3). Crypt depth

was reduced in PRRS+ and PF pigs compared with Ad pigs (P = 0.017), however crypt depth

did not differ between PRRS+ and PF pigs. The ratio of villus height to crypt depth was

Table 2. Jejunum integrity, digestive enzyme activity, and active nutrient absorption1.

Treatment P-value

Item Ad PF PRRS+ SEM Ad vs. others PF vs. PRRS+

TER2 96.38 55.64 59.80 7.083 <0.001 0.679

FD4 flux3 26.18 39.49 42.49 8.031 0.114 0.783

Glucose, μA4 19.18 41.25 76.06 10.28 0.003 0.014

Glutamine, μA4 1.59 9.01 14.83 3.171 0.002 0.069

Na+-K+ ATPase5 1.93 0.95 1.28 0.334 0.048 0.479

Lactase6 7.34 11.12 5.01 1.657 0.678 0.006

Sucrase6 19.84 24.94 15.67 2.485 0.819 0.001

Maltase6 56.01 66.07 46.27 5.847 0.975 0.006

Aminopeptidase7 4351 4737 4087 452.3 0.914 0.321

1 Pigs were either challenged with porcine respiratory and reproductive syndrome virus (PRRS+), PRRSV naïve and fed ad libitum (Ad), or PRRSV naïve and pair-fed to

PRRS+ pigs intake (PF). Pigs were euthanized at days post inoculation (dpi) 17.
2TER = transepithelial resistance, Ω × cm2

3Macromolecule (FD4) permeability, ug/mL/min/cm2

4Active absorption calculated by subtracting μA before substrate (glucose or glutamine) from μA after substrate addition.
5μmol liberated inorganic P/h/mg protein
6μM liberated 4-nitroaniline/min/mg protein
7μmol liberated glucose/min/g protein

https://doi.org/10.1371/journal.pone.0227265.t002

Intestinal impacts of PRRSV

PLOS ONE | https://doi.org/10.1371/journal.pone.0227265 January 7, 2020 7 / 18

https://doi.org/10.1371/journal.pone.0227265.t002
https://doi.org/10.1371/journal.pone.0227265


increased in PRRS+ pigs compared with PF pigs (P< 0.001). Abundance of goblet cells did

not differ amongst treatments (P> 0.10).

mRNA abundance of tight junction proteins

Abundance of tight junction protein mRNA was measured via PCR (Table 4) and in-situ

hybridization (Table 5, Fig 1). Claudin 2 mRNA abundance, measured via PCR, tended to be

reduced in PRRS+ and PF pigs when compared with Ad pigs (P = 0.094) and was reduced in

PRRS+ pigs when compared with PF pigs (P = 0.025). Claudin 3 mRNA abundance was

reduced in both PRRS+ and PF pigs compared with Ad pigs (60%; P< 0.05) and did not differ

from each other. Abundance of claudin 4 and occludin did not differ amongst treatments

when measured via PCR (Table 4). Abundance of ZO-1 was reduced in PRRS+ pigs compared

with PF pigs (P = 0.044) when measured via PCR (Table 4).

When measured via in-situ hybridization (Table 5), abundance of claudin 4 was reduced in

PRRS+ and PF pigs compared with Ad pigs (P = 0.003) and did not differ from each other

(Table 5). Similarly, occludin abundance was reduced in PRRS+ and PF pigs compared with

Ad pigs (P = 0.018) and did not differ from another when measured via in-situ hybridization

(Table 5). Abundance of ZO-1 was reduced in PRRS+ and PF pigs compared with Ad pigs

(P = 0.040) and did not differ from another when measured via in-situ hybridization

(Table 5).

Table 3. Jejunum morphology and goblet cell counts1.

Treatment P-value

Item Ad PF PRRS+ SEM Ad vs. others PF vs. PRRS+

Morphology, μm

Villus height 481 411 324 27.3 0.003 0.036

Crypt depth 293 228 243 19.2 0.017 0.588

V:C2 1.72 1.89 1.37 0.122 0.369 <0.001

Goblet cells/10,000 μm2 6.73 7.04 7.46 0.499 0.155 0.294

1 Pigs were either challenged with porcine respiratory and reproductive syndrome virus (PRRS+), PRRSV naïve and fed ad libitum (Ad), or PRRSV naïve and pair-fed to

PRRS+ pigs intake (PF). Pigs were euthanized at days post inoculation (dpi) 17.
2V:C = Villus height:Crypt depth

https://doi.org/10.1371/journal.pone.0227265.t003

Table 4. Jejunum mRNA abundance as measured via PCR1.

Treatment P-value

Item2 Ad PF PRRS+ SEM Ad vs. others PF vs. PRRS+

Claudin 2 1.45 1.34 0.69 0.209 0.094 0.025

Claudin 3 1.05 0.72 0.54 0.114 0.006 0.273

Claudin 4 0.91 1.21 0.76 0.223 0.778 0.133

Occludin 0.75 0.84 0.64 0.165 0.936 0.310

ZO-1 1.09 1.10 0.48 0.196 0.194 0.026

Glucose transporter 2 0.89 1.01 0.63 0.131 0.681 0.046

SGLT1 0.89 0.83 0.83 0.197 0.771 0.996

AMPK 0.94 0.94 0.38 0.336 0.204 0.474

1 Pigs were either challenged with porcine respiratory and reproductive syndrome virus (PRRS+), PRRSV naïve and fed ad libitum (Ad), or PRRSV naïve and pair-fed to

PRRS+ pigs intake (PF). Pigs were euthanized at days post inoculation (dpi) 17.
2Gene abundances expressed as fold changes from Ad average (2-ΔΔCt)

https://doi.org/10.1371/journal.pone.0227265.t004

Intestinal impacts of PRRSV

PLOS ONE | https://doi.org/10.1371/journal.pone.0227265 January 7, 2020 8 / 18

https://doi.org/10.1371/journal.pone.0227265.t003
https://doi.org/10.1371/journal.pone.0227265.t004
https://doi.org/10.1371/journal.pone.0227265


Tight junction protein abundance

Tight junction protein abundance was measured via Western blotting (Table 6) and immuno-

histochemistry (Table 7, Fig 2). Total abundance of claudin 4 and occludin did not differ

amongst treatments when measured via Western blot (P> 0.10; Table 6). Measuring abun-

dance via immunohistochemistry allows for evaluation of both total and localization of protein

stain to determine the cellular location of these proteins. Total, cytoplasmic, and membrane

abundance did not differ amongst treatments (P> 0.10; Table 7) for either claudin 2 or clau-

din 4. For ZO-1, cytoplasmic abundance tended to be increased in PRRS+ pigs when com-

pared with PF pigs (P = 0.091). However, neither membrane nor total abundance of ZO-1

differed amongst treatments (P> 0.10).

Table 5. Gene abundance as measured by quantification of mRNA transcripts identified through RNAScope1 in-situ hybridization1.

Treatment P-value

Item2 Ad PF PRRS+ SEM Ad vs. others PF vs. PRRS+

Claudin 4 4.89 3.73 3.15 0.443 0.003 0.222

Occludin 5.03 4.30 3.42 0.372 0.018 0.108

ZO-1 6.74 5.82 4.84 0.527 0.040 0.205

AMPK 2.18 1.77 1.50 0.105 <0.001 0.074

1 Pigs were either challenged with porcine respiratory and reproductive syndrome virus (PRRS+), PRRSV naïve and fed ad libitum (Ad), or PRRSV naïve and pair-fed to

PRRS+ pigs intake (PF). Pigs were euthanized at days post inoculation (dpi) 17.
2Mean mRNA transcripts/cell

https://doi.org/10.1371/journal.pone.0227265.t005

Fig 1. A-C. Representative RNAscope duplex for Occludin (brown) and ZO-1 (red). A) Pigs were either PRRSV naïve and fed ad libitum (Ad); B) PRRSV naïve and

pair-fed to PRRS+ pigs intake (PF); or C) challenged with PRRSV (PRRS+).

https://doi.org/10.1371/journal.pone.0227265.g001
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mRNA and protein abundance of nutrient transporters and energy sensors

mRNA abundance of the nutrient transporter glucose transporter 2 was reduced in PRRS+

pigs when compared with PF pigs (P = 0.046) when measured via PCR (Table 4). Conversely,

abundance of sodium-dependent glucose co-transporter 1 did not differ amongst treatments

when measured via PCR (P> 0.10). Similarly, mRNA abundance of the energy sensing protein

AMPK did not differ (P> 0.10) when measured via PCR (Table 4). However, mean transcript

abundance of AMPK was reduced in both PRRS+ and PF pigs compared with Ad pigs (25%;

P< 0.001) and tended to be reduced in PRRS+ pigs compared with PF pigs (P = 0.074) when

measured via in-situ hybridization (Table 5).

Protein abundance of AMPK and pAMPK did not differ amongst treatments (P> 0.10),

nor was the ratio of phosphorylated to total AMPK altered by treatment when measured via

Western blotting (Table 6).

Table 6. Jejunum protein abundance determined via Western blots1.

Treatment P-value

Item2 Ad PF PRRS+ SEM Ad vs. others PF vs. PRRS+

Claudin 4 0.62 0.41 0.62 0.158 0.547 0.298

Occludin 0.37 0.28 0.30 0.107 0.518 0.920

pAMPK 1.12 1.12 1.06 0.288 0.947 0.885

AMPK 1.92 2.10 1.05 0.601 0.566 0.133

pAMPK:AMPK 0.99 0.83 1.03 0.251 0.853 0.587

1 Pigs were either challenged with porcine respiratory and reproductive syndrome virus (PRRS+), PRRSV naïve and fed ad libitum (Ad), or PRRSV naïve and pair-fed to

PRRS+ pigs intake (PF). Pigs were euthanized at days post inoculation (dpi) 17.
2 Arbitrary units

https://doi.org/10.1371/journal.pone.0227265.t006

Table 7. Jejunum protein abundance determined via immunohistochemistry staining1.

Treatment P-value

Item2 Ad PF PRRS+ SEM Ad vs. others PF vs. PRRS+

Claudin 2

Cytoplasmic 0.12 0.09 0.08 0.026 0.358 0.844

Membrane 0.12 0.09 0.08 0.028 0.337 0.818

Overall 0.06 0.05 0.05 0.013 0.302 0.893

Membrane:Cytoplasmic 0.99 0.93 0.05 0.025 0.092 0.578

Claudin 4

Cytoplasmic 0.18 0.21 0.20 0.022 0.315 0.983

Membrane 0.20 0.23 0.22 0.026 0.378 0.886

Overall 0.12 0.14 0.14 0.014 0.399 0.964

Membrane:Cytoplasmic 1.12 1.12 1.10 0.011 0.416 0.466

ZO-1

Cytoplasmic 0.0023 0.0012 0.0020 0.0025 0.126 0.091

Membrane 0.0035 0.0022 0.0025 0.0061 0.156 0.676

Overall 0.0023 0.0017 0.0020 0.0044 0.394 0.648

Membrane:Cytoplasmic 1.790 1.500 1.330 0.376 0.427 0.747

1 Pigs were either challenged with porcine respiratory and reproductive syndrome virus (PRRS+), PRRSV naïve and fed ad libitum (Ad), or PRRSV naïve and pair-fed to

PRRS+ pigs intake (PF). Pigs were euthanized at days post inoculation (dpi) 17.
2Average positive optical density within the area of interest

https://doi.org/10.1371/journal.pone.0227265.t007
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Discussion

Adverse health events and the accompanying hypophagia results in economically significant

losses in pig growth performance worldwide. However, it is unclear how an adverse health

event such as PRRSV challenge directly, or indirectly via hypophagia, impacts small intestinal

function and integrity [8]. Moreover, little is known about how much disease hypophagia con-

tributes to attenuated pig performance and modulations in small intestinal function and integ-

rity. In order to investigate this, a 17 day PRRSV challenge study was conducted in growing

pigs. In addition, a treatment group comprising of PRRSV naïve pigs pair-fed to PRRSV chal-

lenged pigs’ daily feed intake was utilized to investigate the extent to which disease hypophagia

modulates jejunum function and integrity.

In PRRSV challenge studies of similar duration, voluntary feed intake is commonly reduced

25–30% [18, 34, 35], although reductions in feed intake of up to 40% have been reported [36].

Fig 2. Representative immunohistochemistry images for Claudin 2 (A-C), Claudin 4 (D-F), and ZO-1 (G-I). Pigs were either PRRSV

naïve and fed ad libitum (Ad: A, D, and G), PRRSV naïve and pair-fed to PRRS+ pigs intake (PF: B, E, and H), or challenged with

PRRSV (PRRS+: C, F, and I). Pigs were euthanized at days post inoculation (dpi) 17. Staining was limited to the epithelial cells, with

higher stain density at cell membranes.

https://doi.org/10.1371/journal.pone.0227265.g002
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In the current study, feed intake was reduced 45% in PRRS+ pigs, a more severe reduction

than what has been reported. This is likely due to the age of pig and/or virulence of PRRSV

strain utilized [37]. We also reported herein that PRRS+ pigs had accompanying reductions in

growth rates. As such, maintenance energy calculations based off NRC [38] requirements

demonstrated both PRRS+ and pair-fed pigs consumed more feed than was required for main-

tenance of body weight (1.6 and 1.7 times maintenance energy requirements, respectively),

however this does not account for the additional energy expenditure required for the immune

response. Thus, the caloric restriction model in pair-fed pigs was not severe enough to induce

starvation-like changes to the intestinal epithelium but was severe enough to induce any nutri-

ent sparing adaptive responses that may have occurred during the 17 day test period.

The absorptive enterocytes of the small intestinal epithelium contain a variety of transport-

ers and transport mechanisms to efficiently absorb dietary nutrients from the lumen. How-

ever, these absorptive epithelial cells undergo constant migration and turnover, an

energetically demanding process. In starvation studies utilizing mice [39] and rats [12], both

epithelial cell migration and turnover are reduced, suggesting that the intestine reduces cellular

turnover to spare energy in a time of nutrient scarcity. This is accompanied by a reduction in

jejunal villus height and crypt depth [12]. Although reducing cellular turnover spares energy,

it also reduces the absorptive area of the intestinal epithelium, making potential caloric inter-

ventions less effective. In previous work examining PRRSV infected pigs, our laboratory

reported no alteration in jejunal morphology at dpi 21 [40]. In contrast, at dpi 7 PRRSV

infected pigs have been reported to have marked reductions in jejunal villus height and crypt

depth [36]. These discrepancies may be due to differences in the PRRSV pathogenicity or feed

intake. Herein, we report that PRRS+ and pair-fed pigs had reduced jejunal villus height and

crypt depth at dpi 17 compared with Ad pigs. While changes to crypt depth were similar in

PRRS+ and pair-fed pigs, reductions to villus height were more severe in PRRS+ pigs, suggest-

ing that caloric intake partially, but not fully, explains morphology changes. The additional

reduction in villus height in PRRS+ pigs may be a direct result of PRRSV itself or may be a

function of the additional energy required for the immune response, which would put PRRS

+ pigs at an energy deficit compared with pair-fed pigs. Regardless, it appears as though restor-

ing feed intake could at least partially restore epithelial cell turnover and morphology of the

digestive tract.

Although morphology is a good marker of absorptive area of the intestine, digestive and

absorptive enzymes are a more direct measure of digestive efficiency. Digestion of disaccha-

rides such as sucrose, lactose, and maltose in the small intestine occurs via the brush border

disaccharidases sucrase, lactase, and maltase, respectively. In neonatal pigs feed restricted by

60% for 30 d, activities of jejunal disaccharidases were decreased when expressed on an area of

tissue basis, but were reported to be upregulated when expressed on a protein basis [11]. These

data suggest that total brush border enzyme abundance may be reduced, but activity is unhin-

dered. In the current experiment, activities of the disaccharidases (sucrase, lactase, maltase)

were not different from Ad pigs as a result of PRRSV or pair-feeding. However, the activities

of all 3 brush border enzymes were reduced in PRRS+ pigs when compared with pair-fed pigs.

Although little is known about the regulation of disaccharidase activity, it is possible that these

differences are due to disparities in the nature of the feed restriction model (voluntary vs.

involuntary).

Following enzymatic degradation, luminal glucose uptake into the enterocyte occurs

actively via sodium-dependent glucose co-transporter 1 and passively via glucose transporter 5

[41]. In the current experiment, ex vivo active transport of both glucose and glutamine were

assessed in modified Ussing chambers. Both glucose and glutamine active transport were

increased in PRRS+ pigs compared with Ad pigs. This is in agreement with previous work in
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our laboratory using health compromised pigs, in which increased ex vivo active nutrient

transport has been observed in 21 day PRRSV challenged pigs [40], as well as bacterially chal-

lenged [42], lipopolysaccharide challenged [43], and heat stressed [3] pigs. We have postulated

that these changes were partially driven by a reduction in feed intake and possibly a host

response to nutrient and energy scarcity. The utilization of the pair-feeding model was able to

demonstrate that increased active nutrient transport is partially driven by a reduction in feed

intake, as pair-fed pigs had active nutrient transport values intermediate that of PRRS+ and

Ad pigs. The additional increase in active nutrient transport in PRRS+ pigs may be an adaptive

mechanism to support changes in metabolism that occur during immune stimulation to reflect

heightened glucose demand [44, 45]. Active glucose transport is driven by a sodium gradient

generated by basolateral Na+/K+ ATPase pumps [46]. Often, increases in ex vivo glucose

transport are accompanied by increases in activity of Na+/K+ ATPase pumps [3, 40]. How-

ever, in the current experiment jejunum Na+/K+ ATPase activity was slightly reduced by

PRRSV and pair-feeding. Although the reasoning for this is unclear, inconsistencies may be

due to differences in duration or severity of the stressor challenge. After uptake from the

lumen, some glucose is utilized by the enterocyte for ATP generation, however most of the glu-

cose is transferred into the bloodstream via the passive basolateral transporter glucose trans-

porter 2. We observed no change in mRNA abundance of glucose transporter 2 between Ad

pigs and PRRS or pair-fed pigs, which is in agreement with previous PRRSV challenge studies

[40]. Taken together, it appears that neither PRRSV challenge nor nutrient restriction caused a

significant reduction in digestive or absorptive activity of the intestinal epithelium.

In addition to its role in digestion and nutrient uptake, the intestinal epithelium acts as a

barrier against toxins and harmful microorganisms. Critical to the integrity of this barrier are

goblet cells and the tight junction complexes. Goblet cells produce the primary defense mecha-

nism, a mucus layer which physically prevents bacterial penetration [47]. Stressors such as

underfeeding [11] and PEDV infection [48] have been shown to deplete goblet cells, thus

reducing mucin production and leaving pigs more susceptible to further bacterial infection.

However, in the current experiment, no difference in goblet cell count was observed. These

data are in agreement with Schweer et al. [40], who observed no difference in jejunal mucin

protein abundance resulting from PRRSV challenge.

Tight junction complexes form the secondary defense barrier, a carefully regulated selec-

tively permeable seal between epithelial cells. Reduced integrity of the tight junction barrier is

associated with lower transepithelial resistance and a higher permeability to macromolecules

[49]. Stress induced changes in intestinal integrity has been well documented in pigs, particu-

larly regarding weaning stress [see 5 for review] and heat stress [3, 4, 50]. However, mRNA

and protein abundance and localization of tight junction proteins has been poorly character-

ized in post-weaned pigs under stressors such as disease challenge. As mRNA abundance is the

most commonly reported marker of intestinal integrity in pig studies but does not indicate if

protein membrane abundance or total abundance is altered, both mRNA and protein analysis

approaches were chosen in order to examine if these measures correlate under PRRSV chal-

lenge. In the current study, we observed reductions in jejunum transepithelial resistance as a

result of PRRSV challenge, but no significant change in macromolecule permeability com-

pared with Ad pigs, although high variation in these measures was reported. Interestingly,

these changes were similar to those of pair-fed pigs, suggesting that caloric and nutrient

restriction explains the reduction in jejunal integrity reported herein. These data somewhat

agree with that of Jacobi et al. [51], who observed no significant changes in intestinal transe-

pithelial resistance or mannitol permeability in suckling pigs after 3 days of 50% caloric restric-

tion. These authors did report numerical reductions in transepithelial resistance due to caloric

restriction, but not mannitol permeability [51]. This suggests that under a calorie restricted
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state the passage of small ions is altered, but not the integrity of tight junctions. In contrast,

protein-energy malnourishment in pigs (50% caloric restriction and protein deficient diet),

did result in greater FD4 permeability [52, 53]. These inconsistencies may be due to the spe-

cific nature of the malnutrition model. In studies where macromolecule permeability was

increased [52, 53], pigs were both energy restricted and fed protein deficient diets, whereas in

studies where no change in macromolecule permeability was observed [51; the current study],

pigs were energy restricted but fed diets that met their specific nutrient requirements and

should not have been in a caloric deficit severe enough to become deficient in specific nutri-

ents such as protein, which is used preferentially and disproportionately by the intestine for

maintenance [54]. In support of this, we observed no difference in the phosphorylation (acti-

vation) of the energy sensing protein AMPK in the jejunum. Activation of AMPK is observed

in pig jejunum tissue during chronic lipopolysaccharide administration [55], and activated

AMPK partially mediates reductions in intestinal integrity during interferon-γ induced

inflammation via reducing occludin and ZO-1 protein abundance [56]. Thus, preservation of

energy homeostasis may have been responsible for maintenance of tight junction complexes.

To confirm our hypothesis that tight junction complex integrity was maintained, the abun-

dance and localization of tight junction proteins was assessed, as these proteins are believed to

play the greatest role in intestinal integrity [2]. The transmembrane protein occludin possesses

adhesive properties [57] to assist with seal formation. The transmembrane claudins can be

classified as either sealing, such as claudin 4, or pore forming, such as claudin 2 [49]. Regard-

less, stability of these transmembrane proteins are reliant on interactions with intracellular

proteins such as ZO-1 [58]. As tight junction proteins can be internalized under stress inde-

pendently of cell energy status [56, 59], we also evaluated cellular location (membrane or cyto-

plasm) via immunohistochemistry, to better determine the integrity of the complexes. In

confirmation, we observed no change to the cellular location of any of the tight junction pro-

teins evaluated, similar to what has been observed with cellular location of occludin in calorie

restricted piglets [51] and with ZO-1 and claudin-1 in malnourished mice [60]. However, we

did observe decreased mRNA abundance of several tight junction proteins when quantified

through both PCR and in-situ hybridization. Decreased mRNA abundance of tight junctions

proteins was not observed in less severely PRRSV challenged pigs [40], but has been docu-

mented in protein-energy restricted pigs [52]. The reduced mRNA abundance documented

herein may be the result of reduced epithelial cell turnover, which allows the body to minimize

the energetic output of the gastrointestinal system, whilst remaining impermeable to patho-

gens and equipped to absorb nutrients once the pig’s appetite has returned [12, 61]. A reduc-

tion in the rate of epithelial cell turnover would result in maintenance of epithelial cell protein

abundance but would reduce need for mRNA synthesis. This could explain why tight junction

mRNA abundance was decreased, but no change was observed in tight junction protein abun-

dance or the integrity of the tight junctions to permeation by macromolecules. It also suggests

that in studies involving long term biological adaptation to disease, evaluating mRNA abun-

dance may not explain what changes are occurring at a protein or protein function level, as

these do not necessarily correlate well during adaptive periods such as starvation [62]. How-

ever, as pigs were only euthanized at one time point, it is also possible that given more time,

protein abundances would reflect the differences observed in mRNA abundance.

In conclusion, this study demonstrates that most of the changes that occur to intestinal

structure, function, and integrity during a systemic PRRSV challenge are partially a function

of hypophagia. Further, during periods of disease induced hypophagia, jejunal digestive

machinery retains its ability to digest and absorb nutrients. Finally, although long term adapta-

tion to systemic PRRSV challenge and caloric restriction reduces intestinal integrity based on
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transepithelial resistance, it does not appear to increase macromolecule permeability or reduce

the integrity (abundance and location) of tight junction protein complexes.
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