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In recent years the analysis of molecular dynamics trajectories using dimensionality

reduction algorithms has become commonplace. These algorithms seek to find a

low-dimensional representation of a trajectory that is, according to a well-defined

criterion, optimal. A number of different strategies for generating projections of

trajectories have been proposed but little has been done to systematically compare how

these various approaches fare when it comes to analysing trajectories for biomolecules

in explicit solvent. In the following paper, we have thus analyzed a molecular dynamics

trajectory of the C-terminal fragment of the immunoglobulin binding domain B1 of protein

G of Streptococcus modeled in explicit solvent using a range of different dimensionality

reduction algorithms. We have then tried to systematically compare the projections

generated using each of these algorithms by using a clustering algorithm to find the

positions and extents of the basins in the high-dimensional energy landscape. We find

that no algorithm outshines all the other in terms of the quality of the projection it

generates. Instead, all the algorithms do a reasonable job when it comes to building

a projection that separates some of the configurations that lie in different basins. Having

said that, however, all the algorithms struggle to project the basins because they all have

a large intrinsic dimensionality.

Keywords: molecular dynamics, dimensionality reduction, machine learning, trajectory analysis, computer

simulation, clustering

1. INTRODUCTION

For many years researchers have sought to determine whether it is possible to predict the tertiary
structure of a protein from the amino acid sequence alone. Numerous structure prediction
algorithms have been developed to solve this problem and these algorithms have then been tested
in the biennial, community-wide blind tests to predict the unknown structures of proteins. The
tertiary structure of the protein is only a part of the story, however. To truly understand how these
molecules function in the cell we must also understand their dynamical behavior (Dunker et al.,
2008; Constanzi, 2010; Goldfeld et al., 2011; Kmiecik et al., 2015). In fact, a whole new class of
intrinsically disordered proteins (IDP) that do not have the same familiar and relatively permanent
tertiary structures has been discovered (Dyson and Wright, 2005).

Molecular dynamics (MD) simulations with force fields that model the interactions between the
atoms in the biomolecule have emerged as a useful tool for investigating the dynamical structure of
proteins. This technique is, in fact, particularly important for IDPs as the experiments alone often
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do not provide sufficient information on the conformers adopted
by the biomolecules. Detailed structural information is thus
obtained by formulating constraints based on the experimental
data and by then performing constrained MD simulations
(Bonomi et al., 2017). There is a problem, however, when it
comes to visualizing the results from these MD simulations.
Biomolecules, unlike simpler chemical systems such as solids,
do not undergo transitions that involve a change of symmetry.
Instead, they undergo transitions between various low symmetry
structures, which makes it difficult to know how to analyze the
trajectories that emerge fromMD simulations.

During the last few decades, many researchers have sought
to solve the problems outlined in the previous paragraph by
analyzing their MD trajectories using dimensionality reduction
algorithms. The theory behind such approaches is that the
computer can determine what features of the data are important
and what features are simply noise. Many different algorithms
have been used to analyze MD trajectories and some have
even been developed with this particular purpose in mind
(Garcia, 1992; Amadei et al., 1993; Balsera et al., 1996; Yuguang
et al., 2005; Das et al., 2006; Konrad, 2006; Plaku et al., 2007;
Spiwok et al., 2007; Zhuravlev et al., 2009; Stamati et al., 2010;
Sutto et al., 2010; Ceriotti et al., 2011; Spiwok and Kralova,
2011; Tribello et al., 2012; Noé and Clementi, 2015, 2017;
Tiwary and Berne, 2016; Sultan and Pande, 2017; Chen and
Ferguson, 2018; Sultan et al., 2018). Much less work has been
done, however, to compare the performance of the various
dimensionality reduction algorithms although there are a few
notable examples of work on systems in implicit solvent in the
literature (Duan et al., 2013).

One reason why few systematic comparisons between
the projections of trajectories generated using different
dimensionality reduction have been performed is that it is
difficult to formulate an appropriate method to test the quality of
a projection. After all, if we knew what the appropriate method
for analyzing our trajectory was we most likely wouldn’t be
reliant on dimensionality reduction algorithms. Duan et al.
(2013) argue that one feature of a good projection is that the
distances between the projections of the points are similar to
the true distances between the trajectory frames. This criterion
is undoubtedly sensible but it is also the criterion that is
used when optimizing the projection. What we thus find out
when it is measured is the extent to which the algorithm was
able to satisfy the constraints of the optimization problem.
As Duan et al. (2013) point out it is much more difficult
to unequivocally say that the assumptions of method X are
appropriate. Particularly so when it comes to the non-linear
methods. Nevertheless, in what follows we use a number of
different algorithms to analyze the trajectory of a biomolecule
in explicit solvent. We show two-dimensional projections of
the trajectory that are obtained using each of these algorithms
and perform various analyses to compare how well these
projections have encoded the information in the trajectory in
section 3. Before getting onto this, however, we provide some
background information on the various algorithms that we
have used in section 2 and the trajectory we have analyzed in
section 3.

2. BACKGROUND

Amolecular dynamics trajectory for a set ofN atoms is essentially
an ordered set of 3N-dimensional vectors. Furthermore, if we
assume that the simulated system is equilibrated and if we are
only interested in static properties then the order the vectors are
in is not particularly important. The problem of analysing the
trajectory thus reduces down to one of simply visualizing the
position of each frame in the trajectory relative to all the others.
Obviously, however, we cannot draw a diagram illustrating the
position of each trajectory frame in the 3N-dimensional vector
space of atomic positions and are thus forced to discard (ideally)
all but two of these dimensions.

Oftentimes decisions as to how to plot the relationships
between the trajectory frames are made using chemical or
physical intuition about the problem under study. In these cases,
some function/s of the atomic positions - usually referred to as
collective variables or CVs - is computed for each of the trajectory
frames. The positions of each of the trajectory frames in the low-
dimensional CV space can then be plotted so that conclusions
can be drawn about the parts of space that were sampled in
the trajectory.

Dimensionality reduction algorithms adopt a similar
approach. Instead of using chemical/physical intuition to
decide on the appropriate low dimensional space in which to
visualize the data, however, dimensionality reduction algorithms
introduce a loss function. Optimization algorithms are then used
to ensure that a low-dimensional representation of the data that
minimizes the value of this loss function is found.

To understand how these algorithms work in practice
consider how the multidimensional scaling (MDS) algorithm
(Borg and Groenen, 2005) would produce a low dimensional
representation, {x(i)} of the N M-dimensional vectors in the set,
{X(i)}. The first step is to compute the dissimilarity between each
pair of trajectory frames using Pythagoras theorem:

||X(i) − X(j)|| =

√

√

√

√

M
∑

k=1

(X(i)
k

− X
(j)
k
)2 (1)

The low dimensional representation is then found by optimizing
the loss function:

χ({x(i)}) =
∑

i6=j

{

||X(i) − X(j)|| − ||x(i) − x(j)||
}2

(2)

where x(i) and x(j) are the low dimensional representations
of points i and j respectively. In other words, the MDS
algorithm works by endeavoring to arrange the points in the low
dimensional space so that the distances between the projections
are the same as the dissimilarities between the trajectory frames.

All of the dimensionality reduction algorithms that have been
used to analyze molecular dynamics trajectories work using a
strategy that is similar to the one described above. In short, some
features that describe how the data is arranged across the high
dimensional space are computed. Points are then arranged in
the low dimensional space in a way that reproduces the high-
dimensional features as closely as possible. A large number of
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algorithms exist, however, because one can perform numerous
variations on this theme. The best way to understand these
variants is to consider the choices that must be made in order
to analyze a trajectory using one of these algorithms:

• How to represent the trajectory frames - The simplest
representation to use for the trajectory frames is a list of
atomic coordinates. Using the atomic coordinates is not
particularly sensible, however, as one essentially discards all
chemical and physical intuition about the problem at hand. It
is thus often better to embed the known physical details about
the problem when one is calculating the high-dimensional
vectors that represent each of the trajectory frames. As a
case in point, it may well be better to input vectors of
backbone dihedral angles into the dimensionality reduction
algorithmwhen one is examining a trajectory of a biomolecule.
Alternatively, a number of general purpose representations
of atomic structures have been developed in the context of
fitting potentials based on the results of density functional
theory calculations (Behler, 2011; Bartók et al., 2013; Willatt
et al., 2018). These representations have the advantage of
providing a systematically convergent description of the
chemical environment and were used in De et al. (2016);
Bartók et al. (2017); Musil et al. (2018).

• Whether to use landmark points and if so how to choose

these landmarks - Dimensionality reduction algorithms scale
quadratically with the number of input vectors. It is thus
often not feasible to perform a dimensionality reduction
with a whole trajectory as input. Researchers therefore often
adopt a more computationally-efficient strategy whereby they
run the algorithm on a small number of so-called landmark
frames. Projections for all the frames in the trajectory are then
constructed using an out-of-sample procedure. Obviously,
using this procedure entails choosing an appropriate number
of landmark points and devising a strategy for selecting
these landmarks. Typically, however, one of two strategies is
employed either (i) landmarks frames are selected randomly
so the distribution of landmarks resembles the distribution of
trajectory frames or (ii) landmarks frames are selected using
farthest point sampling so as to have frames from all the
regions of configuration space that were explored. A third
option that combines the strengths of these two approaches
is discussed in Ceriotti et al. (2013)

• How to construct the loss function - By changing the way
the loss function is defined one can change what features
from the high-dimensional space the algorithm is endeavoring
to reproduce as it arranges the projections in the low-
dimensional space. Minimizing Equation 2 for instance is
akin to attempting to reproduce the Euclidean distances
between the high-dimensional vectors. It is possible to use
a different method for calculating the dissimilarity between
the trajectory frames, however. For example, in isomap
(Tenenbaum et al., 2000) dissimilarities between the high-
dimensional frames are computed by using Dijkstra’s shortest
path algorithm to compute the approximate geodesic distances
between frames. In an isomap projection, it is thus the
geodesic distances between frames that are reproduced. Other

algorithms, sketch-map for example (Ceriotti et al., 2011),
have a loss function that is designed so that only a particular
subset of the dissimilarities between the trajectory frames are
reproduced. Yet another option is to design the loss function
so that amatrix of non-linear kernels is reproduced rather than
a matrix of dissimilarities (Schölkopf et al., 1998; Schölkopf
et al., 1999). One final option is to design a loss function
that reproduces the distribution of points in the neighborhood
of each of the high-dimensional points (van der Maaten and
Hinton, 2008).

• How to optimize the loss function - As with any optimization
problem there is a concern when finding the low dimensional
projection that the minimum found is a local rather than the
global optimum. In many of the commonly used algorithms,
this problem is sidestepped by insisting that the distances
between the projections should constitute the best linear
approximation of the dissimilarities. This approximation
simplifies matters considerably as finding the projections
simply becomes a matter of diagonalizing a matrix. The fact
remains, however, that the algorithm used to optimize the loss
function may have an effect on the final projection produced.

The rationale that should be born in mind when making these
decisions is not always clear. In other fields, decisions are often
made based on an understanding of what the high-dimensional
data looks like and on an understanding of what features in the
high-dimensional data set the users of these algorithms would
like to reproduce (Rosman et al., 2010). One might therefore,
suspect that by trying a range of algorithms and by determining
howwell each one performs onemight be able to get some insight
into the structure of the data in the high dimensional space.

3. METHODS

To test how effective various dimensionality reduction
algorithms are at projecting data from biomolecular trajectories
we took the data from the parallel tempering metadynamics
trajectories of the 16-residue C-terminal fragment of the
immunoglobulin binding domain B1 of protein G of
Streptococcus that was generated in Ardevol et al. (2015)
and projected it using a range of different algorithms. Within
that work, the protein was simulated using Gromacs-4.5.5 (Hess
et al., 2008), the AMBER99SB-ILDN* force field (Lindorff-
Larsen et al., 2010) and an explicit solvation model. The protein
and surrounding water molecules were then simulated for 300
ns/replica with metadynamics biases that acted on the radius of
gyration and the number of hydrogen bonds between backbone
atoms. The same protein was studied in the work in the work
on comparing different dimensionality reduction algorithms by
Duan et al. (2013) but an implicit solvent model was used in that
work rather than the explicit model that we have used.

The wild-type trajectory in the work of Ardevol et al.
(2015) that we have analyzed in this work contains 150,000
trajectory frames. Running each of the dimensionality reduction
algorithms on this large number of trajectory frames would be
computationally prohibitive so we selected a subset of 25,311 to
analyse with each of the algorithms by sampling configurations
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FIGURE 1 | The projections of the trajectory that were generated using each of the various dimensionality reduction algorithms. As discussed in the text the

projections in these figures are colored in accordance with the secondary structure content of the corresponding trajectory frame. As you can see the majority of the

algorithms do a reasonable job of separating those frames that have a configuration that resembles an alpha helix from those that have a configuration that resembles

a beta sheet.

from the trajectory of the lowest-temperature replica at random.
For each of these configurations, we computed the full set
of 32 torsional backbone dihedral angles. Two-dimensional
projections for each of these 32-dimensional vectors were then
generated using the implementations of the various algorithms
that are available in SciKit Learn (Pedregosa et al., 2011) and
the sketch-map code (Ceriotti et al., 2011). Detailed step-by-
step instructions showing how these projections were generated
using these tools can be found in the supporting information
(Data Sheet 1).

The algorithms that we used to project the data were principal
component analysis (PCA) (Jolliffe, 2002), Laplacian Eigenmaps
(Belkin and Niyogi, 2003), isomap (Tenenbaum et al., 2000),
t-distributed stochastic neighbor embedding (t-SNE) (van der
Maaten and Hinton, 2008) and sketch-map (Ceriotti et al., 2011).
In addition, we also generated a projection by simply minimizing
Equation 2 using conjugate gradients (dist. match).

We performed PCA on the dihedral angles in a way that is
sympathetic to the periodicity of these variables by using the
method described in Yuguang et al. (2005); Konrad (2006); Altis
et al. (2007). Meanwhile, for all the remaining algorithms we
simply incorporated periodic boundaries when calculating the
vectors connecting the positions of the trajectory frames in the
space of dihedral angles. For isomap and Laplacian Eigenmaps we
constructed graphs in the high dimensional space by connecting
each point to its 15 nearest neighbors. For Laplacian Eigenmaps
we then used a Gaussian kernel with a gamma parameter of 1.
When using t-SNE we employed the Barnes-Hut implementation
with a perplexity of 110 and a theta value of 0.5. Lastly, for
sketch-map, we selected 1000 landmark point using the well-
tempered farthest point sampling algorithm that is described in
the appendix of Ceriotti et al. (2013) and a gamma parameter
of 0.1. Weights for each of these landmarks were generated
using a Voronoi procedure and the sketch-map stress function
with parameters σ = 6, A = 8, B = 8, a = 2 and

b = 8 was then optimized to find projections. Once projections
for these landmarks had been found the rest of the trajectory
was projected using the out of sample procedure described
in Tribello et al. (2012).

4. RESULTS

Figure 1 shows the projections of the trajectories for
immunoglobulin binding domain B1 of protein G that we
obtained. Before projecting the trajectory we used the STRIDE
algorithm discussed in Frishman and Argos (1995) to determine
the secondary structure content in each of the frames that were
analyzed. In particular, we counted the number of residues
that had a structure that was similar to an alpha helix and the
number of residues that had a structure that was similar to a
beta sheet. When constructing the projections in Figure 1 we
thus colored the projections according to the number of residues
in the corresponding trajectory frames that appeared to be in
an alpha helix configuration and the number of residues that
appeared to be in a configuration that resembled a beta sheet.
Coloring the projections in this way gives us a qualitative way
to compare how well each of the algorithms does when it comes
to projecting the trajectory data. What we see is that all the
algorithms do a reasonable job of separating the configurations
that are predominantly alpha-helix-like from those that have a
structure that is predominantly composed of beta sheets. In this
sense at least then the algorithms all give a reasonable projection
of the high-dimensional data.

There are additional observations to be made based on
the results in Figure 1. For PCA the distances between the
projections are systematically shorter than the dissimilarities
between the corresponding trajectory frames. This fact is
illustrated in Figure 2, which shows pair distribution functions
for the dissimilarities, Rij, between the frames and the distances,
rij, between their corresponding projections for each of the
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FIGURE 2 | Histograms illustrating the joint probability density function for the

dissimilarities between the configurations in the trajectory and the distances

between the corresponding projections of these trajectory frames. The

particular projections that have been analyzed here are those that are shown in

Figure 1. The black line in each of these figures is the line Rij = rij . For an ideal

projection all the density in these histograms would lie on this line.

representations of the data shown in Figure 1. To compute
the dissimilarities, Rij, we inserted the vector of backbone
dihedral angles for each pair of trajectory frames into Equation
1 and made suitable dispensations for the periodicity of these
variables. The distances, rij, were, meanwhile, computed by
using Equation 1 on the projections of these points. With these
two quantities computed we then determined these probability
density functions by using:

P(D, d) =
1

0.5N(N − 1)

N
∑

i=2

i
∑

j=1

δ(Rij − D)δ(rij − d)

where N is the number of frames that were projected and where
δ is a Dirac delta function.

If a projection is perfect the distances between the projections
and the dissimilarities between the trajectory frames are identical
and all the density in the joint distribution function is
concentrated on the line y = x. For all the probability density

functions shown in Figure 2, however, we see that the density
away from y = x is substantial and we, therefore, know that
the projections are thus imperfect. Furthermore, for PCA we see
that all the density lies underneath the line y = x, which is why
we are able to state that the distances between the projections
are systematically shorter than the dissimilarities between the
corresponding trajectory frames. The fact that these distances are
shorter when we use this algorithm is unsurprising, however.
This algorithm projects the high-dimensional data into a linear
subspace. Any differences between configurations that are along
directions that are orthogonal to this subspace are thus discarded
when projections are constructed in this way.

It is possible to formulate PCA as a linear optimization
of Equation 2. In other words, this algorithm projects the
data in the linear subspace that is best able to reproduce the
dissimilarities between frames, which, incidentally, is why the
distances between the projections are systematically shorter than
the dissimilarities between the trajectory frames. We can avoid
producing a projection in which the distances between points
are systematically shorter than the dissimilarities between the
corresponding trajectory frames by minimizing Equation 2 using
an iterative algorithm such as conjugate gradient. The top right
panel of Figure 2 illustrates that when we do so the joint
probability distribution for the distances and dissimilarities is
then peaked around the line y = x so some distances are
projected further apart than they should be while others are
projected closer together. The effect this has on the appearance
of the projection is illustrated in Figure 1. Essentially the
projections of the points are spread more uniformly over the low
dimensional space than they would be if the projection had been
constructed using PCA. Given that one of our aims is to identify
the various basins in the free energy landscapes that were sampled
during the trajectory this spreading out of the projections is
clearly disadvantageous as it may cause different basins to overlap
with each other.

The other algorithms that have been tested in Figures 1, 2
all use different criteria when constructing the projections. In
other words, these algorithms do not seek to generate projections
in which the Euclidean distances between the trajectory frames
are reproduced in the projection. Instead, Laplacian Eigenmaps
(Belkin and Niyogi, 2003) and isomap (Tenenbaum et al., 2000)
seek to reproduce the diffusion distances and geodesic distances
respectively and calculate these distances by using ideas from
graph theory. t-SNE (van der Maaten and Hinton, 2008) and
sketch-map (Ceriotti et al., 2011), meanwhile, do not try to
generate projections in which the distances are reproduced at
all. Instead, sketch-map seeks to ensure that points that are far
apart in the high-dimensional space are projected far apart, while
simultaneously ensuring points that are close together in the
high-dimensional space are projected near to each other. t-SNE,
meanwhile, endeavors to generate a low-dimensional projection
that reproduces the distribution of neighbors around each point
in the high-dimensional space. The projections generated using
each of these algorithms that are shown in Figure 1 differ
starkly from those that are generated using the two forms of
distance matching that were described previously. Reassuringly,
however, all four algorithms do a reasonable job when it comes to
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separating the configurations that resemble an alpha helix from
those that resemble a beta sheet.

The non-Euclidean-distance-matching algorithms: isomap,
Laplacian Eigenmaps, t-SNE, and sketch-map make assumptions
about the structure of the manifold from which the trajectory
frames are sampled, which may or may not be valid. These
assumptions affect the dissimilarities that these algorithms
attempt to reproduce and can thus affect the distances
between the projections. In fact, Duan et al. (2013) showed
that projections generated using isomap do not preserve the
neighborhood structure in the high dimensional space even when
50-dimensional projections are constructed precisely because
of the way in which the geodesic distances are constructed.
Furthermore, Brown et al. (2008) showed that these algorithms
can give incorrect estimates for the dimensionality of energy
landscapes precisely because they assume that a manifold-
like structure exists that may not be there. To investigate
the effect these assumptions are having on the appearance of
the projections the bottom four joint probability distributions
in Figure 2 illustrate how each of the non-distance-matching
algorithms performs when it comes to generating a projection
in which the Euclidean distances between the various trajectory
frames are reproduced. As you can see only Laplacian
Eigenmaps produces a projection in which the distances between
projections are systematically shorter than the dissimilarities
between the corresponding trajectory frames. All the remaining
algorithms generate projections in which only some distances
are underestimated. The distances between the projections of
the points in these representations are, in contrast to the other
algorithms, predominantly larger than the dissimilarities between
the corresponding trajectory frames. This “stretching out" of
the distances in the projections is arguably a good thing as it
ensures that the representations of the various basins in the low
dimensional space do not overlap. At the same time, however, it
may be that this stretching out of space causes basins to appear
split into smaller pieces in the projection, which may give one the
impression that there are more features in the energy landscape
than there are in actuality.

To better understand the various projections in Figure 1

we performed an analysis of the trajectory that was similar to
that performed in Gasparotto et al. (2018). To generate the
images shown in Figure 3 we analyzed the high-dimensional
data using the probabilistic analysis of molecular motifs (PAMM)
method that is discussed in Gasparotto and Ceriotti (2014)
and Gasparotto et al. (2018). This clustering method works by
first selecting a sparse grid of points in the high dimensional
space. The probability density at each of these grid points is
then computed using kernel density estimation (KDE). Once the
density at each of these points has been estimated the Quick-
Shift algorithm is used to connect points on the grid to nearby
points that have higher probability densities unless a stopping
criterion is satisfied. The points at which the stopping criteria
are satisfied are then assumed to correspond to the various
local maxima in the probability density. In Gasparotto et al.
(2018) dimensionality reduction was performed in order to better
understand the clusters output by PAMM. In this work, however,
we performed PAMM in order to assign each of the structures

in our trajectory to the nearest local maximum in the high-
dimensional probability distribution so that the way in which
each of these features is represented in each of the projections
could be visualized. Figure 3, therefore, shows representative
configurations from each of the elevenmodes that were identified
using PAMM. The projections in Figure 3 are then colored
according to the particular mode from which the corresponding
trajectory frame was sampled. Once again we find that all the
algorithms do a reasonable job of projecting the data. In most
of the projections, the different modes are projected in different
parts of the low dimensional space and there is little overlap
between the projections of the modes.

There are a number of specific things that are worth noting
about the projections shown in Figure 3. The first is that all the
algorithms clearly struggle to project the PAMM motif that is
shown in light blue in the figures. In all the projections the blue
points are split into multiple distinct clusters. If, as PAMM is
telling us, these points are all from the same mode you would
hope that they would all be clustered in together in a single
feature of the projection. In other words, you would hope that the
points that are clustered together in the high-dimensional space
would appear clustered together in the projection. Given that this
appears to not be the case it would be unwise to run a clustering
algorithm on the low-dimensional projection.

The fact that the blue PAMMmotif appears to be so diffuse in
the projections is surprising as if you look at the representative
structure at the top right of the figure the structures in this
basin would appear to resemble alpha helices. One would expect
such a structure to be in a deep energetic minimum in the
free energy landscape and one might further expect that the
entropy of the configuration - and hence the size of the feature
- to be small. A comparison of Figures 1 and 3 clears these
matters up, however. In Figure 1, remember, the points were
colored red if they had a configuration resembling an alpha
helix. It is clear that the red regions in Figure 1 are considerably
smaller than the blue regions in Figure 3. It is thus clear that the
mode that is colored light blue in Figure 3 must also contain
structures that do not have a configuration that resembles an
alpha helix. What thus seems likely is that the alpha helix
configuration is at the bottom of a broad funnel in the free energy
landscape, which is why these features appear to be so diffuse in
these projections.

The fact that the alpha helix lies at the base of a broad
funnel in the free energy landscape is further confirmed by
the numbers that are given underneath the representative
configurations in Figure 3. These numbers were computed
from the covariance matrices for each of the various clusters
that were identified using PAMM. The first row of numbers
in Figure 3 gives the determinant of the covariance matrices
scaled by the determinant of the covariance of the largest
cluster. As you can see the alpha-helical cluster that is shown
in light-blue has the largest determinant and this cluster is
thus the mode that takes up the largest volume of the high-
dimensional space by some considerable margin. Furthermore,
the second largest mode is the other folded configuration;
namely, the purple-colored basin that includes the beta-
hairpin configuration.
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FIGURE 3 | As discussed in the text, we used the PAMM clustering algorithm to identify clusters that correspond to free energy minima in the high dimensional space.

In this figure, we have thus shown the projections again but this time with the points colored according to the particular cluster the PAMM algorithm identifies each of

the high dimensional configurations to lie within. Representative and similarly-colored configurations from each of the various clusters are shown below and to the right

of the projections. The three rows of numbers beneath the representative configurations provide information on the covariance matrix for each of the clusters that

PAMM identified. The top row of numbers contains the determinants of this matrix but these numbers have been scaled so that the cluster with the largest determinant

has a determinant of 1. To compute the second row of numbers, meanwhile, we divided the sum of the first two eigenvalues of these covariance matrices by the sum

of all the eigenvalues of these matrices. The final row of numbers contains the estimated dimensionality of each of the clusters, which was computed using Equation 3.

To compute the second row of numbers in Figure 3 we
diagonalized the covariance matrix for each of the PAMM
clusters and calculated the sum of the largest two eigenvalues
of this matrix divided by the sum of all the eigenvalues. These
numbers thus give a measure of howmuch of the variance of each
particular feature can be represented in a two-dimensional linear
subspace of the high dimensional space. It is apparent from this
analysis that each of the PAMM features that we have identified
is not well represented in a two-dimensional space as much of
the variation within each of the basins is in directions that are
orthogonal to these two principal eigenvectors. We should thus
perhaps not be surprised to find that the algorithms struggle to
project these clearly-high-dimensional features correctly.

Further information on the features that are difficult to
reproduce in a two-dimensional space is given in the third
row of numbers in Figure 3. This row of numbers contains the
dimension of each basin which was estimated using:

Di = exp

(

−

M
∑

k=1

ηk log ηk

)

where ηk =
λk

∑M
j=1 λj

(3)

and {λk} is the eigenvalue spectrum of the covariance matrix for
the ith PAMM feature. As you can clearly see all the algorithms
do a good job of projecting clusters that have an estimated
dimensionality that is less than around seven. These features
appear as a single cluster in the low dimensional space. It is
those features that have an estimated dimension that is higher
than around seven that represent a problem. The projections
of points from these clusters are often spread across multiple
separated clusters, which makes it difficult to realize that these
configurations are all part of a single basin.

It is interesting to note from Figure 3 how strongly the
projection generated using Laplacian Eigenmaps differs from the
others. The projection generated using this algorithm has the
light green motif separated strongly from all the other motifs,
which appear squeezed together. This same squeezing together
of some of the motifs and pulling apart of others is not observed
in the other representations of the trajectory. The representative
structure for the light green motif offers a tantalizing explanation
as to why this particular behavior might be observed for this
particular algorithm. The light green motif is the only structure
containing no secondary structure content. One might therefore
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FIGURE 4 | As discussed in the text, we can use an agglomerate procedure based on the error in the KDE procedure that is at the heart of PAMM to construct the

hierarchy shown in the bottom left corner of this figure for the PAMM clusters that were identified and shown in Figure 3. This hierarchy would seem to indicate that

we can reduce the 11 PAMM clusters shown in Figure 3 down to 6 macro clusters. In the projections above the points are therefore colored according to the

particular macro cluster the PAMM algorithm identities each of the high dimensional configurations to lie within. As in Figure 3 representative and similarly-colored

configurations from each of the various clusters are shown below and to the right of the projections together with scaled values for determinant of the covariance

matrices for each of the clusters (Top), ratios of the sum of the largest two eigenvalues of these matrices to the sum of all the eigenvalues of these matrices (Middle)

and the estimated dimensionality of each of the features (Bottom).

suppose that this motif corresponds to a random coil, that
the diffusion distance, which Laplacian Eigenmaps endeavors to
reproduce when it constructs a projection, between these states
and the other folded configurations might well be quite large,
and that the transitions between this random coil state and the
other folded states might thus be quite infrequent. As we will
show in what follows it is not clear that this interpretation is
correct, however.

Gasparotto et al. (2018) discuss how bootstrapping can be
used to judge the statistical significance of the clusters identified
by PAMM. Furthermore, in analysing the errors in this way a
distance between clusters that determines whether or not clusters
get merged in some of the 41 bootstrap samples that we took
from the trajectory can be defined. We have used this distance
measure in Figure 4 to generate a tree-like plot that illustrates the
results of a hierarchical clustering procedure performed on the
eleven clusters that were identified in Figure 3. The clusters that
are connected in this plot are those that are likely to be merged
in the bootstrap samples. We thus also re-show the projections
generated using each of the algorithms in Figure 4 but this time

we have reduced the number of PAMM clusters from eleven to
six by using the connectivity that is identified in the tree diagram.

The PAMM analysis shown in Figure 4 makes clear that the
free energy landscape for this protein contains two broad funnels
and three additional, much-smaller funnels. The beta-hairpin
and alpha-helical configurations lie at the bases of the two broad
funnels while the three narrower funnels have three unfolded
structures at their base that have much higher energies. We can
speak of the size of the funnels because we have, once again,
performed an analysis of the covariance matrices and because
the determinant of the clusters that contain the alpha-helix and
beta-sheet are both considerably larger than those of the other
identified features. The other aspects of this analysis demonstrate
that if we take the ratio of the sum of the two largest eigenvalues
of the covariance matrix to the sum of all the eigenvalues of this
matrix we find thatmany of the fluctuations that take place within
these two funnels take place along directions that are orthogonal
to the direction of the eigenvectors that correspond to these
two largest eigenvalues of the funnel. Furthermore, the estimated
dimensionalities of these two features are substantial.
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FIGURE 5 | A three-dimensional projection of the trajectory that was generated using PCA. The positions of projections in the three panels above are all identical. In

the left-most panel, however, points are colored in accordance with their secondary structure as they are in Figure 1. In the middle panel, they are colored as they are

in Figure 3 and in the right panel they are colored as in Figure 4.

When we look at the various projections in Figure 4 we see
that all the algorithms do a good job of separating the red
configurations that come from the funnel that has the alpha
helix at is base from the yellow configurations that come from
the funnel that has the beta sheet at its base. Furthermore, the
fact that these two features have a larger spatial extent than
the other clusters identified by PAMM is clear from the way
these features are projected using all the different algorithms.
Having said all that though there is no way that one would
be able to identify these two features in the landscape if one
were just given the projections generated using one of these
algorithms. In all these various representations of the trajectory,
the red and yellow points appear divided up into multiple
separate clusters. The most dramatic example of this is in the
projection generated using Laplacian Eigenmaps which divides
the yellow points between two very distinct clusters. It is
clear from a comparison of the projections in Figures 3 and 4

that the configurations in these two clusters are separated in
all the other projections of the trajectory. Furthermore, the
hierarchy of clusters shown in Figure 4 also indicates that these
two clusters are likely to be separate features. It may well
be, therefore, that the rate of transition between these two
parts of configuration space is slow because there is perhaps
a kinetic trap on the folding funnel for the beta hairpin. This
observation does, however, raise an interesting question when
it comes to selecting which dimensionality reduction algorithm
to use when constructing a projection. Using the slow degrees
of freedom to construct a low-dimensional representation of
the data makes physical sense but it may well be that the
projections generated using algorithms that work by constructing
a low dimensional representation of a trajectory in which the
dissimilarities between trajectory frames are reproducedmay give
one a clearer sense of the various different structural possibilities
in the ensemble.

It is interesting to ask if we can construct a clearer visualization
of the structure in the data by producing a three-dimensional
projection. Figure 5 shows three representations of a three
dimensional PCA projection of the trajectory with the points
colored as in Figures 1, 3, 4. It is clear from this figure

that the points in this three dimensional PCA projection
are spread out over all three coordinates and certainly not
split into distinct clusters. Furthermore, when it comes to
distinguishing configurations with different secondary structures
the projection is OK but there is still a substantial overlap
between the regions of space where the structure has a
lot of alpha-helical content and the regions of space where
the structure more closely resembles a beta-hairpin as was
the case for the two dimensional projection in Figure 1. In
addition, each of the various PAMM features identified in
Figures 3, 4 does not appear as a single cluster that is well
separated from each of the other features. Instead, the points
belonging to each of these features appear split between multiple
apparently distinct clusters much like they appeared in the two-
dimensional projections shown in Figures 3, 4. In short, a three-
dimensional projection of this trajectory does not provide much
greater insight than the two-dimensional projections that we
have shown thus far and is considerably harder to visualize
and interpret.

5. CONCLUSIONS

In the preceding sections, we have analyzed a molecular
dynamics trajectory for a short protein molecule using a
number of different dimensionality reduction algorithms. The
results we have are in some senses reassuring as all the
algorithms do a reasonable job when it comes to giving
a representation of the trajectory that gives a sense of
the structural diversity that one observes in the trajectory.
In all the projections if two configurations have markedly
different structures they are projected in different parts of
the low dimensional space. Furthermore, configurations that
are structurally similar are for the most part projected close
together. In other words, even projections constructed using
the easier to apply dimensionality reduction algorithms such
as PCA and MDS, which have no parameters that need to be
tuned, can provide one with a useful visualization of the high-
dimensional data.
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When one of these dimensionality reduction algorithms
clearly outperforms the others it is often because the data has
some structure that only one of the algorithms can recognize.
For instance, isomap will outperform PCA when it comes to
projecting data that lies on a curved manifold because PCA
assumes the data lies on a linearmanifold in the high dimensional
space. The fact that all the algorithms perform similarly well
and that no algorithm outshines the other thus perhaps simply
reflects the fact that we do not fully understand how the
trajectory data is distributed across the high-dimensional space.
In other words, none of the data distribution models underlying
these various algorithms provides a complete description of the
structure of the data in the high-dimensional space. It seems
that the data does not all lie on a low-dimensional linear or
non-linear manifold and similarly there perhaps isn’t a single
length scale that separates configurations that lie in different
basins in the free energy landscape. Perhaps then, given that
all these algorithms are imperfect, the appropriate strategy
for analysing an MD trajectory is to try something similar
to the approach that has been taken in this paper. In short,
analyze the trajectory using a range of different dimensionality
reduction and clustering algorithms and consider what the
result from each analysis is telling you by comparing the
results obtained.
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Gasparotto, P., MeiǍŸner, R. H., and Ceriotti, M. (2018). Recognizing local and
global structural motifs at the atomic scale. J. Chem. Theory Comput. 14,
486–498. doi: 10.1021/acs.jctc.7b00993

Frontiers in Molecular Biosciences | www.frontiersin.org 10 June 2019 | Volume 6 | Article 46

https://github.com/cosmo-epfl/sketchmap/tree/master/examples/protein
https://github.com/cosmo-epfl/sketchmap/tree/master/examples/protein
https://www.frontiersin.org/articles/10.3389/fmolb.2019.00046/full#supplementary-material
https://doi.org/10.1063/1.2746330
https://doi.org/10.1021/ct500950z
https://doi.org/10.1126/sciadv.1701816
https://doi.org/10.1103/PhysRevB.87.219902
https://doi.org/10.1063/1.3553717
https://doi.org/10.1162/089976603321780317
https://doi.org/10.1016/j.sbi.2016.12.004
https://doi.org/10.1063/1.2968610
https://doi.org/10.1073/pnas.1108486108
https://doi.org/10.1021/ct3010563
https://doi.org/10.1002/jcc.25520
https://doi.org/10.1073/pnas.0603553103
https://doi.org/10.1039/C6CP00415F
https://doi.org/10.1021/ct400052y
https://doi.org/10.1016/j.sbi.2008.10.002
https://doi.org/10.1038/nrm1589
https://doi.org/10.1063/1.4900655
https://doi.org/10.1021/acs.jctc.7b00993
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Tribello and Gasparotto Dimensionality Reduction on Biomolecules

Goldfeld, D. A., Zhu, K., Beuming, T., and Friesner, R. A. (2011).
Successful prediction of the intra- and extracellular loops of four g-
protein-coupled receptors. Proc. Natl. Acad. Sci. U.S.A. 108, 8275–8280.
doi: 10.1073/pnas.1016951108

Hess, B., Kutzner, C., van der Spoel, D., and Lindahl, E. (2008). Gromacs
4: algorithms for highly efficient, load-balanced and scalable molecular
simulation. J. Chem. Theory Comput. 4, 435–447. doi: 10.1021/ct700301q

Jolliffe, I. (2002). Principal Component Analysis. New York, NY: Springer-Verlag.
Kmiecik, S., Jamroz, M., and Kolinski, M. (2015). Structure prediction of the

second extracellular loop in g-protein-coupled receptors. Biophys. J. 106, 2408–
2416. doi: 10.1016/j.bpj.2014.04.022

Konrad, H. (2006). Comment on: “energy landscape of a small peptide revealed by
dihedral angle principal component analysis.” Prot. Struct. Funct. Bioinform.

64, 795–797. doi: 10.1002/prot.20900
Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror,

R. O., et al. (2010). Improved side-chain torsion potentials for the amber
ff99sb protein force field. Prot. Struct. Funct. Bioinformat. 78, 1950–1958.
doi: 10.1002/prot.22711

Musil, F., De, S., Yang, J., Campbell, J. E., Day, G. M., and Ceriotti, M. (2018).
Machine learning for the structure-energy-property landscapes of molecular
crystals. Chem. Sci. 9, 1289–1300. doi: 10.1039/C7SC04665K

Noé, F., and Clementi, C. (2015). Kinetic distance and kinetic maps from
molecular dynamics simulation. J. Chem. Theory Comput. 11, 5002–5011.
doi: 10.1021/acs.jctc.5b00553

Noé, F., and Clementi, C. (2017). Collective variables for the study of long-time
kinetics from molecular trajectories: theory and methods. Curr. Opin. Struct.
Biol. 43, 141–147. doi: 10.1016/j.sbi.2017.02.006

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., et al. (2011). Scikit-learn: machine learning in Python. J. Machine

Learn. Res. 12, 2825–2830. Available online at: http://www.jmlr.org/papers/v12/
pedregosa11a.html

Plaku, E., Stamati, H., Clementi, C., and Kavraki, L. E. (2007). Fast and reliable
analysis of molecular motion using proximity relations and dimensionality
reduction. Prot. Struct. Funct. Bioinform. 67, 897–907. doi: 10.1002/prot.21337

Rosman, G., Bronstein, M. M., Bronstein, A. M., and Kimmel, R. (2010).
Nonlinear dimensionality reduction by topologically constrained isometric
embedding. Int. J. Comput. Vision 89, 56–58. doi: 10.1007/s11263-010-
0322-1

Schölkopf, B., Smola, A., and Müller, K.-R. (1998). Nonlinear component analysis
as a kernel eigenvalue problem. Neural Computat. 10, 1299–1319.

Schölkopf, B., Smola, A., and Muller, K.-R. (1999). “Kernel principal component
analysis,” in Advances in Kernel Methods-Support Vector Learning eds B.
Schölkopf, C. J. C. Burges, and A. J. Smola (Cambridge, MA: MIT Press),
327–352.

Spiwok, V., and Kralova, B. (2011). Metadynamics in the conformational space
nonlinearly dimensionally reduced by isomap. J. Chem. Phys. 135:224504.
doi: 10.1063/1.3660208

Spiwok, V., Lipovová, P., and Králová, B. (2007). Metadynamics in essential
coordinates: free energy simulation of conformational changes. J. Phys. Chem.

B 111, 3073–3076. doi: 10.1021/jp068587c
Stamati, H., Clementi, C., and Kavraki, L. E. (2010). Application of nonlinear

dimensionality reduction to characterize the conformational landscape of small
peptides. Prot. Struct. Funct. Bioinform. 78, 223–235. doi: 10.1002/prot.22526

Sultan, M. M., and Pande, V. S. (2017). tica-metadynamics: accelerating
metadynamics by using kinetically selected collective variables. J. Chem. Theory

Comput. 13, 2440–2447. doi: 10.1021/acs.jctc.7b00182
Sultan, M.M.,Wayment-Steele, H. K., and Pande, V. S. (2018). Transferable neural

networks for enhanced sampling of protein dynamics. J. Chem. Theory Comput.

4, 1887–1894. doi: 10.1021/acs.jctc.8b00025
Sutto, L., Dâbramo, M., and Gervasio, F. L. (2010). Comparing the efficiency

of biased and unbiased molecular dynamics in reconstructing the free
energy landscape of met-enkephalin. J. Chem.. Theory Comput. 6, 3640–3646.
doi: 10.1021/ct100413b

Tenenbaum, J. B., Silva, V. d., and Langford, J. C. (2000). A global geometric
framework for nonlinear dimensionality reduction. Science 290, 2319–2323.
doi: 10.1126/science.290.5500.2319

Tiwary, P., and Berne, B. J. (2016). Spectral gap optimization of order parameters
for sampling complex molecular systems. Proc. Natl. Acad. Sci. U.S.A. 113,
2839–2844. doi: 10.1073/pnas.1600917113

Tribello, G. A., Ceriotti, M., and Parrinello, M. (2012). Using sketch-map
coordinates to analyze and bias molecular dynamics simulations. Proc. Natl.
Acad. Sci. U.S.A. 109, 5196–5201. doi: 10.1073/pnas.1201152109

van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-sne. J. Mach.

Learn. Res. 9, 2579–2605. Available online at: http://www.jmlr.org/papers/v9/
vandermaaten08a.html

Willatt, M. J., Musil, F., and Ceriotti, M. (2018). Atom-density representations for
machine learning. J. Chem. Phys. 150:154110. doi: 10.1063/1.5090481

Yuguang, M., H., Nguyen, P. H., and Gerhard, S. (2005). Energy landscape of a
small peptide revealed by dihedral angle principal component analysis. Prot.
Struct. Funct. Bioinform. 58, 45–52. doi: 10.1002/prot.20310

Zhuravlev, P. I., Materese, C. K., and Papoian, G. A. (2009). Deconstructing the
native state: energy landscapes, function and dynamics of globular proteins. J.
Phys. Chem. B 113, 8800–8812. doi: 10.1021/jp810659u

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Tribello and Gasparotto. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org 11 June 2019 | Volume 6 | Article 46

https://doi.org/10.1073/pnas.1016951108
https://doi.org/10.1021/ct700301q
https://doi.org/10.1016/j.bpj.2014.04.022
https://doi.org/10.1002/prot.20900
https://doi.org/10.1002/prot.22711
https://doi.org/10.1039/C7SC04665K
https://doi.org/10.1021/acs.jctc.5b00553
https://doi.org/10.1016/j.sbi.2017.02.006
http://www.jmlr.org/papers/v12/pedregosa11a.html
http://www.jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1002/prot.21337
https://doi.org/10.1007/s11263-010-0322-1
https://doi.org/10.1063/1.3660208
https://doi.org/10.1021/jp068587c
https://doi.org/10.1002/prot.22526
https://doi.org/10.1021/acs.jctc.7b00182
https://doi.org/10.1021/acs.jctc.8b00025
https://doi.org/10.1021/ct100413b
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1073/pnas.1600917113
https://doi.org/10.1073/pnas.1201152109
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1063/1.5090481
https://doi.org/10.1002/prot.20310
https://doi.org/10.1021/jp810659u
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

	Using Dimensionality Reduction to Analyze Protein Trajectories
	1. Introduction
	2. Background
	3. Methods
	4. Results
	5. Conclusions
	Data Availability
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


