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Abstract

Objective

Hepatic steatosis (HS) is common in adolescents with obesity and polycystic ovary syn-

drome (PCOS). Gut microbiota are altered in adults with obesity, HS, and PCOS, which

may worsen metabolic outcomes, but similar data is lacking in youth.

Methods

Thirty-four adolescents with PCOS and obesity underwent stool and fasting blood collection,

oral glucose tolerance testing, and MRI for hepatic fat fraction (HFF). Fecal bacteria were

profiled by high-throughput 16S rRNA gene sequencing.

Results

50% had HS (N = 17, age 16.2±1.5 years, BMI 38±7 kg/m2, HFF 9.8[6.5, 20.7]%) and

50% did not (N = 17, age 15.8±2.2 years, BMI 35±4 kg/m2, HFF 3.8[2.6, 4.4]%). The

groups showed no difference in bacterial α-diversity (richness p = 0.202; evenness p =

0.087; and diversity p = 0.069) or global difference in microbiota (β-diversity). Those with

HS had lower % relative abundance (%RA) of Bacteroidetes (p = 0.013), Bacteroidaceae

(p = 0.009), Porphyromonadaceae (p = 0.011), and Ruminococcaceae (p = 0.008), and

higher Firmicutes:Bacteroidetes (F:B) ratio (47.8% vs. 4.3%, p = 0.018) and Streptococ-

caceae (p = 0.034). Bacterial taxa including phyla F:B ratio, Bacteroidetes, and family

Bacteroidaceae, Ruminococcaceae and Porphyromonadaceae correlated with metabolic

markers.
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Conclusions

Obese adolescents with PCOS and HS have differences in composition of gut microbiota,

which correlate with metabolic markers, suggesting a modifying role of gut microbiota in HS

and PCOS.

Introduction

Polycystic Ovary Syndrome (PCOS) is a common endocrine disorder among women of repro-

ductive age. Its prevalence is approximately 6–12%, affecting at least 5 million women in the

U.S [1–3], depending upon the diagnostic criteria used. PCOS is characterized by hyperandro-

genism, with the clinical presentation including acne, hirsutism, and irregular menses [1–4].

PCOS is often accompanied by obesity [5], and is associated with higher risk for type 2 diabetes

(T2D), cardiovascular disease, nonalcoholic fatty liver disease (NAFLD), infertility, pregnancy

complications, and depression [1, 3, 6, 7].

Approximately 10% of U.S. children ages 2–19 years have NAFLD, and the majority of

these youth are overweight or obese. NAFLD comprises a range of disease stages including

simple steatosis, nonalcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma

[8]. The development of NASH is multifactorial relating to factors including fat deposition,

oxidative stress, Toll-like-receptor-mediated signaling [9], adipose-tissue derived signaling

[10], endoplasmic reticulum stress [11], and genetic factors [12]. The majority of NAFLD

cases remain as simple steatosis while 25% progress to NASH, liver fibrosis and ultimately cir-

rhosis [13]. About 10% of liver transplants are currently secondary to NASH in the U.S., and

NASH is projected to be the most common indication for transplantation in the near future

[14]. NAFLD is also a significant contributor to the risk for developing T2D, a condition

which has a greatly increased prevalence in women with PCOS [15].

NAFLD prevalence is higher in girls and adult women with PCOS compared to women of

similar BMI without PCOS. For example, a higher prevalence of NAFLD is reported in adult

women with PCOS, compared to equally obese adult women [16]. Similarly, we previously

demonstrated that in obese adolescent girls with PCOS, the NAFLD prevalence is 50%, com-

pared to only a 13% prevalence in equally obese adolescent girls without PCOS [17]. It thus

appears that women with PCOS have a unique risk for NAFLD, beyond obesity.

The gut microbiota has been shown to play a role in the pathogenesis of both PCOS and

NAFLD [18, 19]. Alterations in four predominant gastrointestinal phyla (Firmicutes, Bacteroi-
detes, Proteobacteria, Actinobacteria) have been associated with high fat/low fiber diet, obesity,

insulin resistance, T2D, PCOS and NAFLD [1–3, 7, 20–23]. We previously demonstrated that

youth with PCOS have a unique microbiota profile relative to similarly obese girls without

PCOS [24]. We thus sought to examine the gut microbiota composition in adolescent girls

with combined obesity and PCOS, with or without HS, to determine if there is a unique micro-

biota profile associated with HS, beyond alterations seen with obesity and PCOS status.

Methods

Participants

A total of 34 participants with PCOS were included from 2 separate cross-sectional studies

(APPLE NCT02157974, N = 18; PLUM NCT03041129, N = 16) if they completed stool collec-

tion. Participants were recruited from the Pediatric Endocrinology and Lifestyle Medicine
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outpatient clinics at Children’s Hospital Colorado. Inclusion criteria were female sex, age 12–

20 years, overweight/obesity (BMI>90%ile), Tanner stage 5, post-menarchal status, and sed-

entary status (<3 hours of habitual physical activity/week; validated with a 3-day physical

activity recall). Exclusion criteria were BP>140/90 mmHg, hemoglobin <9 mg/dL, serum cre-

atinine >1.5 mg/dL, smoking, medication affecting insulin sensitivity (oral steroids, metfor-

min, thiazolidinediones, atypical antipsychotics, hormonal contraceptives), antihypertensive

medications, statins, pregnancy, breast feeding, and any antibiotic use in the previous 2

months. The NIH criteria with adolescent adaptation were used to define PCOS: oligomenor-

rhea defined as<8 menses per year, clinical or biochemical signs of hyperandrogenism and at

least 18 months post menarche [25].

Study approval

The study protocols were approved by the University of Colorado Institutional Review Board

and the Children’s Hospital of Colorado Scientific Advisory Review Committee. Informed

written consent or assent was obtained from all participants as appropriate for age, and paren-

tal written consent from all participants <18 years of age.

Study protocol

Participants had a screening visit for consent, physical exam and laboratory measurements to

confirm eligibility. They then underwent a 2 day study visit which included stool collection,

DEXA and abdominal MRI, followed by a monitored 12-hour inpatient fast with morning fast-

ing blood collection and then an oral sucrose tolerance test consisting of 75 grams of glucola

and 25 grams of fructose, survey completion and another physical exam. Waist circumference,

BMI (kg/m2), and BMI percentile per Center for Disease Control and Prevention BMI growth

charts [26] were obtained. Abdominal MRI was used to assess hepatic fat via the DIXON

method of the entire liver, as previously described [27] HS was defined as HFF� 5.0%. Hepatic

stiffness was assessed with MR elastography. Total body fat percentage was assessed by stan-

dard DEXA methods (Hologic, Waltham, MA).

Physical activity

A 3-day pediatric activity recall (3DPAR) questionnaire was completed with staff assistance

from all participants to assess habitual physical activity [28].

Dietary intake

A diet interview by study staff was completed using the SEARCH food frequency question-

naire (FFQ) to assess macronutrient patterns. The FFQ is defined to incorporate and represent

common food choices among ethnically and regionally diverse youth aged 10–19 years [29].

Laboratory measurements

Fasting glucose, sex hormone concentrations, inflammatory markers and lipid profiles were

measured. Glucose was measured by a StatStrip hospital grade glucometer (Nova Biomedical,

Waltham, MA). Serum insulin and adiponectin were analyzed with RIA (Millipore, Billerica,

MA); FFA (Wako Chemicals, Inc., Richmond, VA) were assessed enzymatically. HbA1c was

measured by DCCT-calibrated ion-exchange HPLC (Bio-Rad Laboratories, Hercules, Calif).

Alanine aminotransferase (ALT) and aspartame aminotransferase (AST) were measured by

multipoint rate with P-5-P method (Vitros1 5600, Ortho Clinical Diagnostics, Raritan, NJ);

total cholesterol, high density lipoprotein cholesterol (HDL-C), and triglyceride assays were
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performed enzymatically on a Hitachi 917 autoanalyzer (Boehringer Mannheim Diagnostics,

Indianapolis, IN). Low density lipoprotein cholesterol (LDL-C) concentrations were calculated

by the Friedewald equation; highly sensitive C-reactive protein (hs-CRP) was measured via

immunoturbidimetric assay (Beckman Coulter, Brea, CA), C-peptide via chemiluminescent

immunoassay (DiaSorin, Stillwater, MN), and estradiol and progesterone via chemilumines-

cent immunoassay (Beckman Coulter, Brea, CA). Total testosterone was measured by high-

pressure liquid chromatography/tandem mass spectrometry, free testosterone via equilibrium

dialysis and sex hormone binding globulin (SHBG) via chemiluminescent immunoassay, all

by Esoterix laboratories (Calbassas Hills, CA). Hepatic fat fraction (HFF) was measured by

MRI as previously described [17] and hepatic stiffness was measured by MR elastography.

DXA was used to measure percent body fat and lean mass as previously described [30].

Fecal collection and microbiome analysis

Stool samples were collected at home the day prior to blood sampling using stool collection

tubes and frozen in the participant’s freezer. Upon return to study staff, samples were stored at

-80˚C until further processing. Bacterial profiles were determined by broad-range analysis of

16S rRNA genes following our previously described methods [24, 31]. In brief, DNA was

extracted from 50–100 mg of stool using the PowerFecal DNA isolation kit (QIAamp Powerfe-

cal DNA kit (Qiagen INC, Hilden, Germany). Broad-range PCR amplicons were generated

using barcoded primers targeting the V3V4 variable region of the 16S rRNA gene: primers

338F (5’ ACTCCTACGGGAGGCAGCAG) and 806R (5’ GGACTACHVGGGTWTCTAAT). PCR

products were normalized using a SequalPrep™ kit (Invitrogen, Carlsbad, CA) and paired-end

sequencing performed on the Illumina MiSeq platform using a 600-cycle version 3 reagent kit.

16S rRNA gene sequences were demultiplexed, quality filtered, culled of human and chimeric

sequences [32], and classified using the SINA/SILVA platform [33, 34] as previously described

[24, 31]. Operational taxonomic units (OTUs) were produced by clustering sequences with

identical taxonomic assignments. Between 34,307 to 201,471 sequence reads were generated

per sample and Good’s coverage was >99.0% for all samples.

Calculations

Insulin sensitivity was estimated using the homeostasis model assessment-of insulin resistance

[HOMA-IR = (FG � FI) / (405), where FI = fasting insulin μU/mL and FG = fasting glucose

(mg/dL)] [35] and by the Matsuda index [10,000/
p

(FG�FI)/(mean G�mean I)] [36]. Four par-

ticipants with HS and five without received a one-time dose of a glucose modulating medica-

tion following stool collection and were not included in the HOMA-IR and Matsuda index

calculations.

Statistical analysis

Data analyses were performed using R version 3.5.2 and Sigmaplot version 13.0. Data were

examined for normality. Differences between the groups were compared with students t-tests

or Mann-Whitney U, as appropriate. For categorical data either Fisher’s exact tests or Pearson

chi-square tests were performed to test differences between groups. The %RA of each taxon

was calculated as the number of 16S rRNA sequences of a given taxon divided by the total

number of 16S rRNA sequences in a patient’s sample. Differences in overall microbiome com-

position (β-diversity) between subsets were assessed by a non-parametric, permutation-based

multivariate analysis of variance (PERMANOVA with 10,000 replicate re-samplings) using

Morisita-Horn dissimilarities. Shannon diversity, Shannon evenness, and richness (Sobs)

(measures of α-diversity) were calculated using rarefaction and compared across groups using
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linear models adjusting for batch effects [37]. Comparisons of %RA across groups were per-

formed using Wilcoxon rank sum tests since batch and race/ethnicity effects were not signifi-

cant in any of the individual phyla, family or genus comparisons. Spearman’s correlations

were used to evaluate the relationship between %RA and metabolic and hormonal variables.

Bacterial taxa with %relative abundance > 1% were used for correlations and markers of insu-

lin resistance, obesity, fatty liver disease were used as variables. Results were adjusted for age,

race/ethnicity and protein intake. The correlations were adjusted for multiple testing and

those with p-values�0.05 were reported.

Results

Clinical characteristics

Thirty-four girls completed the baseline assessment and returned the stool sample and thus

were included in final analyses. The group was equally split into those with or without HS

(n = 17 for each). Participant demographic and physical characteristics and laboratory mea-

surements are summarized in Table 1. The groups had similar age, age of menarche, and fam-

ily histories of type 2 diabetes. There was however a significant difference in race/ethnicity

across groups, with more Hispanic representation in the HS group. Physical characteristics

including BMI, waist-to-hip ratio and blood pressure were similar across groups. Both groups

reported a similar percentage of dietary fat, protein and carbohydrate intake, and habitual

physical activity.

The groups had similar free and total testosterone, SHBG, estradiol and progesterone. Per

study design, girls with HS had significantly higher HFF compared to those without HS, as

well as ALT. There were no group differences in AST, hepatic stiffness or body composition.

Girls with HS had higher fasting insulin and C-peptide, and HbA1c and were more insulin

resistant (higher HOMA-IR and lower Matsuda index) than those without HS. There were

no differences in fasting glucose, 2-hour glucose or insulin, triglycerides, total cholesterol,

HDL-C, LDL-C or adiponectin between groups. Markers of inflammation including WBC,

platelets, and hs-CRP were also similar between groups.

Dysbiosis in hepatic steatosis

Bacterial 16S rRNA gene profiling was completed for all samples; both groups had adequate

depth of sequencing coverage (Good’s coverage of>99.0% for all samples) indicating compa-

rable and representative samples. Girls with HS had numerically but not statistically signifi-

cantly measures of alpha diversity including lower bacterial richness (p = 0.202) and evenness

(p = 0.087) and higher diversity (p = 0.069) (Fig 1) compared with those without HS. The β-

diversity, reflecting overall gut microbial community composition, was similar between groups

(R2 = 0.036, p = 0.35). There were still no differences in α- and β-diversity measures after

adjusting for group differences in race/ethnicity, age, and protein intake percentage. Actino-
bacteria and Firmicutes were the most predominant phyla in those with HS, and Firmicutes
and Bacteriodetes were the most dominant phyla in girls without HS. At the phylum level, girls

with HS had significantly lower percent relative abundance (%RA) of Bacteroidetes and higher

Firmicutes:Bacteroidetes (F:B) ratio (47.8% vs. 4.3%, p = 0.018) than those without HS. At the

family level, girls with HS had lower %RA of Bacteroidaceae (p = 0.009), Porphyromonadaceae
(p = 0.011), Ruminococcaceae (p = 0.008), and higher Streptococcaceae (p = 0.034) than those

without HS. Fig 2 depicts the comparison of %RA at the phyla, family, and genus levels.
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Table 1. Cohort characteristics.

Hepatic Steatosis, N = 17 No Hepatic Steatosis, N = 17 p-value

Demographics and Family History

Age (years) 16.2 ± 1.5 15.8 ± 2.2 0.52

Race (Caucasian Black, Asian %) 82, 18, 0 71, 17, 12 0.01

Ethnicity (Hispanic, Non-Hispanic) 65, 35 12, 88 0.001

Menarche age (years) 11.9 ± 1.2 11.2 ± 1.2 0.09

Family history of T2D (%) 82 76 1.0

Physical Characteristics

BMI (kg/m2) 38 ± 7 35 ± 4 0.19

BMI (%ile) 99 (97, 99) 98.1 (97, 99) 0.35

BMI Z-score 2 ± 0.4 2 ± 0.3 0.49

Waist-to-hip ratio 0.9 ± 0.1 0.9 ± 0.5 0.08

Hepatic fat fraction 9.8 (6.5, 20.7) 3.8 (2.6, 4.4) <0.001

Hepatic stiffness (kPa) 2.6 ± 0.3 2.6 ± 0.5 0.77

Total body fat by DEXA (%) 45.4 ± 3.7 45.2 ± 2.9 0.92

Lean body mass by DEXA (%) 52.2 ± 3.6 52.2 ± 2.9 0.97

Systolic BP (mmHg) 123 (116, 129) 124 (120, 136) 0.56

Diastolic BP (mmHg) 72 (69, 78) 69 (65, 71) 0.10

7-day Dietary Intake Recall

Fat intake (%) 36 (30, 43) 41 (37, 44) 0.27

Protein intake (%) 15 ± 2.4 17 ± 2.2 0.08

Carbohydrate intake (%) 48 (37, 57) 42 (38, 47) 0.21

Physical Activity

Activity from recall survey (METS) 53 ± 8 54 ± 9 0.83

Laboratory Measurements

AST (IU/mL) 45 (39, 72) 41 (34, 51) 0.19

ALT (IU/mL) 45 (33, 49) 32 (30, 38) 0.003

WBC (109 cells/L) 7.8 ± 1.1 8.7 ± 2.1 0.13

Platelets (108 cells/L) 317 (288, 362) 328 (301, 358) 0.65

hs-CRP (mg/dL) 3.6 (1.1, 7.6) 2.4 (1.1, 6.4) 0.73

Adiponectin (ng/mL) 6.2 (4.6, 7.1) 6.5 (4.9, 10.8) 0.51

Triglycerides (mg/dL) 120 (100, 184) 107 (83, 145) 0.39

Cholesterol (mg/dL) 140 (134, 177) 145 (129, 168) 0.99

HDL (mg/dL) 32 (29, 45) 36 (32, 45) 0.52

LDL (mg/dL) 108 (92, 140) 108 (95, 123) 0.92

HbA1c (%) 5.7 ± 0.2 5.4 ± 0.4 0.02

Fasting glucose (mg/dL)‡ 92 ± 9 86 ± 8 0.12

Fasting insulin (μU/mL) ‡ 30 (22, 49) 19 (14, 31) 0.03

Fasting C-peptide (ng/mL) ‡ 3.0 ± 0.8 2.1± 0.9 0.01

Two hour glucose (mg/dL) ‡ 140 ± 32 135 ± 26 0.68

Two hour insulin (μU/mL) ‡ 193 (167, 708) 152 (35, 271) 0.08

HOMA-IR‡ 8.3 ± 4 5.4 ± 3.4 0.07

Matsuda Index‡ 1.0 (0.6, 1.5) 2.0 (1.1, 2.7) 0.02

Free testosterone (ng/dL) 9.2 (7.3, 13.5) 8.2 (6.7, 11.0) 0.29

Total testosterone (ng/dL) 40 (30.0, 58.5) 43 (29.5, 50.5) 0.78

SHBG (mmol/L) 18 (11, 22) 21 (13, 29) 0.17

Estradiol (pg/mL) 53 (45, 77) 56 (44, 107) 0.37

(Continued)
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Bacterial taxa are associated with metabolic markers

Several taxa correlated with hepatic steatosis and markers of the metabolic syndrome as shown

in Table 2. A higher F:B ratio was correlated with more central adiposity (higher waist-to-hip

ratio), higher ALT and HFF, and insulin resistance as assessed by two-hour OSTT insulin. A

lower %RA of Bacteroidetes, Bacteroidaceae, Porphyromonadaceae, and Ruminococcaceae were

correlated with HFF. A lower %RA of Ruminococcaceae was correlated with higher

triglycerides.

Discussion

The gut microbiome is different in individuals with either PCOS or NAFLD, as compared to

controls. We have demonstrated the novel finding that adolescents with PCOS, obesity and HS

have an altered gastrointestinal microbiota compared to those with PCOS and obesity without

HS. Significant differences were noted in the %RA of several phyla, families, and genera by HS

Table 1. (Continued)

Hepatic Steatosis, N = 17 No Hepatic Steatosis, N = 17 p-value

Progesterone (ng/dL) 0.5 (0.4, 0.7) 0.6 (0.5, 1.5) 0.08

Values are mean ± standard deviation of the mean, or median (25%ile, 75%ile). BMI = Body Mass Index. T2D = Type 2 Diabetes. METS = Metabolic Equivalents.

SHBG = sex hormone binding globulin. HDL = high density lipoprotein. LDL = low density lipoprotein. HgA1c = hemoglobin A1c. AST = aspartate transferase.

ALT = alanine transferase. hsCRP = highly sensitive c-reactive protein. HOMA-IR = homeostatic assessment insulin resistance. Only ‡N = 13 for HS had glucose

measurements and only ‡N = 12 for no-HS had glucose measurements.

https://doi.org/10.1371/journal.pone.0245219.t001

Fig 1. Alpha biodiversity measures. Measures of α-biodiversity including: A) Richness (Chao1) B) Evenness

(Shannon H/Hmax), C) Shannon diversity (Shannon H). There were no statistical differences in α- and β-diversity

between groups.

https://doi.org/10.1371/journal.pone.0245219.g001
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status, and these bacterial taxa were significantly correlated with multiple metabolic markers

related to NAFLD and insulin resistance. While there were some non-significant group differ-

ences in α-diversity, the β-diversity, which indicates global microbial community alteration

between groups, these did not differ by HS status. Thus, it appears that the addition of HS

beyond obesity and PCOS status is associated with changes in specific microbiota, but not

overall global changes in the microbiome.

Our findings are consistent with results in adolescents and adult women with either

PCOS or NAFLD, though there are limited data in adolescent girls with both PCOS and

NAFLD. Zhu et al. demonstrated that ecological differences (α-diversity and β-diversity) in

the gut microbiota among adolescent girls and boys (age 12–14 years) are related to health

status, obesity, and NASH [38]. Another study by Chierico et al. found a significant differ-

ence in β-diversity when comparing normal weight healthy youth controls to those diag-

nosed with obesity without NAFLD, HS alone, and NASH. However, this study also found

no difference in β-diversity between youth with obesity without NAFLD, HS alone, and

NASH [39]. The combination of these findings and ours suggest that obesity may potentially

play a role in influencing diversity measures, though we did not have normal weight group

for comparison to confirm this.

Relative abundance of specific bacteria can vary with obesity and NAFLD status. For exam-

ple, adolescents with NASH and obesity had predominantly Prevotella-rich microbiota [40],

whereas non-obese, non-NASH groups were more frequently associated with Bacteroides rich

enterotypes [38]. In contrast, we found that girls with PCOS, obesity and HS had lower %RA

Fig 2. Percent relative abundance in HS and No-HS. Manhattan plot of bacterial %RA between groups at the A)

Phyla B) Family and C) Genus level. Only taxa with> 1% RA are included. Lines above 0 are>%RA in HS and below

0>%RA in No-HS, with dotted horizontal lines representing p<0.05 and p<0.01. HS had higher %RA of Firmicutes:
Bacteroidetes ratio and lower Bacteroidetes. At the family level, HS had higher %RA of Streptococcaceae, and lower
Bacteroidaceae, Porphyromonadaceae, and Ruminococcaceae. At the genus level, HS had higher %RA of Streptococcus
and Anaerostipes, and lower %RA of Bacteroides, Faecalibacterium and Ruminococcaceae.

https://doi.org/10.1371/journal.pone.0245219.g002
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of the family Prevotellaceae, but had lower %RA of Bacteroides. Zhu et al. found a statistically

significant decrease in Bacteroidetes and an increase in Firmicutes in a non-obese adolescent

group when compared to adolescents with simple obesity and to those with NASH. We found

a statistically significantly lower amount of Bacteroidetes in those with HS and no difference in

Firmicutes between groups. The study by Chierico et al. in boys and girls (mean age, 10–12

years) comparing non-obese control youth to youth with obesity, NAFLD, and NASH alone,

found that those with NAFLD had higher proportion of Actinobacteria and Proteobacteria

compared to NASH, obese, and healthy control, and reduced Bacteroidetes and Firmicutes
compared to youth with obesity [39]. This study also found that participants with NAFLD and

NASH had gut microbiota signatures with an increase in %RA of Ruminococcus and Dorea,

whereas we found lower %RA of Ruminoccocaeae in our HS cohort. The differences seen in

our patient population compared to non-PCOS NAFLD patients could potentially reflect

changes influenced by age, PCOS status, local dietary patterns and only including female sex

participants. Future provocative interventional studies would be needed to confirm if these

findings of association do indeed have mechanistic underpinnings.

The pathophysiological link between PCOS and NAFLD remains unclear [16, 41]; however,

insulin resistance and obesity are common critical components in both NAFLD and PCOS [8,

13, 42]. There is also evidence that insulin resistance and hyperandrogenism mediate the rela-

tionship between PCOS and NAFLD [43]. Studies have demonstrated that hyperandrogenic

women with PCOS had higher liver fat compared with women with PCOS based on the Rot-

terdam criteria with normal androgens or with healthy controls [44]. We found significant

Table 2. Correlations between clinical measurements and percent relative abundance of bacterial taxa.

Variables Phyla or family R value P-value�

Waist-to-hip ratio Firmicutes:Bacteriodetes ratio (P) 0.433 0.050

Bacteriodetes (P) -0.404 0.083

Bacteroidaceae (F) -0.442 0.060

Systolic blood pressure Streptococcaceae (F) 0.437 0.069

ALT Firmicutes:Bacteriodetes ratio (P) 0.417 0.050

Bacteriodetes (P) -0.386 0.084

Bacteroidaceae (F) -0.406 0.060

Hepatic fat fraction Firmicutes:Bacteriodetes ratio (P) 0.526 0.020

Bacteriodetes (P) -0.529 0.018

Bacteroidaceae (F) -0.536 0.015

Porphyromonadaceae (F) -0.535 0.016

Ruminococcaceae (F) -0.465 0.044

Triglycerides Ruminococcaceae (F) -0.459 0.044

Fasting insulin Ruminococcaceae (F) -0.405 0.094

Two-hour insulin Firmicutes:Bacteriodetes ratio (P) 0.508 0.050

Bacteriodetes (P) -0.507 0.083

Ruminococcaceae (F) -0.455 0.082

Matsuda index Bacteriodetes (P) 0.433 0.086

Firmicutes:Bacteriodetes ratio (P) -0.442 0.075

Bacteroidaceae (F) 0.474 0.060

Ruminococcaceae (F) 0.477 0.074

Streptococcaceae (F) -0.533 0.069

HOMA-IR Ruminococcaceae (F) -0.401 0.094

�Bacterial taxa associated with variables with a p-value <0.1 are reported. P-values are adjusted for multiple comparisons. (P) = phyla, (F) = family.

https://doi.org/10.1371/journal.pone.0245219.t002
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correlations between HFF and several bacterial families and phyla, suggesting a relationship

between HFF and the gut microbiome, but not androgen concentrations. Another study dem-

onstrated that women with PCOS and NAFLD had decreased hepatic LDL receptor expres-

sion, and hypothesized that hyperandrogenism may putwomen with PCOS at risk for

development of dyslipidemia and NAFLD [45]. Although we did not find correlations between

LDL-C and bacterial taxa, we had several taxa that correlated with characteristics of the meta-

bolic syndrome and with a marker of insulin resistance, suggesting that the gut microbiota

may relate to increased risk of T2D, NASH, and cardiovascular disease. Additionally, alcohol

producing bacteria may contribute to the pathogenesis of NAFLD in PCOS. For example, Zhu

et al. found that ethanol metabolism and Enterobacteriaceae have a functional relationship in

contributing to the development of NASH [38]. Adolescent patients with NASH were also

found to have upregulation of ethanol metabolism compared to controls [39]. In addition to

Enterobacteriaceae, Bacteroides, Bifidobacterium and Clostridium are also alcohol producing

bacteria [38]. Though we did not measure blood or breath alcohol concentration, we found

higher %RA Bifidobacterium in our adolescents with HS, which suggests that bacterial taxa

involved in ethanol production may contribute to endogenous ethanol production in NALFD

in PCOS.

Limitations to our study include the small sample size and lack of blood and breath alcohol

tests, which may have provided further understanding of NASH pathogenesis in girls with

PCOS. HOMA-IR, the Matsuda index and insulin values were used to estimate insulin sensitiv-

ity, rather than a gold-standard hyperinsulinemic euglycemic clamp and thus we were also not

able to assess tissue specific of insulin sensitivity. It is also unknown if our participants had

NASH or liver fibrosis as we did not perform liver biopsy, although MR elastography results do

not indicate notable stiffness. The groups were not matched for ethnicity, with a greater pro-

portion of Hispanics in the NAFLD group, consistent with a higher prevalence of NAFLD in

those with Hispanic origin. We attempted to mitigate this group difference by adjusting analy-

sis for race/ethnicity status, but it is possible that there is a reflection of underlying increased

risk for NAFLD in this group. We can only comment on associations between measures, since

our study design was not longitudinal, and thus our findings are hypotheses generating for

future provocative studies on causation. There are several unique strengths to our study. Our

groups were similar in terms of age, age of menarche, pubertal stage, BMI, diet and physical

activity and PCOS markers. Further, liver fat of the entire liver was measured using MRI

instead of using liver ultrasound or relying on only laboratory liver enzymes. Finally, we used

the NIH criteria to define PCOS, which identifies a more metabolically at-risk population.

Conclusion

In girls with obesity and PCOS, the composition of the gut microbiota is different in those

with HS compared to those without HS. In this cohort, HS was associated with alterations in

the gut microbiota that are typically related to metabolically unhealthy obesity. Furthermore,

in the overall cohort, certain taxa at the phylum and family level were correlated with insulin

resistance, and the metabolic syndrome characteristics of central adiposity, and elevated tri-

glycerides showing a relationship between the gut microbiota and increased risk of T2D,

NASH, and cardiovascular disease. Our findings suggest that there is a relationship between

the gut microbiome and metabolic disease in adolescents with HS and PCOS, but it remains

unclear which components come first and whether the relationships are causative or just asso-

ciations. Further work is warranted to better understand the pathogenesis of HS and PCOS,

the role of the gut microbiota in adolescence and to potentially develop therapies in the future

to help reduce risk of T2D, cardiovascular disease and liver disease.
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