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Abstract: Microstructured optical fiber-based sensors (MOF) have been widely developed finding
numerous applications in various fields of photonics, biotechnology, and medicine. High sensitivity
to the refractive index variation, arising from the strong interaction between a guided mode and an
analyte in the test, makes MOF-based sensors ideal candidates for chemical and biochemical analysis
of solutions with small volume and low concentration. Here, we review the modern techniques
used for the modification of the fiber’s structure, which leads to an enhanced detection sensitivity,
as well as the surface functionalization processes used for selective adsorption of target molecules.
Novel functionalized MOF-based devices possessing these unique properties, emphasize the potential
applications for fiber optics in the field of modern biophotonics, such as remote sensing, thermography,
refractometric measurements of biological liquids, detection of cancer proteins, and concentration
analysis. In this work, we discuss the approaches used for the functionalization of MOFs, with a
focus on potential applications of the produced structures.

Keywords: microstructured optical fibers; photonic crystal fibers; holey fibers; hybrid fibers;
modification; functionalization; sensing

1. Introduction

Starting from the first realization of microstructured optical fibers (MOFs) over twenty years
ago [1,2], they have found numerous applications in optics [3], optogenetics [4], life science [5],
plasmonics [6,7], and related fields [8,9]. Among others, biomedicine and biochemistry with their
increasing demand for fast, precise, and easy sensing techniques became major stimuli for the
development of optical fiber-based sensors (OFSs). Compared to bulk laboratory instruments,
optical fibers possess unique properties (compact size, high flexibility, and optical path control, easy
to use and low cost, mechanical stability, and immunity to electromagnetic and radiofrequency
interferences) [10,11] which have defined their widespread use in the chemical and biochemical
analysis [12]. Another reason to use OFSs is their high sensitivity to refractive index (RI) changes that
enable precise concentration measurements and the detection of bioactive molecules with both low
and high molecular weight.

In this work, we review the various types of functionalization techniques of MOFs that have
enabled the improvement of their performance and have created new perspectives for the use of
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OFSs. We extensively describe the methods for integrating host materials inside the fibers for the cases
of plasmonic nanoparticles and metal nanowires. The novel technique of layer-by-layer (LBL) [13]
deposition, previously used mainly for the deposition of thin films onto planar substrates and adapted
for the functionalization of fiber surfaces, in order to make the attachment of target molecules or
particles possible, or for the creation of areas sensitive to a specific medium, is also considered [14–16].
This review concentrates on the different methods used for the modifications of optical fibers and
highlights the novel functionalities which go beyond the manipulation of transmitted light, revealing
the innovative applications of these structures, rather than investigating the origins of the underlying
physical phenomena.

2. Microstructured Optical Fiber-Based Optical Sensors

The recent developments in thin film deposition techniques have enabled the modification of
fiber surfaces with nano-coating layers. This allows exploiting the phenomena of surface plasmon
resonance (SPR) [7,17], localized surface plasmon resonance (LSPR) [18,19], and lossy mode resonance
(LMR) [6] to detect changes of the surrounding medium by measuring the spectral shift of the plasmonic
resonance [12,20,21]. However, the strong influence of uniformity and thickness of the metal coating
on the sensing performance, together with complicated and high-cost thin-film deposition processes,
inhibits optimal performance for these sensors [18,22]. Moreover, the necessity to cover the whole
sensor surface hinders their efficient use with low analyte volumes, which is crucial for bio-applications
(Figure 1).
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Among the different structures of OFSs and related microstructures [23], sensors based on 
geometry-modified fibers (D-shaped, polished, etched, and tapered) [20,24–26], grating-assisted 
fibers [27–29], and MOF [30,31] represent three of the most widely developed OFS groups (Figure 2). 

Nevertheless, the major challenge of the first two sensor structures is the low sensitivity for 
detecting small biomolecules and low analyte concentration. At the same time, surface modifications 
such as cladding removing, side polishing and fiber tapering, which lead to enhanced detection 
sensitivity, suffer from poor mechanical stability and complicated fabrication processes [22,32]. 

Recently, MOFs or holey fibers, whose structure is defined by an array of air-channels, running 
through the whole fiber length, have been extensively studied, exploiting their unique characteristics 
for the creation of highly sensitive chemical and biological sensors with applications in biophotonics, 
chemistry, and life sciences. MOFs can either be divided into two main categories depending on their 
structure, hollow-core MOFs (HC-MOFs) and solid-core MOFs or distinguished depending on their 
light guidance principles (Figure 3). 

Figure 1. Optical fiber sensor based on surface plasmon resonance (SPR). Illustration of the working
principle of the fiber-based SPR sensor. The shift of the plasmon resonant wavelength is associated
with the change in the refractive index of the sample (δn) defining the resonant condition. Reproduced
with permission from [21].

Among the different structures of OFSs and related microstructures [23], sensors based on
geometry-modified fibers (D-shaped, polished, etched, and tapered) [20,24–26], grating-assisted
fibers [27–29], and MOF [30,31] represent three of the most widely developed OFS groups (Figure 2).

Nevertheless, the major challenge of the first two sensor structures is the low sensitivity for
detecting small biomolecules and low analyte concentration. At the same time, surface modifications
such as cladding removing, side polishing and fiber tapering, which lead to enhanced detection
sensitivity, suffer from poor mechanical stability and complicated fabrication processes [22,32].

Recently, MOFs or holey fibers, whose structure is defined by an array of air-channels, running
through the whole fiber length, have been extensively studied, exploiting their unique characteristics
for the creation of highly sensitive chemical and biological sensors with applications in biophotonics,
chemistry, and life sciences. MOFs can either be divided into two main categories depending on their
structure, hollow-core MOFs (HC-MOFs) and solid-core MOFs or distinguished depending on their
light guidance principles (Figure 3).
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In contrast to conventional optical fibers made from silica and its doped materials, where light-
guiding is achieved through total internal reflection, MOFs and their group of hollow-core MOFs 
(HC-MOFs) represent a separate class of photonic bandgap fibers, for which the guidance is 
accomplished by coherent Bragg scattering [8,33] that forms well-defined permitted and prohibited 
regions for photon propagation within the central core of the fiber [1,15]. This results in the 
appearance of transmission peaks and dips in the spectra of HC-MOFs, demonstrating that only 
specific wavelength bands are confined into the central core and allowed to propagate [34,35]. The 
transmission spectra of HC-MOFs can feature either single or multiple peaks depending on the 
specific MOF structure and material composition [36]. The light-guiding mechanism in such fibers is 
described via Fabry-Perot resonances. In accordance with this model, the maximal decoupling of the 
core and cladding modes that correspond to the maxima in the fiber transmission occurs at: 𝜆  4𝑛2𝑗 1 𝑛𝑛 1 /
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Figure 2. An overview of different structure-modified optical fibers. (I) Geometry-modified optical
fibers: (a) Unclad, etched, (b) side-polished, D-shaped fibers, (c) hetero-core structures, (d) U-shaped
fibers, and (e) arrayed fiber end face. (II) Grating-assisted fibers. (III) Specialty fibers. Reproduced
with permission from [20].
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(MOFs): (a) Solid-core MOF, (b) suspended-core MOF, (c) hollow-core (HC)-MOF, (d) Kagomé HC-MOF.
Reproduced with permission from [12].

In contrast to conventional optical fibers made from silica and its doped materials, where
light-guiding is achieved through total internal reflection, MOFs and their group of hollow-core
MOFs (HC-MOFs) represent a separate class of photonic bandgap fibers, for which the guidance is
accomplished by coherent Bragg scattering [8,33] that forms well-defined permitted and prohibited
regions for photon propagation within the central core of the fiber [1,15]. This results in the appearance
of transmission peaks and dips in the spectra of HC-MOFs, demonstrating that only specific wavelength
bands are confined into the central core and allowed to propagate [34,35]. The transmission spectra of
HC-MOFs can feature either single or multiple peaks depending on the specific MOF structure and
material composition [36]. The light-guiding mechanism in such fibers is described via Fabry-Perot
resonances. In accordance with this model, the maximal decoupling of the core and cladding modes
that correspond to the maxima in the fiber transmission occurs at:

λ j =
4n1

2 j + 1

n2
2

n2
1

− 1

1/2

. (1)
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where j is an integer describing mode order (j = 1, 2, 3, . . . ), n1 is RI of an analyte filling the capillaries,
n2 is RI of the fiber glass, and d indicates the wall thickness for the first capillary layer.

Solid-core MOFs exploiting the principle of total internal reflection for light guidance in a high
refractive index core, represent the major group of these fibers, however, they can also guide light in a
low refractive index core based on the photonic bandgap guidance [37].

In addition to all the other advantages and features of OFSs, MOFs with their capability to guide
light in the HC region and the strong interaction with an injected medium open new perspectives for
the applications of OFSs, which are not possible with all-solid fibers [32,38–40]. The liquid filling of
hollow capillaries of MOFs, enables in-fiber microfluidic optical sensing, measurements of the fluid’s
refractive index [31,34,35], temperature [41], and fluorescence signals [42]. The high sensitivity to the
change of solution refractive index enables the precise measurement of concentration in a very little
analyte volume needed for the test (Figure 4).
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Figure 4. Transmission spectra of MOF samples filled with glucose solutions with different refractive
indices. The change of glucose concentration from 1% to 40% induces the refractive index (n) variation
in the interval 1.3356–1.3919 (at 20 ◦C). Reproduced with permission from [34].

The sensing with the solid-core MOFs is realized based on the strong interaction of the evanescent
field of the propagating light mode with the air channels surrounding the central core. Among the
other types of solid-core fibers, suspended-core MOFs are the most promising structures for efficient
biological sensor devices, due to the high power fraction of the evanescent-field [37,43].

An additional advantage emanating from the structure of the MOFs, is their potential for the
investigation of different liquids, through the selective or complete filling of air capillaries. Due to the
liquid filling, the shift to shorter wavelengths or the blue shift will appear for the transmission bands
compared to the unfilled fiber (Figure 5) [44]. This can be expressed as follows [32]:

λ f ill = λ

√√√√n2
glass − n2

f ill

n2
glass − 1

(2)

where λ is the wavelength of the unfilled MOF, nglass is the RI of the fiber glass, and n f ill is the RI of
the filling.
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3. Selective Functionalization of Air Channels of Microstructured Optical Fibers

The selective filling of core and cladding air channels of hollow-core MOFs allows one to create
a hybrid MOF-based structure in which the cladding is nearly all air and the central light-guiding
hollow-core can be made from almost any solution-based material that is of particular importance for
spectroscopy and sensing applications in aqueous solutions. One can also change the light confinement
mechanism from photonic bandgap to total internal reflection guidance. Moreover, the control of the
number of guided modes can be achieved with a proper choice of the inserted liquids. This technique
can also be utilized to study the birefringent properties of MOFs [45]. An example of single-mode
guidance in hollow-core MOF was demonstrated by Matos et al. for a particular choice of filled
liquids [46].

Schwuchow et al. reported a functionalization technique, which allows for the selective deposition
of different plasmonic nanoparticles in different air capillaries of the suspended-core MOF [47].
This method can potentially enhance the functionality of such fibers through the simultaneous
detection of two different biomolecules, that are sucked individually into functionalized air channels.

Among others, the most popular methods used for the selective filling of the MOF’s air capillaries,
are the collapse of the cladding holes by a fusion splicer, as well as infiltration by temperature or
UV-cured optical polymers inside the air channels of the fibers (Figure 6) [48].
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cured adhesive is injected into the air channels of the MOF (core and cladding capillaries) with a
syringe (or by the capillary action). The liquid fills the central hollow-core much faster than the smaller
cladding holes; consequently, after some point, only the central hollow-core becomes filled with the
optical polymer. A UV lamp is applied to cure the optical adhesive inside the MOF and then the fiber
is cut at the position called “cleaving” in such a way that only the central hole is filled by the cured
polymer. 2—The air cladding holes of the modified MOF structure are selectively filled with the optical
adhesive while the central hollow-core remains blocked by the already cured polymer. The optical
adhesive in the cladding holes is cured by the radiation of the UV lamp and the fiber is cut at the
position called “cleaving”. At the end of the second step, all cladding holes were filled with cured
polymer but the central hole was open. 3—The central hole is selectively filled with the liquid while
the cladding holes are plugged. 4—After cleaving, the hybrid MOF with the central hole filled with the
desired functional material is obtained while the fiber cladding consists of an array of air holes.

4. Biosensors for the Selective Detection of Specific Molecules and DNA Based on Functionalized
Microstructured Optical Fibers

MOF biosensitivity is achieved through the selective adsorption of target molecules on to fiber
surfaces, that have been functionalized with antibodies in order to bind to specific antigens which
are investigated (Figure 7) [14,49–53]. Specific adsorption-based sensors are used for human disease
diagnosis and prevention with a sensitivity that meets clinical needs [23,54]. Further improvement
of the performance of MOF-based sensors, can be accomplished by the variation of the geometry
and material of the MOFs through the adjustment of the fiber parameters to a specific application.
A smaller core size, increases the overlap of the propagating light mode with the analyte under test,
effectively increasing sensitivity and decreasing the required sample volume [52]. Proper selection of
the fiber material can also increase the numerical aperture of the fiber and consequently the proportion
of the fluorescent signal that can be recaptured [52].
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from [53].

Dinish U.S. et al. have reported a novel MOF-based surface-enhanced Raman scattering
(SERS) sensor for the detection of cancer proteins in a very low sample volume [14] that can
potentially be used for multiplex detection of biomarkers that are immobilized inside the hollow-core
MOFs [54]. Ultrasensitive measurement of protein was achieved using anti-epidermal growth factor
receptors (anti-EGFR) antibody conjugated SERS nanotag (Figure 8) and the simultaneous detection
of hepatocellular carcinoma biomarkers-alpha fetoprotein and alpha-1-antitrypsin secreted in the
supernatant from the Hep3b cancer cell line was demonstrated [54]. It has been shown that the
proposed detection method is sensitive to a low amount of proteins at ~100 pg in a sample volume of
~10 nL.

Biological sensors based on modified MOFs have also found application in selective DNA
detection. The functionalization of the fiber surface leads to the binding of biological species to the
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glass surface that is then proved through the measurement of the fluorescence signal created by the
labeled sample [37].
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Several groups reported the feasibility of MOF-based biosensor for DNA detection [55,56].
Ngyuen L.V. et al. proposed that functionalized MOFs can act as a highly specific DNA sensor
and experimentally demonstrated the detection of DNA in nanoliter-scale sample volumes [57].
The modification of the fiber surface consisted of a combination of the fuzzy nano assembly technique
named also layer-by-layer assembly method [58] and the biotin-streptavidin binding mechanism
(Figure 9). The authors showed that the created sensor allows for the detection of DNA solutions at a
concentration of 4 µM with the potential for further improvement.
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Figure 9. (a) SEM image of MOF end face and schematic representation of the modification process of
the MOF surface. (b) Molecular beacons conformational change upon hybridizing with cDNA while
remaining in closed form upon hybridizing with nDNA. Adapted with permission from [57]. © The
Optical Society.
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Among the other modification procedures, the silanization of the fiber inner walls has been
shown to be the most stable approach for the binding of biomolecules to silica surfaces [37,56,59].
Pidenko S.A. et al. estimated the amount of silanol groups on the inner surfaces of HC-MOFs after its
hydroxylation with a mixture of concentrated sulfuric acid (H2SO4) and hydrogen peroxide (H2O2)
by the transmission spectra measurements of modified MOF samples and the analysis of the spectral
shift of the maxima of the local transmission band in the visible spectral region (Figure 10) [60].
The possibility for the creation of bio sensitive structures based on functionalized MOFs was shown
for the covalent binding of horseradish peroxidase to the obtained silanol-modified fiber surface.
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sample treated with a concentrated H2SO4 solution and (c) in a mixture of H2SO4 and H2O2 (50:50
volume ratio). Reproduced with permission from [60].

Coscelli E. et al. reported the functionalization technique of the inner surfaces of the hollow
channels of the suspended-core MOFs that allows for the selective detection of DNA through the
hybridization of immobilized peptide nucleic acid probes [37].

Kostecki R et al. realized the novel one-step polymer functionalization method for the creation
of a MOF-based sensor [61]. This process eliminates the need for the functionalization of the fiber
surface with the functional groups for sensor molecule attachment but alternatively, it combines the
polymer, silica, and sensor molecule elements for a distributed sensor to allow for the detection of an
analyte along the length of the whole fiber. This approach was successfully tested for the detection of
Al cations in solution by doping the poly(methyl methacrylate) film with 8-hydroxyquinoline sensing
molecules [61]. Another prospective application of functionalized MOFs is the specific detection of
target molecules or blood components in point-of-care devices [62].

5. Microstructured Optical Fibers Functionalized with Plasmonic Nanoparticles and MOF-Based
Optofluidic Platforms

The air capillaries, which run along the whole MOF structure, act as small sample reservoirs
and allow for liquid sensing in the nano- and microliter scale. The proximity of the hollow channels
surrounding the central solid-core of the suspended-core MOFs enables a strong overlap of the
light guided mode and any material filled inside. The major advantage of using hollow-core MOFs
rather than other techniques based on geometry-modified optical fibers, cuvettes, and bulk optics,
lies in combining the long interaction lengths with strong overlapping between the light mode,
that penetrates deeply into the air capillaries via its evanescent field, and the injected analyte [16].
More practical approaches of using the accessibility of the air capillaries for the functionalization of the
MOF surface were shown by Sukhishvili S. et al. on the example of solid and hollow-core MOFs [50,63]
(Figure 3a,c). Effectively, the proposed methods combine both the advantages of microfluidics and
fiber optics in a single MOF sample, allowing for light guidance with simultaneous liquid flow inside
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the hollow capillaries. The authors showed the fine accumulative SERS signal from the full-length
Ag-nanoparticle functionalized MOFs, as well as the potential for fine control of the density of deposited
Ag nanoparticles and studied the SERS gain and light attenuation of the Raman intensity with MOF
samples of different length [50]. Csaki A. et al. demonstrated the technique for the preparation of
finely tuned plasmonic layers of Ag-nanoparticles inside the capillaries of suspended-core MOFs [64]
(Figure 3b). They employed a combination of microfluidics and self-assembled monolayer method,
leading to a uniform deposition of silver nanoparticles, enabling precise control of the spectral
characteristics of the functionalized MOF sample by the selection of Ag-nanoparticles with known
plasmonic characteristics [64]. The authors reported the enhancement of the Raman signal for a MOF
sample functionalized with Ag-nanoparticles compared to unmodified fibers, by investigating crystal
violet as a model substance [65]. The possibility of integrating colloidal bimetallic nanoparticles with
predefined parameters into HC-MOFs (Figure 3c) was demonstrated by Ponce S. et al. [66]. With the
proposed method, PtNi clusters became strongly attached to the inner surface of the hollow-core and
could be used as active catalysts for the hydrogenation of an azobenzene dye, opening new perspectives
for in situ catalyst monitoring. They have also showcased that the optical transmission dependents on
the size of nanoparticles, i.e., larger nanoparticles result in more optical signal loss.

Another example of the MOF-based optofluidic platform has shown that suspended-core MOFs
functionalized with gold nanoparticles, can be utilized for real-time analyte monitoring through
efficient RI sensing (Figure 11) [67,68].
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Figure 11. (a) Schematic showing the suspended-core MOF functionalized with plasmonic nanoparticles.
(b) SEM image of the central microstructured section of the investigated MOF. Grey and black
areas correspond to silica glass and air, respectively. Adapted with permission from [67]. © The
Optical Society.

The concept of low-cost microfluidic-compatible sensing platform for fast detection of small
RI variations was realized with exposed-core optical fibers functionalized with plasmonic gold
nanoparticles [69]. MOF-based biosensors for the reversible and low volume scale measurement
of metal ions were proposed and experimentally realized by Monro T. et al. [70–72]. The new
sensor structure was highly selective to ion-binding, while also allowing sampling of small volumes.
The possibility for the sensor to be used for the series of experiments without the need to change it,
which is of particular importance in biophotonics, was also shown. They demonstrated the relevance of
the proposed sensor type in real-time or in situ detection of zinc, aluminum, and lithium ions; however,
the approach is versatile, with the potential usage for the detection of other ions as well. The recent
development and applications of MOFs in the microfluidic field was reviewed by Shao L. et al. [73],
Tian F. et al. [74], Eggleton B. J. et al. [75], and Pissadakis S. and Selleri S. [76].

6. Hybrid Microstructured Optical Fibers

The further development of MOF-based sensors gave rise to a new research direction for the tuning
of optical properties. Various approaches have been proposed and realized for MOF modification [77];
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different solid [15,16,78–81] and liquid materials [82] were injected into the fiber hollow regions.
Among others, one can highlight such well-described approaches for the injection of host materials
such as pressure-assisted melt filling (Figure 12) [79], chemical vapor deposition [83], and direct fiber
drawing [77].
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structure of the hybrid optical fiber. Adapted with permission from [79]. © The Optical Society.

Schmidt M. et al. reported different hybrid MOFs realized though the selective or complete
filling of the fiber air channels by the metal wires or molten glasses. The authors investigated the
material and optical properties of solid-core MOF with integrated micron-sized Ge wire [84]. The series
of clear dips in the transmission spectrum of functionalized MOF samples was attributed to the
anti-crossing between the propagating optical mode in the glass core and the resonances on the high
index Ge wire and this allowed the construction of different kinds of in-fiber detectors and sensors.
The possibility for supercontinuum generation in the modified fibers was demonstrated for a silver
metaphosphate/silica step-index fiber, as well as an arsenic trisulphide waveguide embedded in silica
produced by pressure-assisted melt filling [85,86]. Markos C. et al. realized the thermo-tunable hybrid
MOF in which air-channels were functionalized with arsenic trisulfide glass nanolayers [87].

The generation of high power CW-lasing and the amplification of nanosecond pulses were realized
in the MOF samples whose glass materials were doped with Thulium (Tm) [88,89] and Erbium (Yb) [90].

7. Microstructured Optical Fibers Coated with a Layer-By-Layer Assembly of Inversely Charged
Polyelectrolyte Layers

Recently, the technique of polyelectrolyte LBL deposition, originally applied for the preparation
of nanofilms [13,58] and later used for the formation of microcapsules [91–94], as well as the
functionalization of planar surfaces [95], have been adapted for the surface modification of optical
fibers [96]. These can either be buffer layers [15,16] with a controlled value of surface potential for
better particle adsorption or the sensitive layers by themselves [97]. A nanoscale thickness accuracy is
possible by varying a set of parameters such as, among others polyelectrolyte concentration, adsorption
time, ionic strength, solvent composition, and temperature [58].
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A technique that allows magnetic resonance imaging of hollow-core MOF samples was
demonstrated for the case of LBL assembly of oppositely charged polyelectrolytes and magnetite
nanoparticles on the inner surface of hollow-core, opening new prospects for fiber-based endoscopic
devices with magnetic resonance imaging that can potentially lead to minimally invasive medical
diagnostics and surgical procedures in vivo [15]. Based on a similar approach of host materials
deposition inside MOF samples, we reported a novel type of functionalized MOF sample whose
capillaries were coated with silica submicron particles (SiO2) with different diameters (300, 420, and
900 nm) and layers of poly(diallyldimethylammonium chloride). We also recently demonstrated
the possibility of multilayer deposition on the example of silica particles at a diameter of 300 nm
(Figure 13) [16]. This modification technique of MOFs allows one to reach novel sensing capabilities,
which benefit from an increased effective sensing area and the provision of a convenient scaffold for
the binding of specific molecules [14].
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for the MOF samples coated with one, two, and three layers of 300 nm silica particles, respectively.
Reproduced with permission from [16].

8. Microstructured Optical Fibers Functionalized with Fluorescent Nanoparticles

The effect of the hollow-core MOFs on to the emission wavelength and the amplitude of the
fluorescent nanoparticles leads to the study of the potential applications of integration of the quantum
dots into the hollow-core region [98,99]. Bozolan A. et al. realized the temperature sensor based
on MOF modified by the CdSe/ZnS nanocrystals through the measurements of their luminescence
spectrum [41]. Larrion B. et al. monitored the optical absorption, the emission intensity, and the
emission peak wavelength in the range from −400 to +700 ◦C of the MOFs with integrated CdSe
quantum dots [100]. Mak S.W.J. et al. demonstrated the great potential for the application of HC-MOFs
for optical sensing with low analyte volume. They observed the clear vibrational modes of the CdTe
core, CdS0.7Te0.3 interface, and carboxylate-metal complexes in dilute aqueous CdTe quantum dot
solutions using the MOF-based structure [101]. Monro et al. reported a novel approach for the detection
of nitric oxide using an exposed-core microstructured optical fiber coated with CdTe/CdS core/shell
quantum dots [102]. The detection of nitric oxide, which plays an important role in biological systems,
but is restricted because of its relatively low concentration and short half-life time, opens up the
possibility for monitoring its production within biological systems (Figure 14). The authors showed
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that MOF samples functionalized with CdTe/CdS quantum dots could respond rapidly to nitric oxide
with picomolar sensitivity.
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9. Thermography

Monitoring of local temperature in individual organs of the human and animal body with high
precision is of great importance in physiology for understanding the pathogenesis of many diseases
and accompanying treatment by measuring the temperature in tumors or tissues, for example, during
laser ablation or other photothermal treatments. Obviously, fiber-optic systems are particularly well
suited to solve these problems [103–107]. For example, measuring the temperature in the brain requires
a spatial resolution of a sub-millimeter and a temperature resolution of less than 0.5 ◦C. Fiber-optic
temperature sensors can be used to measure in vivo temperature in the brain of animals during their
free behavior and movement [103]. The ability of such sensors to measure temperature in the range
from the room and normal body temperature (36–37 ◦C) to ablative (100 ◦C) with a temperature
resolution of about 0.1 ◦C is desirable when creating new endoscopic systems for obtaining thermal
images [105,106]. The most common fiber-optic methods for measuring temperature are described in
numerous literature (see, for example, [103]), many of them are not ideal for biosensing due to low
spatial resolution or increased sensitivity to the refractive index of the environment.

For the first time, the presence of a bandgap above 3 µm in a silica-based air-core photonic crystal
fiber (PCF) with a bandgap peak of 3.14 µm and a typical attenuation of ~2.6 dB/m was reported
in [104]. Such microstructured hollow-core fibers were considered as an alternative to optical fibers
based on fluoride, tellurite, or chalcogenide glass. Silica-based PCFs are especially important for use in
biological sensors of the mid-IR range [104]. The most critical advantage of hollow-core fibers (HCFs),
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i.e., photonic bandgap and antiresonance fibers, is that the propagating light is confined within the
hollow-core, so it is not very dependent on the optical properties of the material. Such fibers have
already been used for thermal imaging. Not only pure silica mid-IR HCFs have been fabricated [107],
but also HCFs coated with a metal film or dielectric material on the inner surface of the capillary tube
(see [107]).

A recent paper [107] demonstrated robust HCF drawing technology from a 3D printed fiber
preform, which is capable of guiding light in the mid-IR range. For printing a hollow-core preform,
a transparent filament of glycol polyethylene terephthalate (PETG) was processed by using the fused
deposition method (FDM). Despite the fact that PETG has a material absorption exceeding 10 dB/mm
in the spectral range of 3.5–5 µm, the light in the HCF is guided by the antiresonance confinement,
resulting in propagation loss two orders of magnitude smaller than the PETG absorption loss. The final
outer diameter of the PETG fiber was 466 µm, and the diameter of the hollow-core was 225 µm.
Thermal imaging on the fiber facet, performed in the wavelength range of 3.5–5 µm, clearly indicates
air guidance in the fiber hollow-core. In order to evaluate the waveguide properties of the HCF in
the mid-IR, the radiation of a broadband lamp (Thorlabs SLS202, 450–5500 nm) was launched into a
12 cm long section of fiber using a bare-fiber adapter. The modal image at the output of the fiber in
the wavelength range λ = 3.5–5 µm was obtained using a thermal infrared camera (Onca-MWIR-Insb)
using a ZnSe lens with a focal length of 18 mm. Figure 15 shows a thermal image and its intensity
profile at the output of HCF. In Figure 15b it is clearly seen that infrared light is guided in the air-core,
which is caused by antiresonance reflection in the first layer of polymer strands (Figure 15b,c). The HCF
mid-IR guiding properties was also proved by the near-field imaging of the transmitted light under
different degrees of fiber bending that varied from 0 to 45◦ with the radius of curvature of ~76 mm.
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(b) mid-IR mode image, and (c) intensity profile. Reproduced with permission from [107].

The measured propagation loss of 30 dB/m was about two orders of magnitude smaller than the
loss of polymer material. Propagation loss can be improved by optimization of printing and fiber
drawing processing technology.

For future development of HCF systems suitable for biological thermography, the technology
described in References [105,106] can be useful. In these papers, the high-resolution hollow-core
coherent mid-IR fiber bundles for endoscopic infrared imaging in the 8–10 µm spectral range were
designed. Authors employed the hollow glass waveguide technology with Ag/AgI thin film coatings,
and claimed that multilayer dielectric coated hollow waveguides can have much lower loss than single
layer coated waveguides, and correspondingly the bore size of the tubing in the bundle will be smaller
and lead to better spatial resolution.

To achieve high accuracy in temperature measurement, of 0.1 ◦C, upconversion visible luminescent
thermometry can be used, where rare-earth ions such as erbium or thulium are doped within a host
medium such as HCF material [103]. The most advantage of detection of the upconversion luminescent
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in living systems is that there is no autofluorescence as the excitation is in the near infrared (NIR) and
luminescent is in the visible.

10. Summary of the Reviewed Functionalized Techniques

An overview of the existing functionalization techniques and applied materials [108], their
comparison, and the application areas can be found in References [32,38,42,52,103,109]. Table 1
summarizes the reviewed techniques applied for MOFs functionalization, their potential applications,
and describes the used MOF types.

Table 1. Summary of the reviewed MOF functionalization technique and their potential applications.

MOF Type Functionalization Application Ref.

Suspended-core

Selective deposition of different
plasmonic nanoparticles into

different hollow channels
surrounding the central solid-core

Simultaneous detection of two
different biomolecules [47]

Hollow-core Selective filling of core and
cladding air channels

Control of the number of guided
modes; single-mode guidance [45,46]

Hollow-core and
suspended-core

Functionalization of fiber surfaces
with antibodies specific binding to

antigens under test

Specific adsorption-based sensors
for human disease diagnosis and

prevention; selective adsorption of
the target molecules on to fiber

surfaces; MOF-based SERS sensor

[14,54]

Suspended-core

Combination of the fuzzy nano
assembly technique and the
biotin-streptavidin binding

mechanism; hybridization of
immobilized peptide nucleic acid

probes

Biosensor for selective DNA
detection based

on suspended-core MOF
[37,55–57]

Hollow-core Silanization of the fiber inner walls

Creation of biosensitive structure
on the example of the covalent

binding of horseradish peroxidase
to the obtained silanol-modified

fiber surface

[60]

Solid-core and
hollow-core

Finely tuned plasmonic layers of
Ag-nanoparticles inside the air

capillaries of MOFs; a
combination of microfluidics and
self-assembled monolayer method,
leading to a uniform deposition of

silver nanoparticles

Fine accumulative SERS signal
from the full-length

Ag-nanoparticle functionalized
MOFs and fine control of the

density of deposited Ag
nanoparticles

[50,63–65]

Hollow-core
Integration of colloidal bimetallic

nanoparticles with predefined
parameters into HC-MOFs

In situ catalyst monitoring [66]

Suspended-core Gold nanoparticles-functionalized
suspended-core MOF

Efficient RI sensing featuring the
real-time analyte monitoring [67,68]

Suspended-core
and exposed-core

Functionalization of hollow
channels with a monoazacrown

bearing spiropyran; attachment of
the fluorophore to a

polyelectrolyte-coated fiber’s
surface

Biosensors for the reversible and
low volume scale measurement of
metal ions; real-time detection of
zinc, aluminum, and lithium ions

[70–72]

Solid-core
Integrated micron-sized Ge wire

inside the air channel of modified
step-index MOF

In-fiber detector and sensor [84]
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Table 1. Cont.

MOF Type Functionalization Application Ref.

Solid-core and
hollow-core

Silver metaphosphate/silica
step-index fiber and an arsenic

trisulphide waveguide embedded
in silica produced by

pressure-assisted melt filling

Supercontinuum generation [85,86]

Hollow-core Doping glass materials with
Thulium (Tm) and Erbium (Yb)

Generation of high power
CW-lasing and the amplification

of nanosecond pulses
[88–90]

Hollow-core

LbL assembly of inversely
charged polyelectrolytes and
magnetite or silica particles at

different diameters

Magnetic resonance imaging of
hollow-core MOF; increased
effective sensing area and the

provision of a convenient scaffold
for the binding of specific

molecules

[15,16]

Suspended-core
and hollow-core

Coating with quantum dots on the
inner surfaces of hollow channels

Temperature sensor based on
modified MOF sample by the

CdSe/ZnS nanocrystals; detection
of nitric oxide by using an

exposed-core MOF coated with
CdTe/CdS core/shell quantum dots

[41,101,102]

11. Conclusions

In this work, we overviewed the existing types of MOF modification techniques, with a focus
on the ones that improve the performance of MOF-based sensors and open new prospects for their
usage. We described the methods of integrating the host materials inside the fibers on the example of
plasmonic nanoparticles and nanowires. The application of the proposed structures for the detection of
specific molecules and for the monitoring of the refractive index variation of the analyte in the test has
been discussed. The LBL assembly approach, which was adapted for the functionalization of MOFs
and the creation of sensitive and adhesion layers for target particle adsorption, has been considered
as well. Different methods applied for the modification of optical fibers are summarized in Table 1,
which highlights the novel applications of MOFs that are beyond the manipulation of transmitted light
but reveal new kinds of functionalities that could be achieved with these structures.
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