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Abstract. We have previously reported that activation 
of adenylyl cyclase by chemoattractant receptors in 
Dictyostelium requires, in addition to a heterotrimeric 
G-protein, a cytosolic protein, designated CRAC (Lilly, 
P., and P. N. Devreotes. 1994. J. Biol. Chem. 269:14123- 
14129; Insall, R. H., A. Kuspa, P. J. Lilly, G. Schaulsky, 
L. R. Levin, W. F. Loomis, and P. N. Devreotes. 1994. 
J. Cell Biol. 126:1537-1545). In this report, we show 
that in intact cells, chemoattractants promote transloca- 
tion of CRAC from the cytosolic to the membrane frac- 
tion. However, CRAC is not required at the time of re- 
ceptor stimulation; it can be added to lysates of 
activated cells. Treatment of membranes with guanine 
nucleotides creates binding sites for CRAC. These 

binding sites can be generated in mutants lacking each 
of the components of the pathway except the ~3-subunit, 
suggesting that free or "activated" 13-¢-subunits may be 
a part of the binding site. This hypothesis is consistent 
with previous observations that CRAC contains a 
pleckstrin homology domain and that the 13~-subunits 
likely mediate activation of adenylyl cyclase in this sys- 
tem. Thus, CRAC may serve as an adapter, linking the 
G-protein 13~-subunits to activation of the enzyme. 
GTP'yS cannot generate CRAC-binding sites when the 
adenylyl cyclase pathway has been adapted by prior 
chemoattractant stimulation, suggesting that this is a 
point of downstream adaptation. 

wide variety of hormones and neurotransmitters 
exert their actions by regulating the activity of 
adenylyl cyclases and thus levels of the intracellu- 

lar second messenger, cAMP. In many instances, stimula- 
tion and inhibition are mediated by activation of Gs and 
Gi; the o~-subunits of these heterotrimeric G-proteins 
modulate the activity of multiple isotypes of adenylyl cy- 
clase catalytic units by direct interaction (Gilman, 1987; 
Birnbaumer, 1992). Recently, the [3"y-dimer has been 
shown to enhance markedly the stimulation of adenylyl 
cyclase isotypes II and IV by the a-subunits of the G-pro- 
tein (Tang and Gilman, 1991). In vivo, this type of regula- 
tion could lead to augmentation of cAMP levels by recep- 
tors linked to Gi, Go, or Gq (Federman et al., 1992). The 
role of the [3~/-dimer in the adenylyl cyclase system adds to 
the growing list of effectors that are targets for this subunit 
(Camps et al., 1992; Katz et al., 1992; Clapman and Neer, 
1993). 

G-protein-linked signal transduction pathways are es- 
sential for the developmental program in Dictyostelium 
(Firtel, 1991; Van Haastert and Devreotes, 1993; Dev- 
reotes, 1994). Aggregation in this organism is mediated by 
extracellular cAMP, which acts as a cell--cell signaling mol- 
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ecule and chemoattractant. A cell-surface receptor for 
cAMP, cAR1, is linked to a specific G-protein, G2. Signal- 
ing through G2 leads to activation of both the cytoskeletal 
components involved in chemotaxis and the adenylyl cy- 
clase required for aggregation, ACA. This latter response 
produces transient increases in intracellular cAMP; the 
messenger is secreted, serving as an intercellular signaling 
molecule that coordinates the chemotactic movements of 
an assembly of cells. 

Although cAR1, the subunits of G2, and ACA are topo- 
logically and structurally homologous to their mammalian 
counterparts, the pathway from cAR1 to ACA is unusual 
(Klein et al., 1988; Pupillo et al., 1989; Lilly et al., 1993; Pitt 
et al., 1993; Devreotes, 1994). cAMP does not stimulate 
ACA activity in mutants lacking cAR1, Get2, or G[3 
(carl-, ga2-, or g[3- cells). In lysates, GTP~/S results in ac- 
tivation of ACA in carl- and, surprisingly, ga2- cells, but 
not in gl3- cells (Kesbeke et al., 1988; Pupillo et al., 1992; 
Wu et al., 1995). These observations have led to the hy- 
pothesis that the [3~-dimer, rather than the o~-subunit of 
G2, is linked to activation of ACA (Pupillo et al., 1992; 
Wu et al., 1995). Accordingly, in intact cells stimulated 
with cAMP, all of the subunits are required for coupling of 
G2 to cAR1. In lysates, GTP~/S can presumably release ac- 
tivated [3~/-subunits from other G-proteins, because the 
cells contain at least eight distinct ot-subunits that share a 
unique [3-subunit (Lilly et al., 1993). 

Biochemical and genetic analyses have shown that an- 
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other component, designated cytosolic regulator of ade- 
nylyl cyclase (CRAC), is also required for both receptor- 
and GTP~S-mediated stimulation of ACA (Theibert and 
Devreotes, 1986; Snaar-Jagalska and Van Haastert, 1988; 
Insall et al., 1994; Lilly and Devreotes, 1994). Null mutants 
lacking CRAC do not produce cAMP in response to ago- 
nists and consequently fail to aggregate. Lysates of crac- 
cells have no adenylyl cyclase activity, even in the pres- 
ence of GTP~/S, but stimulation can be reconstituted by 
addition of purified CRAC to lysates that have been pre- 
activated. Since the other components, cAR1, the subunits 
of G2, and ACA are membrane bound, while CRAC is a 
cytosolic protein, we proposed that CRAC must become 
associated with membranes during receptor and G-protein 
activation. 

Sequence analysis indicates that CRAC contains 693 
amino acids, is hydrophilic, and is not homologous to any 
known protein (Insall et al., 1994). Interestingly, it contains 
an NH2-terminal pleckstrin homology domain (PH-domain). 
Pleckstrin homology domains are believed to participate in 
protein-protein interactions; in some instances, these do- 
mains have been implicated in targeting their host proteins 
to the ~/-subunits of G-proteins (Musacchio et al., 1993; 
Gibson et al., 1994; Touhara et al., 1994). Participation of 
CRAC in the activation of adenylyl cyclase in Dictyoste- 
lium may exemplify a novel class of PH-domain containing 
"adaptors" that link activated 13"y-subunits to effectors. In 
this study we investigated the receptor- and G-protein- 
stimulated association of CRAC with membranes from 
wild-type and mutant cells. 

Materials and Methods 

Cell Culture and Development 
Dictyostelium discoideum strains were grown in HL-5 and developed for 
5 h in development buffer (DB), as previously described (Watts and Ash- 
worth, 1970; Sussman, 1987; Devreotes et al., 1987). Cell lines used in- 
cluded wild type (AX3), a CRAC overexpressor (RI8), and the null mu- 
tants crac- (BW4), carl- (JB4), get2- (mye2), g13- (LW6), and aca- 
(CAP1). 

Supernatant Preparation 
Supernatant was prepared from vegetative RI8 cells as described (Lilly 
and Devreotes, 1994), except that cells were lysed by forcing them 
through a nucleopore filter (5-1zm filter) prior to low-speed centrifiagation. 

Adenylyl Cyclase Assay 
GTP~S-stimulated adenylyl cyclase activity was measured as previously 
described (Theibert and Devreotes, 1986; Lilly and Devreotes, 1994). The 
activation trap assay was performed as described (Pupillo et al., 1992). 

Immunoblots 
Immunoblots were performed as previously described (Towbin et al., 
1979; Insall et al., 1994). Samples were separated on 7.5% SDS-PAGE 
gels and transferred to Immobilon-P. The primary antibody was directed 
against a peptide corresponding to the deduced C terminus of the CRAC 
protein. An ECL kit (Amersham Corp., Arlington Heights, IL) was used 
for detection. 

Lysate Preparation 
Lysates were prepared from 5-h developed cells in the presence or ab- 
sence of GTP~/S and cAMP, as previously described (Theibert and Dev- 

reotes, 1986; Lilly and Devreotes, 1994), and frozen in 10% glycerol in 
dry-ice/ethanol. These were stored at -70°C prior to use. 

Reconstitution of in Vivo Activation 
The basic activation trap assay was modified to include a brief incubation 
of the lysates with either buffer or cytosol. Intact ceils were treated with 
10 t~M cAMP and 10 mM DqT, then analyzed at various times after stim- 
ulation. At each time point, an aliquot of ceils at 1.6 × 108 ml was mixed 
with an equal volume of 2x lysis buffer (20 mM Tris, pH 8, 2 mM MgSO4) 
(Pupillo et al., 1992) and lysed by pushing through a 5-~tm membrane. Ali- 
quots of the lysate were mixed 1:1 with either buffer (SLB; 10 mM Tris- 
HC1, pH 8, 200 mM sucrose, 0.2 mM EGTA) or supernatant prepared 
from ceils overexpressing CRAC activity (RI8). The mixtures were incu- 
bated on ice for 1 min, then 200-~1 aliquots were assayed for adenylyl cy- 
clase activity as described. Assays for each time point were performed in 
duplicate. 

Membrane Association Assay 
In 1.5-ml eppendorf tubes on ice, aliquots of lysate prepared in the pres- 
ence or absence of GTP2tS were mixed with various amounts of superna- 
tant prepared from ceils overexpressing CRAC protein (RI8). These were 
incubated for various lengths of time, then diluted with i ml of PM (5 mM 
sodium phosphate, pH 6.1, 5 mM KH2PO4, 2 mM MgCI2). For the 0 time 
points, lysates were diluted prior to addition of the cytosolic fraction. 
Samples were centrifuged for 1.5-2 rain at ~13,000g in a microfuge at 4°C. 
After removal of the supernatant, the pellet was reeentrifuged and the re- 
sidual liquid removed. Triplicate pellets were then resuspended in either 
120 i~l PM for assay of adenylyl cyclase (duplicate samples) or in 60 I~l 2× 
sample buffer for immunoblot analysis. 

Adaptation of Cells to Chemoattractants 
Cells developed for 5 h were shaken at 1.6 × 10~/ml in PM for 10 rain, then 
stimulated with 10 p.M cAMP at 2-min intervals for 15 min. Lysates were 
prepared immediately (within 20 s) following the first cAMP stimulus, and 
again after 15 min of stimulation. 

Results 

CRA C Acts Downstream of Receptor--G Protein 
Coupling 

Previous studies have established that the cytosolic regula- 
tor of adenylyl cyclase, CRAC, is essential for both recep- 
tor- and guanine nucleotide-mediated activation of adeny- 
lyl cyclase (Lilly and Devreotes, 1994). However, the site 
at which CRAC acts in this signal transduction pathway, 
which includes ceU-surface receptors, G-proteins, and ade- 
nylyl cyclase catalytic subunits, has not been determined. 
Guanine nucleotide inhibition of cAMP binding is normal 
in crac- cells, indicating that cARl/G2 coupling is not im- 
paired (Snaar-Jagalska and Van Haastert, 1988). This sug- 
gests that CRAC is required downstream of G-protein ac- 
tivation by the receptor. To verify this, we used the crac- 
cells to ask whether CRAC must be present at the time of 
cAMP stimulation. 

The ability of ACA to be activated by chemoattractants 
is typically measured using an "activation trap" assay (Pu- 
pillo et al., 1992). Intact cells are stimulated with cAMP, 
then lysed at various times after stimulation, and the in- 
stantaneous state of activation of adenylyl cyclase is mea- 
sured. To determine whether the crac- cells could be acti- 
vated, the assay was modified to include preincubation in 
either the presence or absence of a CRAC-containing 
supernatant prior to assay. As shown in Fig. 1, wild-type 
cells incubated with buffer exhibited a rapid rise in ade- 
nylyl cyclase activation, which peaked between I and 2 
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Figure 1. Reconstitution of cAMP-stimulated adenylyl cyclase 
activation. Both wild-type (circles) and crac- (squares) cells were 
shaken at 0°C, treated with 10 mM DTT, then stimulated with 10 
ixM cAMP for the indicated times. They were rapidly lysed, and 
aliquots of the lysate were incubated for I min, with either buffer 
(closed symbols) or supernatant (open symbols) prepared from 
RI8 cells. Duplicate 1-min assays were performed on each mix- 
ture, and the average of these is presented. The results are repre- 
sentative of four independent experiments. 

rain postsfimulation, then subsequently declined as the 
cells adapted. This time course is similar to the profile seen 
in the standard assay, indicating that the incubation does 
not perturb the normal dynamics of this assay. In contrast 
to wild-type cells, crac- cells show no response to cAMP 
stimulation. However, incubation of these lysates with 
CRAC-containing supernatant restored the activation to 
wild-type levels. This observation suggests that CRAC 
need not be present at the time of chemoattractant addi- 
tion and probably acts downstream of receptor excitation 
of G-proteins. A slight increase in adenylyl cyclase was ob- 
served in wild-type lysates that had been preincubated 
with CRAC supernatant, which may indicate that wild- 
type CRAC levels are somewhat limiting in vitro. In sev- 
eral experiments, the time course was prolonged in the re- 
constituted crac- cells. 

GTPvS Creates Binding Sites for CRA C 

CRAC is a relatively large hydrophilic protein found in 
the cytosol of Dictyostelium amoebae. All other known 
components of the adenylyl cyclase activation pathway are 
associated with the membrane fraction. This suggests that 
CRAC must exert an effect on the membrane either by 
changing a membrane component or by becoming physi- 
cally associated with the membrane. No catalytic function 
has yet been ascribed to the CRAC protein. We sought to 
determine whether CRAC becomes membrane associated 
during stimulation of adenylyl cyclase. 

We have previously demonstrated that CRAC isolated 
from wild-type cells can restore GTPTS-activated adenylyl 
cyclase activity to lysates prepared from crac- cells (Theib- 

ert and Devreotes, 1986; Lilly and Devreotes, 1994). Table 
I demonstrates that the membrane fraction prepared from 
cells lysed in the presence of GTPTS can be reconstituted 
in a similar manner. Thus adenylyl cyclase activity can be 
reconstituted in membranes as well as in crude lysates, sug- 
gesting that preincubation with GTPTS is required to acti- 
vate the membrane fraction but that free GTP'yS can be 
removed prior to reconstitution with CRAC (also see 
Snaar-Jagalska and Van Haastert, 1988). Next, we asked 
whether the reconstitution was stable. Preincubation of su- 
pernatant with the activated lysate and subsequent prepa- 
ration of the membrane fraction resulted in fully reconsti- 
tuted adenylyl cyclase activity (Table I). This observation 
suggests that CRAC has either modified or become stably 
associated with the membrane fraction. 

An assay was devised to test whether CRAC did be- 
come stably associated with the membranes during recon- 
stitution. Lysates were prepared from crac- cells in the 
presence or absence of GTPTS. The lysates were incu- 
bated with supernatant prepared from ceils that were 
overexpressing CRAC activity (RI8). After 0, 2, or 8 min 
of incubation, the mixtures were diluted to wash away un- 
bound CRAC and the membrane fractions were pelleted. 
Assay of these pellets revealed that adenylyl cyclase activ- 
ity increased as the incubation period lengthened, consis- 
tent with the data in Table I. As illustrated in Fig. 2, asso- 
ciation of the CRAC protein with the membranes also 
increased with time of preincubation with supernatant. 
This observation indicates that during the reconstitution 
assay, CRAC translocated from the supernatant to the 
membrane, and that this enabled adenylyl cyclase activa- 
tion. Similar results were obtained by preparing the mem- 
brane fraction first, then incubating with CRAC-contain- 
ing supernatant and reisolating the membrane portion. 
Translocation of CRAC occurred only in lysates that had 
been prepared in the presence of GTPTS. Unactivated ly- 
sates prepared in the absence of GTPTS displayed only 
basal adenylyl cyclase activity, and CRAC did not become 
associated with the membrane fraction under these condi- 
tions. These observations suggest that GTPTS creates 
binding sites for the CRAC protein on the membrane. 

Table L Comparison of Reconstitution Conditions 

Source o f  adenylyl  cylase  Addi t ion  Act iv i ty  

pmoles/min-mg 
Lysates* +Buffer 19 

+ Supernatant 310 

Membranes :~ +Buffer 27 
+ Supernatant 371 

Membranes of reconstituted lysates ~ +Buffer 439 

For all experiments, c r a c -  cells were lysed in the presence of GTP~S. 
* 120 p,1 aliquots of lysate were mixed with 120 p,1 buffer (SLB) or CRAC--containing 
supernatant (RI8), incubated for 8 rain, then assayed for adenylyl cyclase activity. 
¢Aliquots of lysate were incubated in the absence of supernatant, diluted with 1 ml 
buffer, and the membrane fraction isolated. The pellets were resuspended in 120 ILl 
buffer or CRAC-containing supernatant and immediately assayed for adenylyl cyclase 
activity. 
~The lysate incubated in the presence of supernatant was diluted with 1 ml buffer, the 
membrane fraction isolated, resuspended in buffer and immediately assayed. Each 
treamaent was done in duplicate, and the experiment shown is representative of three 
independent experiments. 
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Figure 2. CRAC transloca- 
tion to crac- membranes in 
the presence of GTP-,/S. Ly- 
sates were prepared from 5-h 
developed crac- cells, as de- 
scribed in Materials and 
Methods, in the presence or 
absence of GTP~/S and 
cAMP. Aliquots of each ly- 
sate were incubated with RI8 
supernatant for the indicated 
time, diluted with buffer, and 
the membrane fraction iso- 
lated by centrifugation. Du- 
plicate samples were immu- 
noblotted for CRAC protein 

(upper panel) or resuspended in buffer and analyzed for adenylyl 
cyclase activity (lower panel). 

Binding of C R A C  to membranes occurs in a dose- 
dependent fashion. As shown in Fig. 3, as increasing vol- 
umes of C R A C  supernatant are incubated with a fixed 
amount  of GTP~/S-activated membranes,  more C R A C  
protein translocates to the membrane fraction. Similarly, 
higher doses support increased adenylyl cyclase activity in 
the assayed membranes. Only ~ 3 - 1 0 %  of the C R A C  in 
the reconstitution reaction becomes stably associated with 
membranes.  This corresponds to ~1,000-3,000 molecules 
per cell equivalent (Lilly and Devreotes,  1994). However,  

1 

"e 
D 

o 

Q 

4O 8O 1 

volume supernotant (l~l) 

Figure 3. Dose dependence of CRAC association with mem- 
branes. The indicated amounts (p.1) of CRAC-containing super- 
natant were incubated with 60 p~l of GTP?S-activated crac- ly- 
sate. (In the case of 30 d, an additional 30 i~1 of buffer was added 
along with the supernatant.) After 8 min, the lysates were either 
assayed or diluted and the membrane fraction isolated. The 
membrane-associated CRAC protein, visualized by immunoblot, 
is shown in the upper panel. Lanes labeled 1 and 2 represent 10 
and 20 I~1 of CRAC supernatant directly loaded to gel as a stan- 
dard. The reconstituted adenylyl cyclase activity, (average from 
two representative experiments), expressed as a fraction of the 
maximum level, is depicted in the lower panel (E]). The immuno- 
blotted samples were scanned, and the relative amounts of asso- 
ciated CRAC are indicated for comparison (O). The sample la- 
beled 0 on the gel illustrates the amount of "trapped" CRAC 
from the 60-1xl sample. 

Figure 4. Association of CRAC with membranes from mutant 
cell lines. Upper panel: Lysates were prepared in the presence of 
GTP~/S from the indicated mutant cell lines at 5 h of develop- 
ment. Initially, 60-pA aliquots of each were incubated with 60-1xl 
CRAC-containing supernatant for 0 or 8 min, diluted with 1 ml 
buffer, and the membrane fraction pelleted. The isolated mem- 
branes were immunoblotted with anti-CRAC antibody. The wt 
0-min sample was lost. Lower panel: Lysates were prepared in 
the presence or absence of GTP'yS from crac- and got2- cells, as 
indicated, and analyzed for membrane association for CRAC as 
in the upper panel. 

under the conditions used here, saturation was not ob- 
served. 

To investigate the requirements for GTP~/S-stimulated 
C R A C  binding, we analyzed the translocation of C R A C  in 
a variety of mutants in the signal transduction pathway. As 
illustrated in Fig. 4, the g a 2 -  cells retained the ability to 
bind C R A C  to its membranes in a GTP~/S-dependent 
fashion, suggesting that Ga 2  is not essential to this pro- 
cess. Similar results were obtained in examining carl- cells 
(data not shown). Conversely, the gl3- cells exhibited no 
C R A C  binding in GTP~/S-activated lysates. These obser- 
vations are consistent with the fact that GTP'yS can acti- 
vate A C A  in carl- and ga2 -  cells but not in g[~- cells 
(Kesbeke et al., 1988; Pupillo et al., 1992; Wu et al., 1995). 
Lysates derived from either wild-type or crac- cells serve 
equally well as controls. Surprisingly, robust C R A C  bind- 
ing was observed in the aca- cells. Thus, while C R A C  as- 
sociation with the membrane is required to activate A C A ,  
the enzyme does not participate in its association. These 
observations show that the [~'V-subunits are required for 
generation of C R A C  sites in membranes and suggest that 
they act as a binding site for CRAC.  The resulting [3~/ 
C R A C  complex may directly activate ACA.  

Chemoattractant Stimulation o f  Cells Induces a 
Transient Association of  C R A  C with Membranes 

We demonstrated that CRAC becomes associated with 
the membrane fraction in an in vitro reconstitution assay. 
Next we tested whether C R A C  becomes membrane asso- 
ciated in response to agonist stimulation of intact cells. As 
shown in Fig. 5, cAMP stimulation of RI8 cells, which 
overexpress CRAC,  elicited a rapid increase in adenylyl 
cyclase activation, similar to that observed in wild-type 
cells. Immunoblots  of isolated membrane fractions pre- 
pared at each of these time points showed a rapid increase 
in the level of membrane-associated C R A C  upon activa- 
tion. In this experiment, adaptation of the adenylyl cyclase 
occurred more slowly than it typically does. We are cur- 
rently investigating whether this effect is due to the over- 
expression of CRAC.  

The role of the adaptation process in regulating the as- 
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hanced by incubation with GTP~S; lysates prepared from 
adapted cells displayed only low activity in the presence or 
absence of GTP~S. 
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Figure 5. cAMP-stimulated adenylyl cyclase activation. RI8 cells 
developed for 5 h were shaken on ice at 1.6 x 108, then stimulated 
with 10 I~M cAMP. Aliquots of cells were mixed with an equal 
volume of lysis buffer and lysed at the indicated time points. Du- 
plicate aliquots of lysate (200 ~1 each) were assayed for adenylyl 
cyclase activity (I) ,  and 300 ~1 lysate was centrifuged to isolate 
the membrane fraction. Membranes were separated by SDS- 
PAGE, then immunoblotted with an anti-CRAC antibody. A 
photograph of the immunoblot is shown in the inset. A corre- 
sponding densitimetric scan is shown on the graph (IS]). 

sociation of CRAC with membranes was addressed by 
comparing the extent of GTP~/S-stimulated CRAC bind- 
ing to wild-type membranes prepared at different times 
after stimulation. We found that immediately following 
addition of a cAMP stimulus, CRAC bound readily to 
membranes prepared from cells in the presence and also, 
to a significant extent, in the absence of GTP~S. This bind- 
ing was greatly reduced when cells were pretreated for 15 
min to induce adaptation of the response (Fig. 6). Adapta- 
tion of the cells was verified by direct assay of the lysates, 
comparing the adenylyl cyclase activity in the presence or 
absence of GTP~/S. The lysates prepared immediately fol- 
lowing stimulation displayed a high activity that was en- 

300 
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Figure 6. CRAC does not associate with membranes from adapted 
cells. Using wild-type cells, lysates were prepared within 20 s fol- 
lowing a cAMP pulse and again after 15 min of persistent stimula- 
tion. GTP~S was included in the lysis buffer where indicated. The 
upper panel shows the direct assay of the adenylyl cyclase activity 
immediately after lysis. The lower panel shows membrane-associ- 
ated CRAC protein in naive (20 s) vs adapted (15 min) cells after 0 
or 8 rain of incubation with CRAC-containing supernatant. 

Discussion 

The mechanisms by which hormones activate adenylyl cy- 
clases have been the subject of intense investigation for 
nearly 25 years (Birnbaumer, 1992). In the generally ac- 
cepted paradigm, excited surface receptors catalyze gua- 
nine nucleotide exchange, leading to the release of Gots, 
which stimulates the catalytic unit (Gilman, 1987). In vitro, 
purified activated Go~s directly binds to and stimulates pu- 
rified adenylyl cyclases (Gilman, 1987). For adenylyl sub- 
types II and IV, free GI3~-dimers can greatly potentiate 
the stimulatory action of activated Gas (Tang and Gilman, 
1991). Cotransformation experiments have shown that this 
enhancement can operate in vivo, and a variety of obser- 
vations suggests that it may be physiologically significant 
(Federman et al., 1992). Calmodulin also confers calcium 
sensitivity to certain subtypes (Tang and Gilman, 1991). 
There has been little evidence suggesting a requirement 
for other novel components. 

Biochemical and genetic analyses of the receptor-medi- 
ated activation of the aggregation-stage adenylyl cyclase, 
ACA, in Dictyostelium have recently led to the discovery 
of a novel component of the system. Previous evidence 
suggested that CRAC acts downstream of receptor/G-pro- 
tein coupling. Its deletion does not interfere with GTP in- 
hibition of high-affinity agonist binding to cAR1, an indi- 
cator of cARl/G2 interaction (Snaar-Jagalska and Van 
Haastert, 1988). It is required for GTP~S activation of the 
enzyme in vitro, an assay that does not require c A R 1  
(Theibert and Devreotes, 1986). Consistent with this, we 
have demonstrated that CRAC can reconstitute receptor- 
mediated activation of the enzyme when it is supplied to 
lysates prepared from cAMP-stimulated CRAC null mu- 
tants. Thus, CRAC appears to act as an adaptor between 
the activated G-protein and the adenylyl cyclase. 

Since all the known components of this system are mem- 
brane proteins, whereas CRAC fractionates as a cytosolic 
component, C R A C  is expected to become associated with 
the membrane for activation to occur. Indeed, we have 
shown that during receptor-mediated activation of adeny- 
lyl cyclase, there is an increase in the amount of CRAC 
that co-sediments with membranes. Furthermore, we have 
shown that CRAC becomes stably associated with mem- 
branes during an in vitro reconstitution assay. The associ- 
ation of C R A C  with the membranes is time and GTP~/S 
dependent, paralleling the requirements for in vitro activa- 
tion of the adenylyl cyclase. 

The receptor- and GTP~,S-stimulated association of 
CRAC with membranes suggests that, rather than activat- 
ing CRAC, the treatments generate specific binding sites 
for CRAC. Several additional lines of evidence support 
this hypothesis. First, the membranes can be pretreated 
with GTP'yS, washed, and subsequently incubated with 
CRAC with similar reconstitution results (Table I; Snaar- 
Jagalska and Van Haastert, 1988). Second, whether the 
source of CRAC is stimulated or unstimulated cells, it is 
equally active. Third, the amount of CRAC associated 
with membranes in vitro parallels the extent of activation 
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of the enzyme, and both membrane association and activa- 
tion depend on the concentration of added CRAC. With 
the currently available CRAC preparations, we were un- 
able to add sufficient amounts to achieve saturation of the 
binding sites. Nevertheless, the amounts of CRAC becom- 
ing associated with membranes in vivo and in vitro were 
similar. 

The specific association of CRAC with membranes was 
independent of cAR1, Got2, and CRAC (in the host cells). 
These results might have been predicted since GTP~/S ef- 
fectively activates ACA in carl-  or got2- lysates, and it en- 
ables crac- lysates to be reconstituted by CRAC (Kesbeke 
et al., 1988; Pupillo et al., 1992). Because CRAC is abso- 
lutely essential for adenylyl cyclase activation, it was sur- 
prising that the stimulated association of CRAC with 
membranes did not require ACA. This observation im- 
plies that while CRAC might directly interact with ACA 
to activate it, ACA does not serve as its membrane bind- 
ing site. In contrast, deletion of the 13-subunit completely 
abolished the capacity of the membranes to associate with 
CRAC. This suggests either that 13~/-subunits serve as the 
CRAC-binding sites or that the creation of binding sites 
depends very closely on [3~/-subunits. 

While cAR1 was not required for GTP~/S-dependent as- 
sociation of CRAC with membranes or activation of ACA, 
cAR1 occupancy could regulate the availability of CRAC 
binding sites. In vivo, persistent occupancy of cAR1 caused 
a transient increase in the stable association of CRAC with 
membranes in subsequently prepared lysates. The tran- 
sient association parallels the activation of ACA. Pretreat- 
ment of cells with cAMP also influenced the capacity of 
GTP~/S to generate CRAC-binding sites in membranes. 
Brief pretreatment (20 s) enhanced the stimulatory effect 
of GTP~/S, while prolonged pretreatment (15 min) nearly 
completely attenuated its action. These observations 
closely parallel the receptor-mediated regulation of the ca- 
pacity of GTP~/S to stimulate ACA in vitro. Thus, adapta- 
tion of this pathway may occur by down-regulation of 
CRAC-binding sites. 

Based on these and other observations, we propose the 
following working model for the receptor-mediated acti- 
vation of adenylyl cyclase. In vivo, persistent occupancy of 
cAR1 elicits a transient activation of G2 that leads to re- 
lease and "activation" of [3~/-subunits. In vitro, GTP'yS 
achieves the same release and activation; it is independent 
of cAR1 and Gtx2. In either case, the process creates a 
binding site for CRAC, causing it to translocate to the 
membrane where it activates ACA. The pleckstrin homol- 
ogy domain within the NH2-terminal of CRAC may bind 
to the activated [3~/-subunits and mediate the transloca- 
tion. CRAC alone or in association with the [3~/-subunits 
may activate the ACA. 

Chemoattractants lead to numerous responses besides 
activation of adenylyl cyclase (Devreotes and Zigmond, 
1988; Caterina and Devreotes, 1991). It is possible that for 
some of these responses, the variety of ot-subunits serves 
to specify the activation of the B-t-subunits by different 
chemoattractant receptors. In support of this notion, got2- 
cells that cannot sense cAMP respond normally to the 
chemoattractant folic acid, while get4- cells, which cannot 
sense folic acid, respond normally to cAMP (Kesbeke et 
al., 1988; Hadwiger et al., 1994). In contrast, the g[3- cells 

fail to respond to either of these chemoattractants (Wu et 
al., 1995). If ~/-subunits are a major transducer of signals 
to effectors, the "activation" of ~/-subunits, reflected in 
the transient increase in apparent CRAC-binding sites, 
may be of wider significance than simply in activation of 
adenylyl cyclase. 

CRAC is a novel protein, unrelated to G-protein sub- 
units, that contains an NHz-terminal PH domain (Insall et 
al., 1994). Although this organism is evolutionarily distant, 
the other components of this signal transduction path- 
way--the chemoattractant receptor (cAR1), the G-pro- 
tein subunits (ct and 13), and the catalytic subunit (ACA)--  
closely resemble their mammalian counterparts (Klein et 
al., 1988; Pupillo et al., 1989; Lilly et al., 1993; Pitt et al., 
1993). Therefore, it is likely that a CRAC homologue is 
present in mammals, perhaps in specialized cells such as 
leukocytes that carry out chemotaxis and phagocytosis 
(Devreotes and Zigmond, 1988) or in other instances 
where [3~/-dimer signaling is particularly important. 
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