
REVIEW ARTICLE
published: 23 June 2011

doi: 10.3389/fgene.2011.00029

Systems biology reveals microRNA-mediated gene
regulation
Yuka Watanabe1,2 and Akio Kanai 1,2,3*

1 Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
2 Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
3 Department of Environment and Information, Keio University, Fujisawa, Japan

Edited by:

Stephan Vagner, Institut National de la
Santé et de la Recherche Médicale,
France

Reviewed by:

Bernard Mari, Centre National de La
Recherche Scientifique, France
Scott Tenenbaum, University at
Albany-SUNY, USA

*Correspondence:

Akio Kanai, Institute for Advanced
Biosciences, Keio University,
Tsuruoka, Yamagata 997-0017, Japan
e-mail: akio@sfc.keio.ac.jp

MicroRNAs (miRNAs) are members of the small non-coding RNAs, which are principally
known for their functions as post-transcriptional regulators of target genes. Regulation by
miRNAs is triggered by the translational repression or degradation of their complementary
target messenger RNAs (mRNAs). The growing number of reported miRNAs and the esti-
mate that hundreds or thousands of genes are regulated by them suggest a magnificent
gene regulatory network in which these molecules are embedded. Indeed, recent reports
have suggested critical roles for miRNAs in various biological functions, such as cell dif-
ferentiation, development, oncogenesis, and the immune responses, which are mediated
by systems-wide changes in gene expression profiles. Therefore, it is essential to analyze
this complex regulatory network at the transcriptome and proteome levels, which should
be possible with approaches that include both high-throughput experiments and compu-
tational methodologies. Here, we introduce several systems-level approaches that have
been applied to miRNA research, and discuss their potential to reveal miRNA-guided gene
regulatory systems and their impacts on biological functions.
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INTRODUCTION
The control of translation and messenger RNA (mRNA) degra-
dation are important factors in appropriate gene expression, with
key roles in various aspects of biology. A class of small non-coding
RNAs, called microRNAs (miRNAs), with the ability to alter the
expression of large populations of mRNAs has been identified
(Ambros et al., 2003; Bartel, 2004; He and Hannon, 2004). miR-
NAs are transcribed as primary miRNAs (pri-miRNAs), processed
to precursor miRNAs (pre-miRNAs), and then to mature miR-
NAs, which regulate their target genes. Within the Bilateria, mature
miRNAs are incorporated to microRNA-induced silencing com-
plexes (miRISCs), which interact mainly with the 3′ untranslated
region (UTR) sequences of their target genes. Currently, ∼15,000
miRNAs are registered in miRBase (Release 16), a comprehensive
database of miRNAs derived from 142 species, including 1,048
from humans, 672 from the mouse, and even 235 from viral species
(Griffiths-Jones et al., 2008). Various studies of a wide variety
of species have shown the involvement of miRNA-guided gene
regulation in a broad range of biological functions, such as devel-
opment, cell division, cell differentiation, oncogenesis, immune
responses, and cell death, possibly by regulating tens of thou-
sands of mRNAs (Lewis et al., 2003; Bartel and Chen, 2004; Xu
et al., 2004; Giraldez et al., 2005; Lim et al., 2005; Miska, 2005; Xie
et al., 2005; Zamore and Haley, 2005; Kloosterman and Plasterk,
2006). Moreover, estimates based on computational and exper-
imental analyses suggest that a large number of protein-coding
genes (>60% according to Friedman et al., 2009) are regulated by
these small RNAs (Lewis et al., 2005; Lim et al., 2005; Friedman
et al., 2009), confirming their extensive roles in biological functions

through complex gene regulatory networks. Because these bio-
logical functions are frequently regulated co-operatively by large
numbers of genes, it is important to take a comprehensive view
of the massive miRNA–mRNA interactions as a “system”. For this
purpose, high-throughput experimental methods combined with
computational approaches that allow us to observe gene expression
profiles at the transcriptome or proteome level are essential.

The computational prediction of miRNA target genes has con-
tributed greatly to the identification of potential target genes and
the prediction of their biological roles (Watanabe et al., 2007;
Alexiou et al., 2009). Most of the computational prediction algo-
rithms are based on the binding patterns between miRNAs and
their target sites within the 3′ UTR regions of mRNAs, their
evolutionary conservation, energetic stability, and some features
of the mRNAs outside the miRNA-binding sites (Bartel, 2009;
Thomas et al., 2010). Although computational predictions can
provide a list of potential target genes relatively easily without
experiments, they are not perfect. The major problem is that
hundreds or even thousands of potential target genes are pre-
dicted, regardless of the specificity of their spatial and temporal
expression. For example, the possible combinations of miRNA–
mRNA defined only by computational prediction may contain
false-positive results in terms of “functional”pairs, because the two
molecules may not be expressed together. Therefore, it is essen-
tial to integrate experimental information with computational
analysis, possibly collected using high-throughput approaches, to
identify miRNA–mRNA interactions with higher specificity. This
integrated approach will be critical to understanding the biological
impact of miRNA-mediated gene regulation.
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Here, we focus especially on methodologies that identify tran-
scriptome and proteome profiles applied to miRNA research, and
also transcriptome analysis combined with immunoprecipitation
(IP). We also summarize some recent findings when these systems-
level approaches have been used, which have begun to reveal
the overall picture of the complex gene regulation mediated by
miRNAs.

SYSTEMS-LEVEL APPROACHES TO ANALYZING miRNA
EXPRESSION
Systems-level analysis of miRNA functions mainly consists of two
components: miRNA expression profiles and target mRNA expres-
sion profiles. High-throughput experimentally based research has
expanded from the detection of transcriptomes, in which the
expression levels of both mature miRNAs, which are processed
and functional form of miRNAs, and their target mRNAs are ana-
lyzed (Table 1). Among the several methods used in transcriptome
analysis to detect the expression of mature miRNAs, the microar-
ray is the most commonly used, most well developed, and most
effective in inexpensively monitoring the expression of miRNAs
and/or mRNAs. Recently, another method of transcriptome analy-
sis has been developed that allows us to amplify a variety of mature
miRNAs simultaneously with real-time PCR (Schmittgen et al.,
2004; Jiang et al., 2005). This method has also been used in a vari-
ety of research fields (Bravo et al., 2007; Chen and Stallings, 2007;
Tavazoie et al., 2008), because it has the advantages of requiring
only small amounts of RNA and better sensitivity and specificity
than the microarray (Chen et al., 2009). The major disadvantage
of this technique is that it requires specifically designed primers,

which could limit detection, as is also the case with the microarray.
Another powerful method for transcriptome analysis is RNA-seq
(deep sequencing). RNA-seq has an advantage over the microarray
or the real-time PCR array in that it does not depend on genome
annotation for prior probe or primer selection, which circumvents
the problem of bias. Therefore, some genes with specific expression
patterns or low abundance that cannot be detected with microar-
ray analysis can be identified with this technique. RNA-seq is also
useful for analyzing a variety of species for which no microarray
platform is available. However, because the processing and analy-
sis pipelines are relatively easier for the microarray, this method is
still the preferred option,especially when large numbers of samples
from model organisms with annotated genomes are analyzed.

APPLICATION OF HIGH-THROUGHPUT TRANSCRIPTOME ANALYSIS TO
miRNA EXPRESSION PROFILING
When considering miRNA-mediated gene regulation, how miRNA
expression is itself regulated is one of the first concerns. Initially,
the microarray contributed greatly to establishing an overview of
the types of miRNAs that are expressed under different condi-
tions, such as in cells or tissues, at different stages of development,
and in physiological or pathological states (Davison et al., 2006;
Yin et al., 2008; Table 2). For examples, studies of miRNA expres-
sion patterns in diverse cells and tissues have shown that miR-142,
miR-155, miR-181, and miR-223 were expressed specifically in 17
malignant hematopoietic cell lines (Ramkissoon et al., 2006), and
miR-1, miR-133a, and miR-206 are thought to be highly expressed
in the heart and skeletal muscle (Sood et al., 2006). Through these

Table 1 | Systems-level approaches to identifying miRNA functions.

Approach Method Advantages Disadvantages

Transcriptome

(miRNA and target mRNA)

Microarray Technically well developed, relatively

easily applied, and cost is low

Only applicable to those with

designed probes, and not capable of

detecting direct target genes
Deep sequencing (RNA-seq) Capable of detecting genes without

probe design, suitable for detecting

expression of unknown genes

Not capable of detecting direct tar-

get genes, analysis is still compli-

cated and cost is high compared to

microarray
Real-time PCR array Require only small amount of

sample RNA, sensitivity and

specificity is higher compared to

microarray

Only applicable to those with

designed TaqMan probes, and not

capable of detecting direct target

genes

Proteome Proteome (SILAC) Capable of detecting miRNA targets

in protein level

Sensitivity is not as high as those

for transcriptome analyses, not capa-

ble of detecting direct target genes,

technically still difficult to apply for

most labs, and higher costs
IP-based approach

(miRNA and target mRNA)

IP-based methods Higher specificity, and able to

detect direct interactions

Requirement of highly effective anti-

body, not capable of detecting tar-

geting miRNAs, and cost is still high

when using deep sequencing
CLIP-based methods Higher specificity, able to detect

direct interactions, and capable of

detecting targeting miRNAs

Requirement of highly effective anti-

body, cost is still high when using

deep sequencing, and technical dif-

ficulties
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Table 2 | Examples of studies using transcriptome analysis to identify miRNA expression.

Method Analyzed system Reference

Approach Organism Cell type

Microarray Human 334 cancer samples Lu et al. (2005b)

Human T24 cells Saito et al. (2006)

Human Malignant hematopoietic cell lines Ramkissoon et al. (2006)

Human Heart and skeletal muscle Sood et al. (2006)

Real-time PCR array Human Primary neuroblastoma tumor cells Chen and Stallings (2007)

Mouse NIT-1 cells Bravo et al. (2007)

Human Primary neuroblastoma tumor cells Chen and Stallings (2007)

Human, mouse MDA-MB-231 cells, CN34 cancer cells Tavazoie et al. (2008)

Human Colorectal cancer (CRC) samples Bandres et al. (2009)

Deep sequencing Arabidopsis Whole organism Lu et al. (2005a)

Deep sequencing Human, rodent 26 different organs and cells Landgraf et al. (2007)

Four organismsa Whole organism Grimson et al. (2008)

Worm Whole organism Ruby et al. (2006)

Worm Whole organism Friedlander et al. (2008)

Mouse ND13 cells Kuchenbauer et al. (2008)

Human Breast cancer samples, teratoma cell lines Nygaard et al. (2009)

Mouse Various tissues Chiang et al. (2010)

Worm BC-3 cells (infected with KSHVb) Umbach and Cullen (2010)

aThe species are Nematostella vectensis, Trichoplax adhaerens, Amphimedon queenslandica, and Monosiga brevicollis. KSHV; Kaposi’s sarcoma-associated

herpesvirus.

studies, several specific miRNAs have been inferred to be impor-
tant in maintaining tissue and cell identities or functions, and the
expression of miRNAs may have important functions in prevent-
ing disease. Microarray data have contributed greatly to clarifying
the effects of miRNA expression on disease, including the roles
miRNAs play in tumors such as lung cancer, colorectal neoplasia,
glioblastoma, and breast cancer (Lu et al., 2005b; Cummins et al.,
2006; Esquela-Kerscher and Slack, 2006). These studies have not
only demonstrated distinct miRNA expression profiles in cancer
samples and normal samples, but also within various tumor types.
This indicates that some miRNAs can be used as biomarkers or
as useful indices for the precise diagnosis of cancers. The recently
developed real-time PCR array method (Keys et al., 2010) allows a
more quantitative analysis of miRNA expression than do microar-
rays. Because the assay does not require a large amount of RNA,
which is a major benefit, it has been successfully applied to the
study of samples that are difficult to obtain in large populations.
In one reported example, the expression profiles of 157 miRNAs
were analyzed within 35 types of primary neuroblastoma tumors
(Chen and Stallings, 2007). By comparing the miRNA expression
profiles obtained, the authors observed that the miRNA expres-
sion levels were substantially altered in cells in which the MYCN
gene was amplified, a gene involved in the aggressive pathogenic-
ity of neuroblastoma. This finding suggests that this gene exerts
a tumorigenic effect, possibly through regulation of miRNA gene
expression.

RNA-seq, a deep sequencing method, has contributed especially
markedly to the identification of novel miRNAs (Creighton et al.,
2009; Kong et al., 2009). The first examples of miRNA discovery
using deep sequencing were reported in Arabidopsis thaliana and

Caenorhabditis elegans (Lu et al., 2005a; Ruby et al., 2006). Both
studies sequenced millions of small RNA reads, and in the case
of C. elegans, these findings extended the number of identified
miRNA sequences from 18 to 112. Moreover, software for ana-
lyzing the data obtained with deep sequencing, called “miRDeep,”
was introduced and identified approximately 230 previously unre-
ported miRNAs from C. elegans, human, and dog (Friedlander
et al., 2008). Another study identified the expression patterns of
340, 303, and 205 distinct mature miRNAs from human, mouse,
and rat, respectively, including 33 novel miRNAs. Expression data
were obtained by deep sequencing 250 small RNA libraries from 26
different organs and cells of humans and rodents. A web-accessible
database was constructed to contain these data (Landgraf et al.,
2007). Deep sequencing has also been a powerful tool for the
identification of miRNA expression profiles, as is the case for
microarray and real-time PCR array analyses. It has been applied
to a wide variety of research areas, determining specific miRNA
expression patterns under a variety of conditions (Tarasov et al.,
2007; Chiang et al., 2010; Shao et al., 2010; Umbach and Cullen,
2010), including during tumorigenesis (Lui et al., 2007; Kuchen-
bauer et al., 2008; Nygaard et al., 2009). One of these studies
detected over 200 miRNAs, including 55 known miRNAs, in acute
myeloid leukemia (AML)-progressing cells (Kuchenbauer et al.,
2008). The large number of miRNAs expressed in AML cells and
the nature of their differential expression during the progres-
sion of AML suggest that miRNA expression dictates leukemic
progression.

MicroRNA expression profiles retrieved from high-throughput
transcriptome analyses have been applied to various analyses per-
formed from different perspectives. Among these, evolutionary
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perspectives have provided insight into the emergence and func-
tional roles of miRNAs through their conservation in a variety of
species. In an interesting example in which small RNAs, includ-
ing miRNAs and piwi-interacting RNAs (piRNAs), were analyzed
with a deep sequencing method, using four organisms diverged
before the emergence of the Bilateria (Grimson et al., 2008). The
expression of small RNAs and their machinery proteins, such
as Argonaute (AGO), Piwi, and Dicer, within these species sug-
gest the emergence of small RNA functions before the bilaterian
species evolved. Mature miRNAs and miRNA precursors that dif-
fer greatly from those of the Bilateria were also detected, suggesting
the dynamic evolution of small RNAs as they shaped gene expres-
sion during the evolution of the animal phyla. Christodoulou
et al. (2010) focused on the tissue specificities of the ancient
miRNAs, and analyzed the expression patterns of miRNAs in
Platynereis dumerilii, Strongylocentrotus, and Nematostella using
deep sequencing and whole-mount in situ hybridization meth-
ods. They showed that not only the expression of some of the
ancient miRNAs was conserved, but also their tissue and cell speci-
ficity. This suggests that miRNA evolution, the establishment of
tissue identities, and possibly the relationships between their target
genes (Takane et al., 2010) were closely coupled during bilaterian
evolution.

The tissue- or developmental-stage-specific expression of miR-
NAs also allows us to infer their epigenetic regulation (Fabbri,
2008). Several studies have examined the impact of methyla-
tion on miRNA expression. In that research, miRNA expression
profiles were measured before and after treatment with 5-aza-
2′-deoxycytidine and 4-phenylbutyric acid, which inhibit DNA
methylation and histone deacetylase, respectively, to identify the
miRNAs whose expression is affected by these treatments (Saito
et al., 2006; Bandres et al., 2009). The authors profiled 313 human
miRNAs in human bladder carcinoma T24 cells with and with-
out treatment with 5-aza-2′-deoxycytidine and 4-phenylbutyric
acid, and extracted 17 miRNAs with significant expression dif-
ferences using microarray analysis. Among those miRNAs was
miR-127, which regulates the proto-oncogene BCL6. The authors
hypothesized that the epigenetic silencing of miRNAs is related
to tumorigenesis because miR-127, which is expressed in normal
cells, is not expressed in cancer cells. The correlation between epi-
genetic silencing and miRNA regulation is one of the key issues
that arises when miRNA expression is discussed, and further analy-
sis, with the high-throughput detection of methylation sites, may
reveal the precise relationship between these phenomena at the
systems level. A detailed understanding of the condition-specific
expression of miRNAs, as described in this section, will be a vital
step toward understanding the miRNA-guided gene regulatory
network.

SYSTEMS-LEVEL APPROACHES TO IDENTIFY THE mRNA
TARGETS OF miRNAs
Identifying mRNAs that are regulated by miRNAs is a critical step
toward understanding the biological roles of miRNAs, because the
functions of a broad range of mRNAs are regulated by miRNAs.
Therefore, expression profiling of the target mRNAs of miRNAs
is an important part of the systems-level analysis of miRNA func-
tions, together with the profiling of miRNA expression. In addition

to transcriptome analysis, which was described in the previous
section, proteome analysis and IP-based transcriptome analysis
have been used to determine the expression profiles of mRNAs
targeted by miRNAs (Table 1). Transcriptome analysis was devel-
oped before the other methods and served as the foundation for
high-throughput approaches to understanding miRNA functions.
Because some miRNA regulation is triggered by the translational
regulation of their target genes, proteome analysis has also been
used to demonstrate the effects of miRNAs at the protein level
(Baek et al., 2008; Selbach et al., 2008). However, a major con-
cern common to both transcriptomic and proteomic methods is
that they cannot distinguish direct and indirect targets. To resolve
this problem, IP has been combined with transcriptome analysis
(Beitzinger et al., 2007; Karginov et al., 2007; Hendrickson et al.,
2008). By analyzing a whole population of RNA sequences that
has been co-immunoprecipitated with the miRISC, mRNAs that
interact directly with miRNAs can be extracted. However, with
this method, the interacting miRNA sequence remains unknown
because only the target mRNA can be rescued by IP. Therefore,
advanced IP-based methods, which basically require an additional
UV cross-linking step, have been developed (Chi et al., 2009;
Hafner et al., 2010; Zisoulis et al., 2010). With these methods, it is
possible to identify both the miRNA and target mRNA sequences
after immunoprecipitation with the miRISC protein by adding a
cross-linking step to the protocol. Because this provides us with
information about both the miRNAs and target mRNAs, the inter-
actions involving each of the expressed endogenous miRNAs can
be analyzed together.

To conduct high-throughput experiments effectively, a com-
putational approach must play a core role in every step of the
analysis (Figure 1). First, even before the experimental analysis is
conducted, a pre-analysis can be performed using published data.
The raw experimental data should be normalized to produce a
list of significant genes with any variations in their expression.
These lists of genes are analyzed with different approaches, such
as miRNA target prediction and functional analysis, which is per-
formed mainly by data mining against known information. These
resources could also be distributed to the researchers by submitting
them to databases. Modifying and applying these steps according
to the purpose of the research should provide useful data sets.

COMPUTATIONAL APPROACHES FOR miRNA TARGET GENE
PREDICTION
The computational analyses of genome-wide data provides a good
starting point for a systems-level understanding of the complex
regulatory networks formed by miRNAs (Figure 1). Among these
computational approaches, the prediction of miRNA target genes
has played a critical role in identifying the biological effects of
miRNAs by focusing on the genes they target. A large number of
software programs have been developed for the effective predic-
tion of miRNA target sites (Watanabe et al., 2007; Alexiou et al.,
2009; Bartel, 2009).

Software for the prediction of miRNA targets mainly utilizes the
features of the duplexes formed between the miRNAs and mRNAs
and their evolutionary conservation. To predict miRNA targets,
some software programs evaluate the accessibility of the target sites
by focusing on the secondary structure of the mRNA sequence.
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FIGURE 1 | Systems biology approaches to identifying miRNA targets.

Flow chart describing the combined high-throughput experimental approach
and computational approach for the systems-level analysis of miRNA targets.
Pre-analysis using published data can be performed computationally, followed
by high-throughput experimental analyses, in which the samples are prepared
by overexpressing or inhibiting miRNAs in a partial population, and using the

untreated population as the control. The data obtained are normalized and
analyzed statistically to produce a preliminary list of genes with significantly
up- or down-regulated expression. Further validation analysis is conducted to
extract the biological information hidden behind the mass of data. The raw
and analyzed data are distributed within databases or web services, allowing
other researchers to make use of this information.

TargetScan was the earliest software developed for miRNA tar-
get prediction and was applied to a variety of research areas
(Lewis et al., 2003, 2005; Grimson et al., 2007; Friedman et al.,
2009). The first version of TargetScan mainly predicted miRNA
target sequences by focusing on the region complementary to
bases 2–8 from the 5′ end of the miRNA (the so-called “seed
region”; Lewis et al., 2003). The algorithm has been improved
by considering the conservation of the seed sequence across a
large variety of species and some mRNA sequence features out-
side the target site (Lewis et al., 2005; Grimson et al., 2007).
The most recent version of TargetScan takes into account muta-
tional biases,dinucleotide conservation rates,and the conservation
rates of individual UTRs to make target prediction more effec-
tive (Friedman et al., 2009). The PicTar software also predicts
miRNA target sites like TargetScan, by focusing on the evolution-
ary conservation of the target sequences (Krek et al., 2005). The

miRanda and RNA22 softwares both focus on the binding pat-
terns between the miRNAs and their target mRNAs (John et al.,
2004; Miranda et al., 2006). However, RNA22 is quite different
from the other algorithms in that it does not rely upon cross-
species conservation, making it possible for the user to predict
the target sites for species-specific miRNAs. Another example
of a highly effective miRNA target prediction algorithm is the
PITA algorithm, which tries to predict the miRNA target sequence
from a different perspective (Kertesz et al., 2007). This algorithm
considers target site accessibility, which is defined by the “��G
score” calculated by the free energy gained in the transition from
the state in which the miRNA and the target are unbound to
the state in which the miRNA binds its target. Several reviews
are available for more comprehensive information on miRNA
prediction software (Watanabe et al., 2007; Alexiou et al., 2009;
Bartel, 2009).
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Which algorithm is most effective in predicting miRNA tar-
get genes? This is still an open question. One of several good
approaches that try to answer this question is an analysis that
determines proteomic profiles using the overexpression or knock-
out of miRNA target genes (Baek et al., 2008; Selbach et al., 2008).
The researchers used a series of software to predict the miRNA tar-
get sites, and showed a relationship between the transcriptome and
proteome data. From this analysis, the authors concluded that Tar-
getScan and PicTar predictions correlated most strongly with their
proteome data. However, the correlation between experimental
and computational analyses can vary under each set of experi-
mental conditions, and it is important to choose the most efficient
software for the purpose of the research, possibly by comparing
the signal-to-noise ratios of several software programs. For exam-
ple, if you are analyzing the targets of miRNAs that are specific to
a species, you may not want to take evolutionary conservation in
account. In that case, software such as RNA22 or the more per-
missive version of PITA may be effective, because these algorithms
do not require information about miRNA target site conserva-
tion across species. Moreover, some researchers have proposed
that a combination of multiple methods is valid. For example, one
study used a combination of the PITA and TargetScan algorithms
to identify potential targets of miR-132, and extracted p300 as
a strong candidate target gene, which they validated by further
experimental analysis (Lagos et al., 2010).

Bioinformatics analyses using published “omics” data should
be extremely useful for the analysis of miRNA-guided gene regu-
lation, because of the large amount of experimental data available
on various databases (van Dongen et al., 2008; Le Brigand et al.,
2010; Table 3). As an example, the GenMir++ algorithm incor-
porates published expression profile information on miRNAs and
mRNAs to effectively identify functional miRNA targets (Huang
et al., 2007). It uses RNA expression data across 88 tissues and
cell types and applies a Bayesian data analysis algorithm to iden-
tify a network of target predictions against 104 human miRNAs.
Information can be obtained by examining the overall trends in
various data sets, rather than by focusing on limited observations.
This is exemplified by a study in which 151 published transfection
experiments in seven different human cell types were examined to
determine the effects of the transfection of small RNAs on the tran-
scriptome, and in which the competition and saturation effects of
small RNA transfections on endogenous miRNAs were discussed
(Khan et al., 2009). Meanwhile, some problems can occur when
handling or integrating experimental data from databases, mainly
because of variations among the experimental platforms or con-
ditions used. Therefore, it is important to construct a consensus
platform for high-throughput experiments to ensure the best use
of the data sets available from databases.

The computational predictions discussed here are useful tools
for identifying large numbers of miRNA–mRNA interactions,
although there is still substantial concern about their reliabil-
ity. Different algorithms provide different predictions, and the
degree of overlap is sometimes very low (Sethupathy et al.,
2006). Therefore, integrating these computational approaches
with high-throughput experiments, as described below, should
be a very powerful approach to identifying miRNA-mediated gene
regulation.

miRNA TARGET DETECTION USING TRANSCRIPTOME AND PROTEOME
ANALYSES
Because transcriptome analyses can detect the expression patterns
of mRNAs under different conditions, comparison of these expres-
sion profiles when a specific miRNA is overexpressed or inhibited
has been used for the functional analysis of that miRNA. The
most common methodology used to modify miRNA expression
is its overexpression with synthetic miRNA mimics or expression
vectors (Lim et al., 2005; Grimson et al., 2007; Linsley et al., 2007;
Table 3). In one study of miRNA overexpression, the introduction
of miR-1 (expressed in muscle) and miR-124a (expressed in brain),
to HeLa cells induced a shift in the expression patterns of mRNAs
patterns similar to those observed in the tissues that endoge-
nously express miR-1 and miR-124a (Lim et al., 2005). In another
study, different types of miRNAs were transfected individually
or in combinations and the mRNA expression profiles were ana-
lyzed, demonstrating that miRNAs sharing the same seed sequence
with miR-16 targeted the same transcripts, and negatively reg-
ulated cellular growth and cell-cycle progression (Linsley et al.,
2007). To inhibit miRNA expression, chemically engineered anti-
miRNA oligonucleotides, such as antagomirs, lock nucleic acids,
or small molecule inhibitors (Krutzfeldt et al., 2005; Orom et al.,
2006; Zhang et al., 2010b), have been used in high-throughput
studies to analyze the effects of miRNAs on the transcriptome
(Krutzfeldt et al., 2005; Nakamoto et al., 2005). Some applica-
tions in animal models have also indicated that these inhibitors
are promising candidates for the development of miRNA-based
therapies (Lanford et al., 2010; Ma et al., 2010). One study showed
that the inhibition of miR-122, which is essential for hepatitis
C virus (HCV) RNA replication (Lanford et al., 2010), led to
the long-lasting suppression of HCV viremia in chimpanzees.
The authors analyzed the impact of this phenomenon on the
transcriptome using microarray and deep sequencing expression
profiling analyses, which suggested the de-repression of target
mRNAs containing miR-122 seed sites and the downregulation of
interferon-regulated gene expression by miR-122 inhibition. The
other option available for the analysis of miRNA-inhibited con-
ditions is the use of animal models that are deficient in specific
miRNAs or the genes involved in miRNA biogenesis (Giraldez
et al., 2006; Rodriguez et al., 2007; Baek et al., 2008). For example,
a transcriptome analysis was performed in bic/miR-155-deficient
CD4+ T cells and identified a wide spectrum of miR-155-affected
genes. This provided an overview of miR-155 functions dur-
ing homeostasis and in the functioning of the immune system
(Rodriguez et al., 2007). Other studies have examined both the
overexpression and inhibition of miRNAs (Nicolas et al., 2008;
Ziegelbauer et al., 2009). The researchers used these experimental
data to estimate the numbers of direct miRNA targets by focus-
ing on the genes commonly regulated under these two conditions.
Their results showed that only 49 genes were commonly regu-
lated under both conditions, whereas 1,236 and 466 genes were
regulated within miR-140-overexpressing and miR-140-inhibited
cells, respectively. This suggests the existence of large numbers
of indirect or false-positive targets detected within this series of
experiments.

A number of miRNA-based regulatory events are known to
occur at the translation level (He and Hannon, 2004), and in
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Table 3 | Summary of recent studies using high-throughput approaches to identify miRNA target mRNAs.

Methoda Analyzed miRNA Analyzed system Reference

T P IP Approach miRNA Organism Cell type

m Overexpression miR-1, miR-124 Human HeLa Lim et al. (2005)

m Inhibition miR-122 Mouse Liver tissue Krutzfeldt et al. (2005)

m Inhibition miR-30a Human HepG2 Nakamoto et al. (2005)

m Rescue within DICER

knockout

miR-430 Zebrafish Embryo from

Dicer mutant

Giraldez et al. (2006)

m Overexpression 24 Different miRNAs Human 7 Types of cells Linsley et al. (2007)

m Knockout mouse model miR-155 Mouse Th1, Th2 from

miR-155 KO

mouse

Rodriguez et al. (2007)

m Overexpression 11 Different miRNAs Human HeLa Grimson et al. (2007)

m Overexpression, inhibition miR-140 Mouse C3H10T1/2 Nicolas et al. (2008)

d Overexpression miR-155 Human Mutu I Xu et al. (2010)

m Inhibition miR-122 Chimpanzee Whole organism Lanford et al. (2010)

m Bioinformatic analysis of

miRNA/mRNA expression

data

Endogenous miRNAs Human 88 Tissues and

cell types

Huang et al. (2007)

m ◦ Bioinformatic analysis of

miRNA/mRNA expression

data

Endogenous miRNAs Rat Kidney tissue Tian et al. (2008)

◦ Overexpression miR-1 Human HeLa Vinther et al. (2006)

m ◦ Overexpression, KO mouse

model (miR-223)

3 Different miRNAs,

miR-223

Human, mouse HeLa, neutrophils

from miR-223 KO

mouse

Baek et al. (2008)

m ◦ Overexpression, inhibition;

pulsed SILAC method

5 Different miRNAs Human HeLa Selbach et al. (2008)

m ◦ IP of AGO1, AGO2 Endogenous miRNAs Human HEK293T Beitzinger et al. (2007)

m ◦ Overexpression (miR-1)

and/or IP of AGO1

Endogenous miRNAs,

miR-1

Fruit fly S2 cells, miR-1

deficient fly

model

Easow et al. (2007)

m, d ◦ IP of AIN-1, AIN-2 Endogenous miRNAs Worm Whole organism Zhang et al. (2007)

m ◦ Overexpression, inhibition

(miR-124), IP of AGO2

Endogenous miRNAs,

miR-124

Human, mouse 293S, MEF,

mouse cortical

neurons

Karginov et al. (2007)

m, d ◦ Overexpression (miR-122),

IP of AGO1-4, TNRC6A-C

Endogenous miRNAs,

miR-122

Human HEK293T Landthaler et al. (2008)

m ◦ Overexpression (miR-1,

124), IP of AGO2

Endogenous miRNAs,

miR-1, miR-124

Human HEK293T Hendrickson et al. (2008)

m Overexpression (miR-1), IP

of AGO1-4

Endogenous miRNAs,

miR-1

Human HEK293T Hendrickson et al. (2009)

m Overexpression (miR-124,

miR-7), IP of AGO2

Endogenous miRNAs,

miR-124, miR-7

Human HEK293T Hausser et al. (2009)

d IP of AGO1-4; HITS-CLIP

method

Endogenous miRNAs Mouse P13 mouse brain

tissue

Chi et al. (2009)

d IP of ALG-1; CLIP-seq

method

Endogenous miRNAs Worm Alg-1 mutant

worm model

Zisoulis et al. (2010)

d IP of AGO1-4, TNRC6A-C;

PAR-CLIP method

Endogenous miRNAs Human HEK293T Hafner et al. (2010)

aThe methods used within each study is indicated by “m”, “d” or a circle. T, transcriptome analysis; P, proteome analysis; IP, IP-based analysis. Where transcriptome

analysis is divided into two groups, m, microarray; d, deep sequencing (RNA-seq).
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this context, proteomic analysis has been used to identify miRNA
targets (Vinther et al., 2006; Baek et al., 2008; Selbach et al., 2008;
Tian et al., 2008; Table 3). Stable isotope labeling with amino acids
in cell culture (SILAC) of miRNA expression-modified cells, fol-
lowed by mass spectrometric analysis, can be used to assess the
effects of the loss or overexpression of miRNAs on global protein
expression (Figure 2). Changes in mRNA expression correlated
well with those in protein expression and suggested their util-
ity in the detection of miRNA target genes (Baek et al., 2008;
Selbach et al., 2008). However, the large variability in protein
expression levels makes it difficult to resolve the whole proteome
simultaneously with current methods, with a proportion of the
protein expression data undetected. A recent report showed that
over 84% of the reduced protein production mediated by miR-
NAs is attributable to reduced mRNA levels (Guo et al., 2010).
This suggests that changes in mRNA levels closely reflect the
impact of miRNAs on gene expression, and that the destabi-
lization of target mRNAs explains the reduced protein output.
This finding has inspired active discussions of the gene regulatory
mechanisms of miRNAs, specifically whether the expression of
target mRNAs is reduced translationally or transcriptionally. The
common problem shared with transcriptome analysis is that this
methodology cannot distinguish the direct and indirect regulation
of miRNAs.

Light medium Heavy medium

Cells

Culture

Incubation

Collection of cells

Quantitive MS analysis
Light Heavy

In
te

ns
ity

m/z

miRNA
overexpression / inhibition

normally expressed miRNA
(control)

Protein extraction, Trypsin digestion

12C, 14N-Arg 13C, 15N-Arg

FIGURE 2 | Schematic representation of SILAC labeling and proteome

analysis. Cells are split and cultured in heavy or light medium containing
different amino acid isotopes. The miRNAs are then overexpressed or
inhibited within these cells, and the cells are incubated for several more
hours. The cells are collected and their proteins are purified for further mass
spectrometric analysis. The protein levels in the two samples are compared
by quantifying the heavy and light peptides, because isotopic labeling will
affect their migration times.

IP- AND CROSS-LINKING AND IMMUNOPRECIPITATION-BASED
ANALYSES IDENTIFY miRNA–mRNA INTERACTIONS
To understand the miRNA–mRNA interactome with higher reso-
lution, it is important to distinguish direct and indirect regulation
by miRNAs. To do this, some approaches have combined IP with
transcriptome analysis (Easow et al., 2007; Zhang et al., 2007;
Hausser et al., 2009; Hendrickson et al., 2009; Table 3). IP is per-
formed with antibodies that target components of miRISC, such
as AGO proteins and TNRC6A-C, to pull down the RNA sequences
combined within this complex (Hafner et al., 2010). Those RNA
sequences are identified using a microarray or deep sequencing.

As an example, a research group analyzed the functions of miR-
124a by overexpressing and inhibiting this miRNA in HEK293
cells and immunoprecipitated epitope-tagged AGO2. The results
showed the significant enrichment of 294 mRNAs, including sev-
eral known targets of miR-124a. They also performed a luciferase
assay using the 3′ UTR sequences of extracted candidates, and
successfully validated 21 of the 30 tested targets (Karginov et al.,
2007). The modes of action of miRNAs were analyzed as another
example of the capacity of the IP-based approach. For instance,
variations in an AGO1- or AGO2-bound target mRNA popu-
lation was shown in humans. The authors showed that only a
limited number of sequences are common to the AGO1 and AGO2
co-immunoprecipitated mRNAs, suggesting that many miRNA
targets are specific for one or other AGO protein (Beitzinger et al.,
2007). Further analysis showed redundant overlaps between the
miRNA targets incorporated within different AGOs, suggesting
partial overlaps between the AGO functions (Landthaler et al.,
2008), but discussion of this issue is ongoing. IP-based methods
are more effective in miRNA target identification compared to pre-
viously developed approaches (Karginov et al., 2007; Hendrickson
et al., 2008). Although, the remaining difficulty in these approaches
is that they cannot identify which miRNAs target the mRNAs
enriched by co-IP with the miRISC protein. Using computational
approach, miRNA target prediction has been applied to IP-based
analyses, as in case of mirWIP algorithm. It predicts miRNA target
genes using both the characteristics of the miRNA–mRNA duplex
and information about the IP-enriched RNA sequences, and suc-
cessfully detected miRNA–mRNA target relationships in C. elegans
with high sensitivity and specificity compared to the other miRNA
target prediction algorithms (Hammell et al., 2008). Moreover, to
overcome this problem using experimental methods, improved
IP-based methods have been introduced.

The key improvement on the IP-based methodology for
miRNA target detection has been achieved by adding a cross-
linking step to the protocol, in the processes of high-throughput
sequencing by cross-linking and immunoprecipitation (HITS–
CLIP; Chi et al., 2009), cross-linking and immunoprecipita-
tion coupled to high-throughput sequencing (CLIP-seq; Zisoulis
et al., 2010), and photoactivatable-ribonucleoside-enhanced
cross-linking and immunoprecipitation (PAR-CLIP; Hafner et al.,
2010). These methods directly identify miRNA–mRNA duplexes
by IP. Unbound RNAs are digested, leaving the miRISC-protected
RNA fragments, which are analyzed by high-throughput RNA
sequencing to identify both the AGO-associated miRNAs and
their targets. In PAR-CLIP, RNA recovery improved 100- to
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1,000-fold when 4-thiouridine nucleosides were used. The reverse
transcription of 4-thiouridine nucleotides leads to T → C transi-
tions, which improved the accurate identification of the miRISC-
interaction sites within the detected RNA sequences (Figure 3).
From all the AGO IP experiments, 17,319 clusters of sequences
were successfully identified (Hafner et al., 2010). Another inter-
esting finding of this research was that about 50% of the detected
miRNA-binding sites were located in the coding sequence (CDS).
This suggests that gene expression is potentially regulated within
the CDS region, although it has also been shown that the regula-
tion induced by binding sites in the CDS is not as significant as
that induced in the 3′ UTR. This method was a breakthrough in
detecting the direct interactions between miRNAs and their target
genes in a high-throughput manner.

SYSTEMS-LEVEL ANALYSES REVEAL miRNA FUNCTIONS IN GENE
REGULATORY NETWORKS
Integrating computational approaches with high-throughput
experiments should provide a long list of potential miRNA tar-
get genes, and the next critical step will be the identification of
their biological functions using that list. Because miRNAs have
numerous target genes, with an average of 300 conserved targets

FIGURE 3 | Flow chart of the photoactivatable-ribonucleoside-

enhanced cross-linking and immunoprecipitation (PAR-CLIP)

methodology. PAR-CLIP analysis of miRISC component-binding RNAs. The
cells are first cultured with photoreactive 4-thiouridine (4SU), which causes
uridine to be incorporated during culture, and UV cross-linked to miRNP
(UXL). The cross-linked miRNP–RNA complexes are immunoprecipitated
using an antibody directed against miRNP, and then size fractionized by
SDS-PAGE. The miRNP–RNA complexes are extracted from the gel and
digested with protease. The recovered RNA molecules are converted into
cDNA, where the incorporated 4-thiouridine causes T → C transitions. This
transition plays a key role in the accurate mapping of the miRNP-binding
sites. The cDNA library is analyzed with the deep sequencing method to
determine the RNA sequences capable of interacting with miRNP.

per miRNA family (Bartel, 2009), it is conceivable that their inter-
active network, including their target genes, is enormous. It is also
highly likely that miRNAs interact with a variety of genes that
are functionally related to each other, playing essential roles as the
“hubs”of gene regulatory networks and/or biological pathways (Ke
et al., 2003; Herranz and Cohen, 2010). These functional analyses
have predominantly been performed with data mining tools and
databases (Figure 1), and have proven effective in extracting lists
of the potential mRNA targets involved in a specific signal trans-
duction pathway or biological function. Furthermore, the roles of
miRNAs demonstrated within these pathways and functions have
suggested that miRNAs can regulate positive or negative feedback
systems, and this research has provided insight into how miR-
NAs play very specific roles in biological regulation (Herranz and
Cohen, 2010).

One direct approach to the analysis of miRNA functions within
specific instances of biological regulation should be to map miRNA
interactions to known protein–protein interactions (PPIs). Sev-
eral databases of known PPIs, such as the database of interacting
proteins (DIP; Xenarios et al., 2000) and the mammalian protein–
protein interaction database (MPPI; Mewes et al., 2004), are good
resources for these analyses, and PPI networks can be visualized
together with miRNA interaction information on a platform such
as Cytoscape (Cline et al., 2007). Another approach will be to map
miRNA interactions to known biological pathways. The Kyoto
encyclopedia of genes and genomes (KEGG) pathway (Ogata et al.,
1999) is a good reference for groups of miRNA target genes that
may share molecular interactions and reaction networks. This
database provides biological pathway information, allowing us to
determine whether groups of miRNA target genes are enriched in
specific biological pathways. To determine the common functions
of miRNA target genes and to connect miRNA gene regulatory
pathways to PPI networks or biological pathways, functional anno-
tation by gene ontology (GO) is commonly used. GO provides a
controlled vocabulary or systematic language for the description
of the attributes of genes and gene products, which can be used
across genomic databases (Ashburner et al., 2000). This systematic
ontology acts as a key tool to annotate common functions within
large clusters of genes, as in the case of predicting miRNA targets
(Enright et al., 2003; Shalgi et al., 2007), and provides clues to the
interactions or pathways in which miRNAs are involved.

A number of studies have used these data mining tools to
analyze the specific biological functions regulated by miRNAs
(Liang and Li, 2007; Neilson et al., 2007; Bonci et al., 2008;
Sarachana et al., 2010; Zhang et al., 2010a). For example, in
one approach, GO analysis was used together with KEGG path-
way analysis to determine the roles of 21 miRNAs shown to be
expressed in hepatic stellate cells (HSCs) in an miRNA microarray
analysis (Guo et al., 2009). These results suggested that apoptosis
was the most enriched transduction pathway when the top 25%
of the computationally predicted miRNA targets were analyzed.
Another example involved the analysis of the functions of the tar-
get genes of miR-24 (Lal et al., 2009a,b). Potential miRNA target
genes were identified experimentally using microarray analysis, by
detecting significantly downregulated genes among miR-24 trans-
fection with potential miR-24 binding site. The functions of the
potential miR-24 target genes were analyzed using GO analysis
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and the Ingenuity Pathways software. This approach suggested
that miR-24 regulates cell-cycle progression and DNA repair.
As shown in these cases, computational prediction is a valuable
tool for identifying miRNA gene networks under physiological
and pathological conditions. Other studies have suggested the
miRNA-guided regulation of transcription factors, which under-
lines the key functions of miRNAs within whole gene regulatory
networks (Marson et al., 2008; Ragusa et al., 2010; Osella et al.,
2011; Ponomarev et al., 2011; Schlesinger et al., 2011; Starnes and
Sorrentino, 2011). These analyses suggest that the overrepresen-
tation of miRNAs within gene regulatory networks may reflect
their essential roles in the mediation of feedback and feedforward
regulation in cellular systems and the maintenance of cellular sta-
bility during environmental perturbation (Herranz and Cohen,
2010).

CONCLUSION
Using high-throughput experiments, we have retrieved large
amounts of data containing a variety of information, including
the expression profiles of miRNAs and/or mRNAs. This will allow
us to identify and compare whole gene expression profiles in a
systematic way under different biological conditions: in cells or
tissues, at different stages of development, and in physiological or
pathological states. Although the primary data obtained are a trea-
sure trove, including much interesting information, it is also true
that a large proportion of these are false-positive or insignificant
information. The computational approach has played a key role in

extracting lists of genes that warrant further analysis. These lists
can be compared with one another, combined together to identify
tendencies, incorporated with other information obtained from
public databases, and so on. Using computational approaches,
and in this way, a variety of biological knowledge can be extracted
from an overview of these phenomena. The need to look at whole
gene expression patterns is especially true for complex biologi-
cal functions, such as those of miRNAs, where the target mRNAs
are regulated in a one-to-many and a many-to-one manner and
the degree of regulation varies case by case. When accumulated
miRNA–mRNA interactions identify biological functions, it will
be necessary to look at those interactions comprehensively and
recognize them as part of a gene regulatory network. Therefore,
we suggest that further weight should be given to high-throughput
analyses combined with computational approaches, as an effective
methodology to achieve a systems-level understanding of complex
biological functions.
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