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Abstract
Epigenetic modifications, including DNA methylation and histone modifications,
determine the way DNA is packaged within the nucleus and regulate
cell-specific gene expression. The heritability of these modifications provides a
memory of cell identity and function. Common dysregulation of epigenetic
modifications in cancer has driven substantial interest in the development of
epigenetic modifying drugs. Although these drugs have the potential to be
highly beneficial for patients, they act systemically and may have “off-target”
effects in other cells such as the patients’ sperm or eggs. This review discusses
the potential for epigenomic drugs to impact on the germline epigenome and
subsequent offspring and aims to foster further examination into the possible
effects of these drugs on gametes. Ultimately, the information gained by further
research may improve the clinical guidelines for the use of such drugs in
patients of reproductive age.
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Introduction
Sperm and oocytes (eggs) occupy a unique position in biology, 
as they transmit genetic and epigenetic information from parent 
to offspring in sexually reproducing organisms. An individual’s  
genes provide the primary genetic information that determines  
phenotypic outcomes in our children—whether they have blue 
eyes, are suited to sprinting or long distance running, or will 
be susceptible to certain diseases, and so on. While the DNA  
contains the primary genetic sequence, chemical modifications 
to the DNA and associated histone proteins influence how the  
DNA is organised within the nucleus and whether specific genes 
are switched on or off. This epigenetic information is critically 
important for the interpretation of the DNA during develop-
ment of the foetus and in adult life, strongly influencing cell  
specification, phenotypic outcomes, and adult health. Moreover, 
epigenetic modifications are heritable, ensuring that a memory 
of cell-specific gene activity is transmitted during cell division,  
facilitating cell and tissue function. Here, we consider epige-
netic modifications to include DNA methylation and histone 
modifications that are mitotically or meiotically stable (or both)  
and contribute to cellular memory. As the term “epigenetic” has 
been more broadly interpreted, more in-depth discussions can be 
found in recent stimulating reviews from Steven Henikoff and  
John Greally1,2.

In addition to regulating cell-specific gene expression profiles, 
epigenetic mechanisms provide a potential interface between the 
environment and genomic function, including in the germline.  
Changes mediated by environmental influences, such as diet,  
drugs, or chemicals, are thought to alter epigenetic programming 
in germ cells, resulting in epigenetic differences in sperm and 
eggs that may alter outcomes in offspring (reviewed in 3–9). In 
this context, examples of environmental factors are provided by  
epigenetic modifying drugs, which have attracted substantial  
interest in oncology but have been studied in only very limited 
detail with respect to their impacts on germline epigenetic  
programming and epigenetic inheritance. In the context of this 
discussion, “epigenomic drugs” include pharmaceuticals that 
specifically alter the activity of enzymes or proteins that mediate  
DNA methylation and histone modifications. Although these 
drugs have great potential for improving clinical outcomes in  
patients, they may also directly alter the germline epigenome  
and potentially have deleterious outcomes for future offspring.

Despite a substantial number of studies examining the impacts 
of diet and other environmental effects on the germline epig-
enome and inheritance, the potential impacts of epigenomic  
therapies on the germline have been largely “off the radar” when 
assessing drug impacts on patients. This is likely due to the  
primary focus of clinical trials and treatment on safety and  
improving patient health, whereas reproductive and offspring 
health are usually secondary considerations. Clearly, these  
primary aspects of therapy are of paramount importance, and  
effective therapies should be used to ensure the best possible 
outcomes for patients. The purpose of this review is not to vilify  
epigenomic drugs or to discourage their use by patients or  
prescription by clinicians. However, given the potential impacts 
of the germline epigenome on offspring, it is important that  

future research aims to understand how these drugs might 
change the germline epigenome and whether such changes 
affect offspring development and health. In the long term, this  
information may facilitate the development of guidelines 
and pre-treatment advice for patients with respect to future 
reproduction and, if required, recommendations for fertility  
preservation.

Germline epigenetics: programming outcomes in 
future offspring
The potential for environmental agents to alter the germline  
epigenome and offspring phenotype has driven a range of  
studies in germline development and epigenetics. The current 
conceptual framework for epigenetic inheritance in mammals 
is dominated by our understanding of DNA methylation, par-
ticularly genomic imprinting, which has been intensively studied  
since its discovery 35 years ago10–12. Genomic imprinting involves 
the differential DNA methylation of the paternal or maternal 
allele of over 120 genes in the developing male or female  
germlines, resulting in parent-specific epigenetic regulation of 
these genes in offspring and as a consequence impact on a range 
of physiological and behavioural outcomes (reviewed in 12–15).  
However, recent studies have revealed that other epigenetic  
modifications in sperm and oocytes can also influence outcomes 
in offspring, including histone modifications and associated non-
coding RNAs16–28. Some examples include impacts on histone 3 
lysine 4 (H3K4)22 and H3K27 methylation20 and DNA methyla-
tion-independent imprinting mediated by methylation of H3K27 
in the oocyte21. Furthermore, interactions among histone modi-
fications, DNA methylation, and other interacting molecules, 
such as non-coding RNAs, add complexity to the mechanisms  
mediating heritable outcomes in offspring29,30. Such interac-
tions are likely to underlie organised retention and patterning of 
modified histones and DNA methylation in sperm31–35 and the  
potential for environmental challenges, such as diet, chemicals, 
and drugs, to interact with the germline epigenome and alter pater-
nal inheritance16,36. Although these and other studies are making 
substantial progress in understanding germline epigenetics and  
inheritance, much remains to be discovered.

Epigenetic changes in the germline potentially lead to inter-
generational or transgenerational impacts on offspring37,38, and 
understanding these differences is important for determining the  
persistence of potential epigenetic changes induced in germ 
cells. Intergenerational inheritance occurs when the effect of an  
environmental stressor is transmitted from a parent (the F0  
generation) to their offspring (the F1 generation). In the case of 
in utero exposure, the germ cells of the exposed foetus (F1) 
ultimately give rise to the F2 generation; therefore, effects  
transmitted from the F1 foetus to F2 offspring are considered 
intergenerational, as both the F0 and F1 generations were directly 
exposed to the environmental agent. Transgenerational inher-
itance occurs when an effect persists in the absence of direct  
germline exposure. For example, when the germline of the F0 
parent is exposed, effects detected in the F2 generation can be 
considered transgenerational. Similarly, effects transmitted fol-
lowing in utero exposure of the F1 foetus that are detected in the 
F3 generation are considered transgenerational37,38. Importantly,  
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these effects must survive epigenetic reprogramming in the F1 or 
F2 germline, respectively, to be transmitted transgenerationally38.

As with epigenetic inheritance, epigenetic reprogramming in the 
germline is currently best understood from the perspective of 
changes in DNA methylation. Two distinct reprogramming events 
occur in mice: the first occurs in newly specified primordial germ 
cells (PGCs) during mid-gestation embryo development, and 
the latter occurs in the preimplantation embryo39. In mice, PGCs 
are specified from surrounding epiblast cells at embryonic day 7 
(E7)40–42 and around week 2 to 3 in humans43. Initially, the newly 
specified PGCs carry epigenetic modifications similar to those of 
their somatic precursors, including epigenetic modifications from 
both parents. These epigenetic modifications are incompatible 
with sex-specific epigenetic programming and must be removed 
from PGCs before new, parent-specific (that is, only maternal or  
paternal) modifications that are compatible with offspring devel-
opment can be established (Figure 1). Reprogramming in the  
female and male germlines allows the production of oocytes 
and sperm that contain maternal- and paternal-specific informa-
tion that is complementary at fertilisation and supports normal  
offspring development. Moreover, reprogramming in the germline 
facilitates the resetting of epigenetic errors that may have accu-
mulated in the germline, preventing transmission of these altered 
epigenetic states to offspring. Fertilisation initiates the second  
reprogramming event, which establishes developmental com-
petence in the preimplantation embryo, partly by resetting the 

maternal and paternal genomes to functional equivalence for many  
developmental genes. However, preimplantation epigenetic  
reprogramming leaves inherited epigenetic modifications such 
as parent-specific genomic imprints intact44–50, allowing their  
parent-specific function later in life. This represents a key differ-
ence between the two reprogramming events: reprogramming in  
PGCs occurs in order to remove existing genomic imprints and 
other epigenetic information, whereas reprogramming in pre-
implantation embryos occurs to establish equivalence between 
the paternal and maternal genomes and restore totipotency but 
with the exception that genomic imprints and possibly other par-
ent-specific epigenetic information are maintained rather than  
lost.

Germline epigenetic reprogramming is achieved during PGC  
migration and final settlement of germ cells in the developing 
gonads by E10.5 in mice51,52 and around week 6 in humans43. 
The PGCs undergo extensive global DNA demethylation while  
migrating to the genital ridge, followed by further demeth-
ylation as germ cells colonise the developing gonads (the future  
testes/ovaries). This results in global DNA methylation levels 
being reduced from around 70% in germline precursor cells 
to 14% and 7% in male and female PGCs by the time early  
testes and ovaries have formed at E13.5 and includes loss of  
methylation at imprinted regions53. Global DNA demethylation 
is likely to occur via both passive and active mechanisms.  
Whereas passive loss involves the gradual dilution of methylated 

Figure 1. Primordial germ cells undergo extensive epigenetic reprogramming prior to transmitting epigenetic information to offspring. 
Primordial germ cells (PGCs) are the earliest precursors of sperm and oocytes (eggs) and are specified in the mouse around embryonic day 7 
(E7). Initially, PGCs carry both paternal (green) and maternal (purple) epigenetic modifications that are similar to the somatic cells from which 
PGCs are derived. This information is removed by a process of epigenetic erasure before sex-specific epigenomes (paternal in male germ 
cells and maternal in female germ cells) are established. Epigenetic erasure occurs as PGCs migrate towards and populate the developing 
gonads. Soon after reaching the developing testis or ovary, germ cells commit to spermatogenesis or oogenesis, respectively. Subsequently, 
sex-specific epigenetic information is established. This occurs at different stages of development for males and females: during late foetal 
stages and early post-natal life in males and during oocyte growth in adult females. This results in the production of gametes which are 
epigenetically non-equivalent but which contain complementary epigenetic information at fertilisation.
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cytosine during replication in the absence of maintenance DNA  
methyltransferase 1 (DNMT1) activity54, active demethylation 
involves the conversion of 5-methylcytosine to 5-hydroxymeth-
ylcytosine by ten-eleven translocase (TET) enzymes TET1 and  
TET2 and subsequent base excision repair55,56. Recent work 
demonstrated that TET1 alone is not essential for DNA 
demethylation in PGCs, indicating that TETs may act redun-
dantly in this system or that TET1 is primarily required to  
maintain, rather than drive, DNA demethylation in PGCs57. 
However, TET1 is required for the activation of germline  
development genes during reprogramming, indicating that DNA 
demethylation at specific genes is important for sex-specific  
germline development57.

After removal, DNA methylation must be re-established in a  
sex-specific pattern in the male and female germlines. This  
occurs at quite different times in male and female mice. In male 
germ cells, new DNA methylation is established at paternally  
imprinted genes and repetitive sequences by the action of the 
de novo DNA methyltransferase DNMT3A and the co-factor 
DNMT3L during foetal life58,59. However, substantial remodel-
ling also occurs during spermatogenesis in adult life, includ-
ing changes in DNA methylation as germ cells enter meiosis60  
(reviewed by 61). In females, new DNA methylation including  
maternal imprints is established post-natally in oocytes. 
This occurs in each oocyte after individual primordial folli-
cles have been released from the follicle reserve and progress 
through an extended growth phase that culminates in oocyte  
maturation27,58,62–64.

Extensive chromatin remodelling also occurs on histones during 
germline reprogramming. When specified, PGCs are enriched 
with the repressive modification H3K9me2. However, during 
germ cell migration, H3K9me2 is replaced with an alterna-
tive repressive modification, H3K27me365,66. Further removal or  
reorganisation of repressive histone modifications or both occur 
once germ cells enter the developing gonad65–68. Although the 
mechanisms and biological significance of these changes are yet 
to be determined, H3K27me3 is established at developmental  
genes in germ cells and repetitive sequences during foetal life33,69 
and is also present at developmental genes in sperm, indicating 
an important role for this modification in the paternal germline 
and, potentially, offspring69,70. Consistent with this, the complex  
required for catalysing H3K27me3, PRC2, is required for  
spermatogenesis and male fertility71,72. Moreover, recent work 
has demonstrated a role for PRC2 in epigenetic programming 
in foetal male germ cells and in modulating paternal epigenetic  
inheritance73. Although H3K27me3 is not essential for female 
fertility, it is enriched in growing oocytes and PRC2 is required  
for regulating maternal inheritance74. Deletion of the PRC2 genes 
Ezh2 or Eed specifically from the growing oocyte resulted in  
offspring with altered birth weights20,75, bone mineral density, 
and fat and muscle content and reduced litter size20. In addition, 
H3K27me3 is required for regulating a non-coding RNA and 
consequently genomic imprints in mice29, and overexpression 
of the histone demethylase Kdm6b in the zygote revealed a role 
for H3K27me3 in DNA methylation-independent imprinting21. 
Similarly, the H3K4 methylase SETD1B regulates oocyte-specific 

RNAs76, and increased levels of H3K4me2 in sperm resulted in 
paternally transmitted developmental effects in mice22.

These examples demonstrate the importance of a range of  
epigenetic mechanisms in the male and female germlines, but 
they generally do not identify when the germline is most vulner-
able to epigenetic change or how specific environmental agents 
impact on the germline. Given the differences in the timing of 
sex-specific DNA methylation and establishment of imprints, the 
periods of greatest sensitivity to environmentally induced epige-
netic change may also differ in male and female germ cells. For  
example, male germ cells may be most vulnerable during foetal 
life whereas female germ cells may be most vulnerable during  
oocyte growth in adults. However, this does not exclude changes 
at other stages, such as during the extensive nuclear remodel-
ling and histone replacement/rearrangement that occur during 
spermatogenesis or within the follicle reserve that contains the 
oocytes that underpin the reproductive life of females. Under-
standing epigenetic programming in both mechanistic and  
temporal frameworks will help illuminate the stages during which 
the germline is most sensitive to specific environmental factors  
and the potential risks of different exposures.

Emerging environmental agents: could epigenomic 
drugs affect the germline epigenome and future 
offspring?
Although many studies indicate that a large range of environ-
mental stimuli may affect the germline epigenome and conse-
quently offspring phenotype, the underlying mechanisms are often  
poorly understood (reviewed in 3–9). One relatively obvi-
ous way that epigenetic programming in the germline could be 
altered is through the action of agents that directly inhibit the 
enzymes that mediate epigenetic change. Indeed, the dynamic 
nature of epigenetic modifications coupled with the prevalence of  
dysregulated epigenetic modifying enzymes in tumours has led 
to the development of an extensive range of pharmacological 
inhibitors of specific epigenetic modifying enzymes for cancer  
therapies77,78. In the context of oncology, these drugs are being 
used to either kill cancer cells or drive their differentiation. It has 
been estimated that approximately half of all tumours involve  
abnormalities in chromatin modifier proteins (including epigenetic 
modifiers), and substantial efforts in pharmacological science are 
directed towards developing therapeutics for as many of these 
chromatin modifiers as possible (reviewed in 77,78). This area of  
pharmacology is rapidly expanding, and these drugs offer highly 
promising new therapies that are clearly important for patients. 
However, these drugs act systemically and their potential impacts 
on the germline and future offspring remain largely unexplored. 
A number of studies have addressed whether epigenomic drugs 
alter the germline epigenome but have tended to focus on direct  
impacts on fertility rather than outcomes in offspring as a result 
of germline exposure to the drug (Table 1). Moreover, although 
some studies have tested clinically relevant drug doses in mice, 
the clinical relevance of doses used in other studies has not always 
been clear. As differing drug doses are expected to affect target 
epigenetic modifications to varying degrees, it is important to test 
doses that reflect those used in humans as closely as possible when 
determining germline drug impacts in model organisms. Despite 
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these challenges, it is important to explore the potential impacts 
of these therapies on the germline and subsequent offspring to  
generate a greater knowledge base from which clinical guidelines 
can be developed for the use of epigenomic drugs in children or 
patients of reproductive age (Figure 2).

Impacts of epigenomic drugs may alter reproductive health in 
a range of ways. From a germline perspective, perhaps the most 
obvious are the potential impacts on fertility, including zygote  
(fertilised egg) and early embryo viability. For example, rats 
treated with the class I/II histone deacetylase (HDAC) inhibitor 
vorinostat were fertile, but increased peri- and post-implantation 
embryo loss was observed in treated females crossed with untreated  
males88. Furthermore, although some offspring survived, there 
was no analysis of their developmental outcomes, so it remains 
unclear whether treatment of adult females resulted in develop-
mental differences in offspring. In another example, increased 
ovarian cysts and decreased corpora lutea were observed in female 
rats treated with an alternative HDAC inhibitor, valproic acid  
(VPA)90. Mechanistically, extensive HDAC-dependent histone 
deacetylation occurs during oocyte maturation in mice, which 
can be blocked by treatment with the HDAC inhibitor trichostatin  
A96. Moreover, genetic ablation of both Hdac1 and Hdac2 in 
growing oocytes resulted in the arrest of follicle development at 
the secondary follicle stage97. In addition, VPA affected male 
fertility in rats and had mild effects in male patients undergoing  
long-term treatment for epilepsy91,92. Whereas these studies  
largely focussed on fertility and embryo viability, some studies 
have examined the impacts of HDAC inhibitor treatment in pater-
nal inheritance. In a model of Huntington’s disease (HD), the  
treatment of adult F0 mice altered DNA methylation patterns 

in sperm and ameliorated disease phenotype in F1 offspring,  
apparently through a mechanism involving histone demethyla-
tion and DNA methylation94. Although these effects potentially  
imparted some beneficial intergenerational effects on behaviour 
in this HD model, the broader impacts on offspring health were 
not examined. This is an important point, as impacts of this drug 
on DNA methylation and histone methylation, as well as histone 
acetylation, strongly indicate that the effects of treatment were 
unlikely to be focussed only on HD genes but are likely to have 
altered other aspects of inheritance. Indeed, the treatment of preg-
nant female mice with VPA led to the inducement of autism-like 
behaviours not only in the directly exposed F1 offspring but also 
in the unexposed F2 and F3 offspring of exposed F1 progeny, 
demonstrating a detrimental transgenerational effect of VPA in  
inheritance93.

While DNA methylation is the best-understood marker of  
inherited epigenetic modifications, there is limited understanding 
of the impacts of DNMT inhibitors on the female germline and 
inheritance. In oocytes matured in vitro in the presence of aza-
cytidine (Vidaza), chromosomes were less condensed and more 
unstable than in untreated controls79. Although treatment induced 
the expression of early apoptotic markers, these oocytes pro-
gressed through maturation faster than did untreated controls, and 
it was concluded that azacytidine treatment imparted a beneficial  
effect79. However, the potential for the resulting oocytes to be 
fertilised or to support normal offspring development was not  
assessed. In another study, in utero decitabine (Dacagon)-exposed 
females mated with untreated males had normal fertility and  
produced offspring of normal weights86, but other potential  
impacts on offspring outcomes were not assessed.

Figure 2. Epigenomic drugs may alter epigenetic programming in the germline and may alter health and development in offspring. 
Epigenomic drugs are being used for cancer therapies and other disorders such as epilepsy; however, potential impacts of epigenomic 
drugs on the germline remain largely unexplored. As germ cells contain substantial epigenetic information, treatment with epigenomic 
drugs may alter the epigenetic information in sperm and oocytes (eggs). As epigenomic drugs work systemically, changes to the germline 
epigenome cannot be excluded and may result in altered health and development of subsequent offspring. In this diagram, the pale-blue 
background represents what is occurring in the patient whereas the pink background represents the patient’s children. Green gametes 
represent epigenetically normal sperm and oocytes, whereas blue gametes represent sperm and oocytes with altered epigenomes.
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A range of studies in males have demonstrated that both  
azacytidine and decitabine impair spermatogenesis or male fer-
tility or both, and some reported reduced litter size or embryo 
loss or both80–87. Although these treatments reduced male fertil-
ity, this effect was reversible when treatment was withdrawn. In 
one study male mice restored normal testis histology85, and in 
another study drug-induced foetal loss was prevented81 4 weeks 
after treatment was terminated. Moreover, although subtle effects 
on reproductive organs and sperm parameters were observed in  
F1–F3 offspring of treated males, neither decitabine nor vorino-
stat caused intergenerational or transgenerational effects on male 
fertility84. Although these studies demonstrate substantial, though 
reversible, impacts of DNMT inhibitors on male fertility and  
litter size, the broader impact of these drugs on developmental  
outcomes in offspring remains largely unknown.

DNA methyltransferase and HDAC inhibitors are well estab-
lished in the clinic and have been used in a range of combination  
therapies, and their actions in relation to cancer treatment are 
becoming better understood77,98–103. However, more recent devel-
opments have focussed on histone methyltransferase (HMT)  
and bromodomain extra terminal repeat (BET) inhibitors104–107 
(Table 1). Very few studies have examined the impacts of 
BET inhibitors on the germline, although the preclinical BET  
inhibitor JQ1 has been proposed as a potential male contracep-
tive because of its ability to reversibly block male fertility95. As 
with DNMT inhibitors, withdrawal of JQ1 treatment restored 
fertility and these males produced apparently normal pups95, but 
developmental outcomes in these offspring were not assessed in  
detail.

Another prominent epigenomic target is the H3K27 his-
tone methyltransferase EZH2, for which drugs include  
EPZ-6438 (tazemetostat), GSK126, CPI-1205, EBI-2511, and  
UNC1999108–112 (Table 1). Perhaps the most clinically advanced 
of these is tazemetostat, which is being assessed in a range of 
phase I/II clinical trials for human patients presenting with a 
variety of cancers, including lymphomas, myelomas, mesothe-
lioma, solid tumours, and malignant rhabdoid tumours of the  
kidney and ovary (http://clinicaltrials.gov). Patient cohorts 
include individuals of reproductive age and children as young as  
6 months. Recent work demonstrated that the treatment of  
adult female mice with a clinically relevant dose of tazemeto-
stat for 10 days significantly depleted H3K27me3 in growing  
oocytes, and H3K27me3 did not recover after a 10-day period 
of drug withdrawal74. This is concerning given that oocyte-spe-
cific deletion of Ehz2 caused growth restriction in offspring20,75 
and similar oocyte-specific deletion of the essential Ezh2- 
interacting gene Eed caused foetal overgrowth, increased bone 
mineral density, and altered fat and muscle content in offspring20.  
Similarly, recent work demonstrated a role for PRC2 in regu-
lating paternal epigenetic inheritance73. Moreover, de novo  
germline mutations in the PRC2-encoding genes EZH2, EED, 
or SUZ12 in humans result in Weaver and Cohen–Gibson syn-
dromes, characterised by a spectrum of abnormalities including  
over-growth, skeletal defects, and cognitive deficits113–119. Although 
these mutations are genetic, the observed phenotypes may have 
an epigenetic basis. Therefore, given these outcomes, future work 

should address whether pharmacological depletion of H3K27me3 
in growing oocytes can recapitulate the phenotypic outcomes 
in subsequent offspring observed in the mouse oocyte deletion 
models or human genetic conditions20,74,113–119. Prokopuk et al. 
also demonstrated depletion of H3K27me3 in the primordial  
follicle pool of juvenile mouse ovaries cultured with tazeme-
tostat in vitro74. As human clinical trials currently include 
children, it is important to examine whether tazemetostat- 
induced depletion of H3K27me3 is observed in primordial fol-
licles of juvenile mice in vivo, whether H3K27me3 recovers 
after drug withdrawal, and whether this potential transient loss 
of H3K27me3 in the oocyte genome affects outcomes in future  
offspring (Figure 3).

Epigenomic drugs during pregnancy
Substantial epigenetic reprogramming occurs during foetal 
development, making this a period of particular interest for 
germline exposures to environmental factors. However, as epi-
genomic drugs target proteins that widely influence specification 
and development, the use of these drugs during pregnancy is  
contraindicated in most circumstances.

Despite this, the use of epigenomic drugs in pregnancy is not 
unprecedented, particularly in the case of ongoing chronic  
illnesses which require continued treatment during pregnancy.  
VPA has been used extensively since 1974 to treat both epilepsy 
and bipolar mania, including in women of reproductive capac-
ity and pregnant women120. However, VPA has been shown to 
be teratogenic in both animal and human studies, with in utero  
exposure linked to neural tube, cardiac, limb, kidney, craniofa-
cial, and genitourinary defects120–123. Furthermore, a recent study  
in mice demonstrated autistic-like behaviours in offspring  
exposed to VPA in utero93. Remarkably, these behaviours were 
observed in the two subsequent generations, indicating that these 
effects were maintained transgenerationally93.

The continued use of VPA during pregnancy highlights the  
difficulty that clinicians and patients face under these condi-
tions: how is the use of a drug that is required by the patient  
balanced with risk to the unborn child? As the risks of epig-
enomic drug exposures to the unborn child either through the 
germline or after direct in utero exposure are poorly understood, 
it is difficult to make informed decisions regarding potential  
outcomes of such exposures. Animal studies that separate  
pre-fertilisation from gestational exposures are required to evalu-
ate the underlying mechanisms and relative risks of these two  
periods.

Conclusions and considerations for future germlines
Though not exhaustive, the examples described in this review  
provide a snapshot of the germline epigenome and inhibitors 
specific to a small group of epigenetic complexes. These studies  
illustrate the broader concept that a range of epigenetic mecha-
nisms act to establish the germline epigenome and indicate that  
the effects on the germline by many epigenomic drugs currently 
under development should be explored. The combined use of 
both pharmaceutical and genetic models in mice or other animals 
provides opportunities for well-controlled studies of the impacts 
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Figure 3. The potential for epigenomic drugs to impact the germline remains largely unexplored. Three key areas of investigation for 
specific drugs are understanding (A) the capacity of epigenomic drugs to affect the germline epigenome, (B) the capacity of the germline 
to recover after drug withdrawal, and (C) whether changes induced in the germline epigenome impact on the health and development 
of subsequent offspring. Collectively, this information will aid in refining clinical guidelines for the use of epigenomic drugs in patients of 
reproductive age and in children/adolescents prior to reproduction. In this diagram, green gametes represent epigenetically normal sperm 
and oocytes (eggs) and blue gametes represent sperm and oocytes with altered epigenomes.

of epigenomic drugs and the mechanisms involved in epigenetic 
inheritance. Furthermore, more human epidemiological stud-
ies are also required to evaluate drugs that are currently in use.  
Key outstanding areas include addressing whether epige-
nomic drugs alter the germline epigenome, how these changes 
affect the health and development of subsequent children, and 
whether these changes are reversed following drug withdrawal  
(Figure 3). Outcomes from such studies are required to facilitate 
more informed clinical use of the drugs with regard to fertility 
and reproduction and determine whether fertility-preserving  
approaches should be used to decrease germline exposure to  
specific drugs or maintain fertility for the patient or both.
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