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Mammalian SRP receptor switches the Sec61
translocase from Sec62 to SRP-dependent
translocation
Bhalchandra Jadhav1,2, Michael McKenna2, Nicholas Johnson2,w, Stephen High2, Irmgard Sinning1

& Martin R. Pool2

Two distinct pathways deliver secretory proteins to the Sec61 protein translocase in the

endoplasmic reticulum membrane. The canonical pathway requires the signal recognition

particle (SRP) and its cognate receptor (SR), and targets ribosome-associated proteins to the

Sec translocase. The SRP-independent pathway requires the Sec translocase-associated ER

membrane protein Sec62 and can be uncoupled from translation. Here we show that SR

switches translocons to SRP-dependent translocation by displacing Sec62. This activity

localizes to the charged linker region between the longin and GTPase domains of SRa. Using

truncation variants, crosslinking and translocation assays reveals two elements with distinct

functions as follows: one rearranges the translocon, displacing Sec62 from Sec61. A second

promotes ribosome binding and is conserved between all eukaryotes. These specific regions

in SRa reprogramme the Sec translocon and facilitate recruitment of ribosome-nascent chain

complexes. Overall, our study identifies an important function of SR, which mechanistically

links two seemingly independent modes of translocation.
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P
roteins destined for secretion from the cell typically possess
an N-terminal hydrophobic signal sequence, which targets
them to the protein-translocating channel at the

endoplasmic reticulum (ER) membrane1. Once the protein has
been translocated across the membrane, the signal sequence is
usually cleaved off and the mature protein can then fold and
move through the secretory pathway via vesicular trafficking.
Several distinct targeting pathways deliver proteins to the protein-
conducting channel, which is formed by the heterotrimeric Sec61
complex (Sec61abg)2. Perhaps the best-characterized pathway is
the canonical signal recognition particle (SRP) pathway, which is
conserved in all domains of life3,4. SRP is a ribonucleoprotein
complex, which binds to ribosomes and can recognize the signal
sequence as it emerges from the ribosome exit tunnel5,6.
Recognition of the signal sequence by the SRP54 component of
SRP leads to a transient retardation in translation concomitant
with targeting to the ER membrane via an interaction with the
cognate SRP receptor (SR)7–10. SR mediates the transfer of the
ribosome, together with the nascent chain, to the Sec61
translocase11. Translation resumes and the nascent chain is fed
directly from the ribosome into the pore of the Sec61 translocon,
which is co-aligned with the ribosome exit tunnel12. SRP then can
be released from its receptor such that both can now participate
in further rounds of targeting13.

In eukaryotes, SR is composed of two subunits, the 70 kDa
peripheral membrane protein SRa (ref. 14), which is anchored to
the membrane by the 30 kDa SRb, which has a single N-terminal
transmembrane (TM) domain and short luminal domain15. Both
SRa and SRb are GTPases; SRa has a bacterial homologue FtsY,
and both of them share a characteristic GTPase domain
(NG domain), which is also found in SRP54 and its bacterial
homologue Ffh, as well as in a third member of the SRP GTPases,
FlhF16,17. The NG domains of SRa and SRP54 interact in a
GTP-dependent manner. Complex formation is kinetically
accelerated by the presence of the SRP RNA and by the
binding of a bona fide signal sequence18,19. Studies with the
bacterial SRP–SR complex reveal that its subsequent interaction
with the translocon (SecYEG) induces molecular rearrangements,
which stimulate GTP hydrolysis in both GTPases leading to
the release of signal sequence from SRP and its transfer to the
translocon20.

SRa is bound to SRb by its SRX domain, which possess a
longin domain fold21,22. The NG and SRX domains are connected
by a flexible linker, rich in charged residues, whose function is
poorly characterized. FtsY lacks such linker and SRX domains,
and instead possesses a natively unfolded A-domain, which
is important for membrane binding via two lipid-binding
motifs23–25. SRb, in contrast, is closely related to the ARF and
Sar1 family of GTPases15,26. However, details of the SRb GTPase
cycle are not well understood.

Not all secretory proteins use the SRP targeting pathway;
characterized first in the yeast Saccharomyces cerevisiae, an
SRP-independent translocation pathway was identified that,
instead of SRP, absolutely requires the ER membrane protein
Sec62 (ref. 27). Sec62 associates with the same core Sec61 channel
used by the SRP pathway, forming a larger Sec translocase,
alongside Sec63, Sec71 and Sec72 (ref. 28). Furthermore, there is
no obligate coupling of translation and targeting with this
pathway, unlike with SRP-dependent targeting. Substrates can be
released from the ribosome and maintained in an unfolded
conformation by chaperones of the heat-shock protein 70
(Hsp70) family29,30. They can then interact with the Sec
translocase, which again forms the protein-conducting channel.
In this case, the action of the ER Hsp70s (Kar2 and Lhs1), which
are recruited to the luminal face of the Sec translocase by Sec63,
drive the energetics of the translocation reaction31,32.

The pathway a particular yeast precursor will take is largely
determined by the signal sequence, with more hydrophobic
signal sequences being targeted via SRP and less hydrophobic
sequences translocated via the Sec62 pathway33. The Sec62
pathway is, however, not restricted to yeast; homologues of Sec62
and Sec63, but not the non-essential Sec71 or 72, are also present
in higher eukaryotes and furthermore can complement deletions
of their homologues in yeast; suggesting that they perform similar
functions34–36.

Recently, the first substrates for the mammalian Sec62 pathway
were identified and they are typically short secretory proteins
including insulin, apelin and statherin37–39, as well as the insect
protein preprocecropin, which was known for a long time to
translocate independently of SRP40. The fact that these precursors
are very short makes them poor substrates for SRP, as they are
likely released from the ribosome before SRP has had a chance to
bind to their signal sequence efficiently. Before binding to the
translocon, some of these short secretory proteins can also
interact with upstream cytosolic factors, including calmodulin
and components of GET-targeting pathway, which typically
delivers C-terminally anchored membrane proteins to the
ER39,41,42.

Both the SRP- and Sec62-dependent pathways converge at the
Sec61 translocase, but require different accessory factors to
associate with Sec61. SR and ribosomes are required in the SRP
pathway, and Sec62 in the SRP-independent Sec62 pathway.
Evidence suggests that Sec63 is likely to be involved with both
pathways43,44. At present, little is known about the dynamics and
interconvertability of these complexes.

Here we have explored the interaction of both Sec62 and SR
with the mammalian translocon and find that interaction of
ribosomes and Sec62 with the core Sec61 translocon is mutually
exclusive. Furthermore, we identify a specific role for SR,
involving the SRa linker domain, in displacement of Sec62,
which provides a mechanism for the interconversion of
translocons.

Results
Sec62 interacts with Sec61 in a ribosome-sensitive manner. We
first compared the interaction profile of Sec61 with
translocon-associated proteins in intact canine pancreatic
rough microsomes (RMs), where 480% of translocons are
engaged with ribosomes45, and microsomes stripped of ribosomes
by puromycin-high salt treatment (PKRMs). The compound
bismaleimidohexane (BMH), a cysteine-reactive homobi-
functional reagent was used to monitor crosslinking from the
single endogenous cysteine in Sec61b (Fig. 1a). As reported
previously46, the Sec61b cross-link profile was strikingly different
for these two preparations. In particular, crosslinking between
Sec61b and Sec62 was very weak in the RM, but dramatically
increased in the PKRM.

We repeated this experiment with membranes stripped of
ribosomes with EDTA and high salt (EKRM) and monitored
crosslinking of Sec62 by western blot. As observed with PKRMs,
there was a dramatic enhancement in Sec62–Sec61b crosslinking
with EKRMs compared with RMs (Fig. 1b). In fact more than
50% of Sec62 could be cross-linked to Sec61b with EKRMs
(Fig. 1b). To test whether the loss of crosslinking between these
two components was specifically due to the removal of ribosomes
from the membrane, purified canine salt-washed ribosomes were
allowed to rebind to the EKRMs and the cross-link assay was
repeated (Fig. 1b). This led to a dose-dependent reduction in
crosslinking between Sec62 and Sec61b. Hence, as reported
previously34, the Sec62–Sec61b interaction is strongly dependent
on the absence of ribosomes.
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Binding of SR to Sec61 positions SRa close to Sec61b. To
explore the interaction of SRP receptor with the translocon, we
made use of a recombinant form of the SRP receptor, which lacks
the N-terminal luminal and TM domains of SRb (Fig. 2a), and
which is functionally active in co-translational translocation47. In
canine microsomes, SR is considerably sub-stoichiometric to
Sec61 complex45, hence any SR-binding sites are unlikely to be
saturated. Again, monitoring crosslinking from the single cysteine
in Sec61b, we assessed the effect of adding recombinant SR on the
environment of the Sec61 complex (Fig. 2b, lane 7). In the case of
RMs, SRa/bDN had little effect on the Sec61b crosslinking
profile. In contrast, with EKRMs we observed a rather dramatic

alteration in the cross-link profile on addition of SR. In particular,
we observed a strong increase in a B80 kDa cross-link species, in
good agreement with the expected size of an SRa� Sec61b
adduct (Fig. 2b). This 80 kDa band was also observed with RM
but to a much lesser extent. To assess whether the 80 kDa
cross-link species observed in the presence of SRa/bDN was
indeed an SRa� Sec61b cross-link, we performed crosslinking
and then reisolated recombinant SRa via the histidine (His)-tag
using Ni-NTA resin, following membrane solubilisation (Fig. 2c).
The 80 kDa cross-link species and the weaker band above this
bound to the Ni-NTA resin, unlike Sec61b and all the other
Sec61b cross-link products. The presence of the double band
likely arises due to crosslinking of the single cysteine of Sec61b to
one or the other of two different cysteines within SRa resulting in
products with different electrophoretic mobility.

We also analysed cross-linked samples by western blot with
Sec61b and SRa antiserum in parallel (Supplementary Fig. 1a).
This clearly revealed that the strong 80 kDa species also
cross-reacts with SRa antisera.

To test whether endogenous SR, that is, with the SRb TM
domain intact, could also be cross-linked to Sec61b, we treated
EKRM with BMH and performed denaturing immunoprecipita-
tion with anti-SRa antiserum (Fig. 2d). Again, an 80 kDa Sec61b
cross-link species was detected and could be specifically
immunoprecipitated with SRa antibodies but not with an
unrelated antiserum.

Finally, we tested whether endogenous purified SR and Sec61
complex could also interact. Sec61 complex purified from
pancreatic microsomes and reconstituted alone in liposomes
and treated with BMH only revealed Sec61b cross-links to
Sec61a, Sec61g and homodimers of Sec61b (Fig. 2e). In contrast,
proteoliposomes that also contained purified endogenous SR and
signal peptidase complex (SPC) revealed an additional albeit weak
80 kDa Sec61b cross-link species in excellent agreement with the
cross-link between SRa and Sec61 observed with recombinant SR
and in EKRM.

SRP receptor blocks Sec61b� Sec62 crosslinking. In contrast to
the Sec61b� SRa cross-link species, which increased in
abundance when SR was added to EKRMs, most other Sec61b-
derived cross-linked adducts were reduced, in particular, the
cross-link between Sec61b and Sec62 (Fig. 2b). Moreover, this
effect could be confirmed by pre-incubating EKRMs with
increasing concentrations of SR, which revealed a dose-dependent
inhibition in crosslinking between Sec62 and Sec61b (Fig. 3a).
When this experiment was repeated using a mutant SRP receptor,
which contains only the SRX domain of SRa (SRa126/bDN,
Fig. 2a)5, a much weaker reduction in Sec61b–Sec62 crosslinking
was observed. This suggests that either the linker and/or NG
regions are important for the inhibitory effect observed (Figs 2b
and 3b). Similar results were obtained using the bifunctional
reagent bismaleimidoethane, which has a shorter spacer arm
between the reactive maleimides than BMH (10 and 16 Å,
respectively; Fig. 3b).

As both SRa and SRb are GTPases, we also assessed whether
the inhibition of the Sec61–Sec62 interaction was dependent on
guanine nucleotides. However, pre-incubation of SR and EKRMs
with either GDP or the non-hydrolyzable analogue GppNHp
(50-guanylyl imidodiphosphate) had no effect on the SR-induced
reduction of Sec61� Sec62 crosslinking (Fig. 3c). Consistent with
this result, crosslinking between HisSRa and Sec61b was also
insensitive to guanine nucleotides (Supplementary Fig. 1b).

SRa linker facilitates ribosome and translocon interaction. The
fact that the inhibitory effect of SR was independent of
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Figure 1 | Sec62 interacts with the Sec61 complex in a ribosome-

sensitive manner. (a) Equivalent amounts of RM and PKRM (10 eq) were

treated with either DMSO or BMH (10mM) and then analysed by SDS–

PAGE and western blot with anst-Sec61b antisera. Positions of major cross-

link species are indicated. (b) EKRM (8 eq) were incubated with increasing

amounts of purified high salt-washed canine ribosomes (as indicated)

before crosslinking as in a. An equivalent amount of RM were treated

similarly with BMH. Samples were then analysed by western blot with anti-

Sec62 antibodies. The position of the major Sec62� Sec61b cross-link

species is indicated. Binding of ribosomes to EKRM was monitored in

parallel by membrane-pelleting and analysis of the pellet fractions by SDS–

PAGE and staining with Coomassie Brilliant Blue.
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nucleotides, led us to investigate whether the SRa linker domain,
rather than the GTP-binding NG domain, might be responsible.
Comparison of the linker region from different eukaryotes reveals
two distinct charged regions, which we term CBR and RBR
(Fig. 2a, Supplementary Fig. 2). A series of mutants were
generated lacking either just the first one (DCBR), both charged
domains (DCBRDRBR) or the entire linker domain (Dlinker), but
retaining the SRX and NG domains intact (Fig. 2a).

When the cross-link assay was repeated with these mutants, in
contrast to the full-length SR, none of them could reduce the
Sec61b� Sec62 product (Fig. 3d). These results strongly
suggest that the linker domain is important for this effect. When
the construct lacking the entire linker domain (residues 126–315)
was used (SRaDlinker), an additional cross-link adduct of 92 kDa
was present corresponding precisely to the size of Sec62 plus
SRaDlinker.
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To test whether the CBR region is sufficient for this effect, we
performed the same experiment with a construct where the entire
linker is replaced with just the CBR (DlinkerþCBR) (Fig. 3d).
Indeed this construct was also able to reduce crosslinking between
Sec61b and Sec62. Our data show that the first charged region is
required for Sec62 displacement.

We also monitored membrane binding of the different SR
linker mutants using EKRM in a floatation assay (Supplementary
Fig. 3). Constructs with CBR (that is, full-length SR and
DlinkerþCBR) showed the strongest membrane binding,
consistent with the role of this domain in interacting with the
translocon. Although the other mutants showed lower membrane
binding, all of them could still interact with the membrane. In the
case of the Dlinker construct, this is in good agreement with the
observed cross-link between SRaDlinker and Sec62. This indicates
that the inability of mutants lacking the CBR domain to perturb

the Sec62–Sec61 interaction is not simply due to a loss of
membrane or translocon interaction.

SRa linker domain is important for ribosome binding of SR.
The linker domain is also known to be required for ribosome
binding of mammalian SR47,48. We made use of the linker
mutants to assess whether this property of SR might also depend
on a specific region of the linker domain. Using a sedimentation
assay with salt-washed canine pancreas ribosomes, binding of
full-length SR to ribosomes could be observed as reported
previously (Fig. 4a)47,48. Removal of both charged regions
(DCBRDRBR) or the entire linker (Dlinker) abolished ribosome
binding; however, deletion of only the N-terminal region (DCBR)
led to increased ribosome association. Deletion of just the RBR
domain strongly reduced ribosome binding. In contrast, a

b

c

SRα/βΔN
SRα126/βΔN

Sec62

Sec62xSec61β

BMH – + + – –+ –
BMOE – + +– – +–

– – + – – + –

– – + – – +–

SRα/βΔN

Sec62
Sec62xSec61β

Sec62xSRαΔlinker

BMH
+ 

SRα/βΔN

+ 
BSA

+ 
SRα ΔCBR

/βΔN    
    

 

–

-

+ + + + + +

d

a

Sec62

Sec62xSec61β

BMH – + + + + + +

175

83

47

32

Mr/kDa

SRα/βΔN

100

46

32

83
58

Mr/kDa

Sec62

Sec62xSec61β

GppNHp
GDP
BMH – + + + +

– +
+ –

– +

– +–

– – +
+ –

– –

+ 
SRα ΔCBRΔRBR

/βΔN    
    

    
    

    

+ 
SRα Δlin

ke
r/β

ΔN    
    

   

46

83

62

Mr/
kDa

– ––
––

+–

+ +

46

83
58

Mr/kDa

+ 
SRα/βΔN

+ 
SRα Δlin

ke
r+

CBR
/βΔN    

    
    

    
    

– + + +

WB: Sec62

WB: Sec62

WB: Sec62

WB: Sec62 WB: Sec62

46

83

58

Mr/
kDa

Figure 3 | SR can displace Sec62 from Sec61b. (a) EKRM (32 eq) were preincubated with increasing concentrations of SRa/bDN (750 nM, 1.5mM,

3.75mM and 7.5mM), and then treated with BMH before analysis with SDS–PAGE and western blotting for Sec62. (b) EKRM were preincubated with either

SRa/bDN or SRa126/bDN and then treated with BMH or bismaleimidoethane (BMOE) as indicated and analysed as in a. (c) EKRM were preincubated

either alone or with SRa/bDN in the absence of nucleotide or in the presence of either 10 mM GppNHp or 10 mM GDP, before crosslinking with BMH and

analysis as in a. (d) EKRM were incubated with BSA, SRa/bDN or SRa/bDN harbouring the indicated linker mutations and then crosslinking was induced

with BMH before analysis with SDS-PAGE and western blotting with anti-Sec62 antisera. The position of a novel cross-link observed between Sec62 and

SRaDlinker is indicated.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10133 ARTICLE

NATURE COMMUNICATIONS | 6:10133 | DOI: 10.1038/ncomms10133 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


construct where the entire linker is replaced with the RBR domain
alone (DlinkerþRBR) still showed ribosome association, albeit
not as efficient as full-length SR.

While the ability of SR to bind ribosomes appears linked to the
RBR region of the linker domain, this contrasts to the effect of SR
on Sec61b� Sec62 crosslinking, which is closely linked to the
CBR region (Fig. 3d). Hence the linker domain appears to be
involved in both binding the ribosome and destabilizing the
Sec62–Sec61 interaction. However, these two functions require
distinct regions of the linker domain.

SR ribosome binding is evolutionarily conserved. Having
observed that the linker domain harbours two distinct charged
regions, we used multiple sequence alignments to further dissect
these elements (Supplementary Fig. 2a). The CBR, which is
involved in Sec62 displacement, is more specific to animals, while
the RBR is evolutionarily well-conserved between fungi, plants
and animals. As the latter was implicated in ribosome
binding, the role of this region was further assessed using a fungal
SR. Analogous linker domain mutations were generated in SRa
from the thermophilic fungus Chaetomium thermophilum
(Supplementary Fig. 2b) and their ability to bind to Chaetomium
80S ribosomes was tested (Fig. 4b). Compared with human SRa,
full-length CtSRa is more stable in the absence of SRb and
allowed us to monitor ribosome binding independent of SRb.
Moreover, we recently showed that while CtSRa/SRbDN can bind
ribosomes, both CtSRbDN alone and the minimal CtSRa138/
SRbDN complex are unable to bind ribosomes26. Full-length
CtSRa alone readily bound to the ribosomes in a sedimentation
assay (Fig. 4b), as well as to canine ribosomes (Supplementary

Fig. 4b). Deletion of the non-conserved linker region (DCBR) had
very little effect on ribosome binding. In contrast, deletion of the
conserved RBR region as well almost completely abolished
ribosome binding (DCBRDRBR). Replacing the entire linker
with just the RBR domain completely restored ribosome binding
(DlinkerþRBR). Hence the role of the RBR is conserved between
yeast and mammals.

Unlike the ribosome-binding activity of SRa, CtSRa was
unable to destabilize the interaction between Sec61b and Sec62
(Supplementary Fig. 4c), suggesting that this interaction is
specific to higher eukaryotes. Interestingly, the CtSRa NG
domain alone could also be cross-linked to Sec62, as was
observed with the human SRaDlinker/bDN construct
(Supplementary Fig. 4c), indicating that the NG–translocon
interaction is conserved.

SR inhibits translocation of Sec62-dependent substrates.
Having observed that human SR can perturb the association
between mammalian Sec62 and Sec61, the functional effect of SR
on the translocation of Sec62-dependent substrates was tested.
Insect preprocecropin A has long been known to translocate in an
SRP-independent manner and was recently shown to instead
require Sec62 (refs 37,49). Similarly, the small mammalian
secretory proteins apelin and statherin also translocate in a
Sec62-dependent manner49. Apelin, statherin and preprocecropin
A derivatives, possessing a N-glycosylation opsin tag to monitor
ER translocation, were synthesised in vitro in rabbit reticulocyte
lysate in the presence of labelled methionine. To exclude the
possibility of any co-translational translocation, the translation
reaction was treated with puromycin before the addition of RMs in
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with salt-washed ribosomes and SRa constructs from Chaetomium thermophilum (Ct).
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the presence or absence of SRa/bDN. Precursor translocation was
then monitored via N-linked glycosylation. All three substrates
showed a marked decrease in translocation in the presence of SRa/
bDN (Fig. 5a). In contrast, the C terminus of the tail-anchored
membrane protein cytochrome B5–opsin construct, which can
insert into the ER membrane spontaneously50, was N-glycosylated
equally efficiently in the presence or the absence of SR, indicating
that the loss of N-linked glycosylation of the short secretory
proteins is not due to an indirect effect of SR on
oligosaccharyltransferase activity.

To further investigate the specificity of this perturbation, we
compared the inhibitory effect of the different SR linker deletion
constructs on preprocecropin translocation. We performed the
analysis in a co-translational reaction so that we could monitor
effects on the SRP-dependent translocation of preprolactin in
parallel (Fig. 5b,c). Control reactions performed in the absence of
membranes or in the presence of membranes followed by
treatment with Endo H confirmed the identity of the translocated
species (Supplementary Fig. 5).

As with the post-translational assay, full-length SR led to a
significant inhibition of preprocecropin translocation. In contrast,
the DCBR, DCBRDRBR and Dlinker constructs all failed to block
translocation. The construct where the linker is replaced by the
CBR domain alone (DlinkerþCBR) also inhibited translocation,
although not quite as strongly as full-length SR. These results are,
therefore, in close agreement with the ability of the different
linker mutants to effect the Sec61–Sec62 interaction.

Full-length SR was also able to reduce translocation of
preprolactin, although the effect was much weaker than observed

for preprocecropin. This is consistent with previous studies using
endogenous SR and Sec61 complex reconstituted into proteolipo-
somes, which also showed that increasing levels of SR relative to
Sec61 reduced translocation of the efficiency of preprolactin45.

Importantly, none of the linker mutants were able to inhibit
preprolactin translocation. The lack of effect of the Dlinkerþ
CBR construct, which did block preprocecropin translocation,
therefore indicates distinct underlying mechanisms of inhibition
for the two pathways. Neither the full-length SR nor any of the
linker mutants had any effect on cytochrome B5 integration.

Discussion
Here we have shown that the interaction of Sec62 and Sec61 as
revealed by crosslinking is highly sensitive to the presence and the
absence of ribosomes. In contrast to the core Sec61 heterotrimer,
the heptameric yeast Sec complex has been shown to be unable to
bind to ribosomes51. Consistent with this, low resolution cryo-
electron microscopy structures of the Sec complex reveal
additional density above the cytoplasmic face of the core Sec61
heterotrimer52, which would likely occupy a similar position as
the ribosome53 and hence occlude binding. This is in good
agreement with the observation that crosslinking between
mammalian Sec62 and Sec61b is strongly induced by the
removal of ribosomes from RMs and is inhibited by their
readdition. Furthermore, cross-links between Sec62 and Sec61b
were shown previously to be exclusively absent from the
ribosome-associated membrane protein fraction following
detergent solubilisation34,35.

ΔCBR
ΔCBR ΔRBR 

Δlinker

Δlinker + CBR

SRBuffer

30

12

30

pPL

ppCecAOPG2

CytB5OPG2

PL
pPL

ppCecAOPG2

pCecAOPG2(CHO)2 
pCecAOPG2(CHO)

CytB5OPG2
CytB5OPG2(CHO)

Mr / kDa

***
*

Δlinker
Δlinker + CBR

ΔCBR
ΔCBR ΔRBR 

SRhisα/βΔN
Buffer

%
 T

ra
ns

lo
ca

te
d

pP
L

pp
Cec

OPG2

CytB
5O

PG2

SRα/βΔN

SRα/βΔN

SRα/βΔN

SRα/βΔN

> > > >

* * *
*

Buff
er

Buff
er

Buff
er

Buff
er

ApelinOPG2 StatherinOPG2 ppCecAOPG2 CytB5OPG2

12 kDa 12 kDa 12 kDa

30 kDa

150

100

50

0

a

b c

Figure 5 | SR can inhibit translocation of Sec62-dependent precursors. (a) Constructs of apelin, statherin, preprocecropin A (ppcec A) and cytochrome

B5 (cyt B5) each with a C-terminal opsin tag containing two N-linked glycosylation sites (OPG2) were translated in vitro in rabbit reticulocyte lysate in the

presence of [35S] methionine. Synthesis was terminated with puromycin to ensure release of all nascent chains from the ribosome. PKRM were then added

in the presence of absence of SRa/bDN (10 mM) and then incubated at 30 �C to permit targeting and translocation. Membranes were then reisolated

through a sucrose cushion and analysed by SDS–PAGE and phosphorimaging. The position of unglycosylated non signal-sequence cleaved (*) and signal-

sequence cleaved, twice glycosylated species (4) is indicated. (b) Preprocecropin A (ppCec A) and cytochrome B5 both with a C-terminal opsin tag

(OPG2) as well as preprolactin (pPL) were translated in reticulocyte lysate in the presense [35S] methionine and microsomes that had been preincubated

with either buffer or the different SR constructs. Processed and non-processed forms of each precursor were recovered by denaturing immuno-precipitation

and analysed by SDS–PAGE and phosphorimaging. (c) Relative translocation efficiency was determined from the ratio of processed to non-processed form

for each precursor (as in b). Translocation in the absence of recombinant SR was set to 100%. Data are the means of three independent experiments. Error

bars represent s.e.m. Differences significant from the buffer control are indicated (one-way analysis of variance, *Po0.05, **Po0.01).
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The fact that more than 50% of Sec62 can be cross-linked to
Sec61, following removal of ribosomes, suggests that the
interaction of these components is strongly favoured if ribosomes
are absent. Furthermore, if the free Sec complex is unable to
interact with ribosomes51, this raises the question as to how
ribosomes can subsequently rebind to such complexes. Here we
find that SR is able to destabilize the interaction between Sec62
and Sec61, which we detect as a loss of crosslinking between
Sec62 and Sec61b and a block in the translocation of Sec62-
dependent substrates.

It is well established that SR catalyses the transfer of incoming
ribosome–nascent chain complexes from SRP to the Sec61
translocon11. Hence, the ability of SR to interact with Sec61
and displace or reposition Sec62, immediately suggests a
mechanism by which the Sec complex can be reorganized to
permit the subsequent docking of the ribosome–nascent chain
complex (Fig. 6). Furthermore, the SR–Sec61 intermediate would
preferentially recruit SRP-bound ribosome–nascent chain
complexes, potentially providing an additional step where
targeting fidelity can be enhanced. Moreover, this would also
rationalize the previous observation that SRP-bound ribosome–
nascent chains can access a pool of Sec61 to which free ribosomes
are unable to bind54.

A recent study showed that arresting translocation of a co-
translational substrate using a small, tightly folded domain at the
luminal side of the translocon, led to the stable recruitment of
Sec62 (ref. 55). Hence, although dispensable for co-translational
translocation of most substrates37–39, a subset of nascent chains
may require Sec62 to facilitate later steps of their the
translocation. Such nascent chains may possess particular
features, which initiate reorganization of the ribosome–
translocon complex and thereby expose a stable binding site for
Sec62.

Our experiments revealed that crosslinking of SRa to Sec61b
was much stronger with PKRMs as compared with RMs. There is
still a low amount of SRa to Sec61b crosslinking in RM,
rationalised by the fact that B80–90% of translocons are engaged
with ribosomes45, hence a small population of translocons are still
available to bind SR.

SR also had little effect on the overall cross-link profile of
Sec61b with RMs as compared with PKRMs. This suggests that
once the ribosome is fully engaged with the translocon, access of
SR is likely to be strongly hindered. This is rationalized by cryo-
electron microscopy structures of the ribosome–Sec61 (ref. 53)
and ribosome–SRP–SR6 complexes, which predict a strong
potential overlap of density at the ribosomal exit tunnel.

Complete deletion of the linker domain led to the formation of
a novel cross-link between SRa and Sec62. This is also observed
with the CtSRaNG domain, indicating that this interaction from
the NG domain appears conserved. Human and Chaetomium NG
domains both contain multiple cysteines but only one of these is
conserved and is located in helix 3 of the N-domain, hence this is
a strong candidate to be involved in crosslinking to Sec62.
Escherichia coli FtsY, which lacks the linker domain, is known to
interact with cytoplasmic loop 5 of SecY via its NG domain.
Therefore, in the absence of the linker, SRa may also bind to the
Sec61 complex in a similar manner, positioning the NG domain
close to Sec62. If the linker is still present, but unable to displace
Sec62, as with full-length CtSRa, this may interfere with the
binding of NG domain.

As well as interacting with the translocon, SRa also binds to the
ribosome47,48. Our study characterizes a long stretch of positively
charged residues in the linker region of eukaryotic SRa of
previously unknown function. We identify two distinct elements
within the linker and show that ribosome binding requires the
second element (RBR) that is conserved between fungi and
mammals. Notably, a large number of factors that act on the
nascent polypeptide use the tunnel exit as a hub for interaction.
Although these factors are unrelated in structural and functional
terms, they seem to use a common mechanism for ribosome
interaction involving a stretch of positively charged residues56,57.
The RBR identified in this study within the linker region of SRa
probably acts by the same mechanism.

The first element (CBR) being unique to higher eukaryotes and
rich in lysine residues is necessary and sufficient for the
displacement of Sec62 by SRa. Sec62 contains several positively
charged regions also rich in lysine residues. Hence the linker of
SRa and Sec62 are likely to compete for Sec translocon binding
via electrostatic interactions. Indeed, Sec63 has a very negatively
charged C terminus34,35 and so might well contribute to the
mutually exclusive binding site. In this respect, CBR and Sec62
might also compete for binding to Sec63.

Interestingly, mammalian Sec62 differs from its yeast homologues
by the presence of an additional positively charged region in the
N-terminal region58 (Supplementary Fig. 6). This might represent
an extra level of regulation in higher eukaryotes, and explain why
the additional positive-charged (CBR) region within the linker
domain of human SR is required to displace Sec62 from Sec61.

Taken together, we have identified two distinct interaction
motifs in SR and show that one of them serves a function that is
distinct from the ‘canonical’ eukaryotic RBR in regulating
association of Sec62 with Sec61 in the ER membrane. Cells
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under different physiological conditions can express different
levels of SR59. In combination with our findings, this may provide
a mechanism to differentially modulate the flux of substrates
through two distinct ER translocation pathways, allowing cells to
efficiently respond to changing profiles of secretory substrates
with distinct properties under different physiological conditions.

Methods
Purification of mammalian SR and deletion variants. For purification of
mammalian SR, a bi-cistronic construct containing human SRa and murine
SRbDTM was cloned in the pET16b vector (Novagen). Linker deletion variants of
SR were created using the same construct. Expression was performed in E. coli
BL21 (DE3) cells with overnight induction with 1 mM isopropyl-b-D-thioga-
lactoside at 16 �C. The cells were lysed using a sonicator followed by micro fluidizer
in SR buffer (25 mM HEPES pH (7.5), 300 mM KOAc, and 5 mM Mg(OAc)2) and
cleared by centrifugation at 63,000 g for 30 min using a JA25.50 (Beckman) rotor.
The resulting supernatant was purified first by Ni-NTA affinity chromatography.
The eluate was applied to a Q-sepharose column and the flow-through, then bound
to SP-sepharose resin and eluted with a 0.2–1 M KOAc salt gradient in SR buffer.
Finally, the SR was purified by size exclusion chromatography on a Superdex 200
column47. The final concentration of salt was reduced to 150 mM before snap
freezing in liquid nitrogen.

Purification of CtSR and linker deletion variants. CtSRa and the deletion var-
iants and CtSRb were cloned as hexa-histidine-tagged proteins via the pETHis
vector26,60. Untagged CtSRbDTM was cloned into the pET24a vector (Novagen).
CtSR His-tagged CtSRa and untagged CtSRbDTM were expressed individually using
the auto-induction method in E. coli BL21 (DE3) cells at 24 �C overnight61. Pellets of
cells expressing CtSRa and CtSRbDTM were lysed together in the lysis buffer
(20 mM Tris pH 8.0, 150 mM NaCl, 5 mM MgCl2, 20 mM imidazole and 0.02% (v/v)
Nonidet-P40 ) using a microfluidizer. After the lysis, the cell debris was removed by
centrifugation at 67,000 g using JA25.50 (Beckman) rotor. The supernatant was
collected and incubated at 4 �C for 1 h on a rotating wheel. The CtSR complex was
then purified as described for mammalian SR47. His-tagged CtSRa, CtSRa deletion
variants and CtSRbDTM were expressed and purified similarly.

Microsome crosslinking in the presence of SR. RMs, EKRMs and PKRMs were
prepared from canine pancreas62,63. Pancreatic tissue was cut into small pieces,
passed through a tissue press and then homogenized in RM buffer (20 mM
HEPES–KOH pH 7.6, 50 mM KOAc, 2 mM Mg(OAc)2, 250 mM sucrose and 2 mM
DTT). The resulting extract was then centrifuged sequentially at 1,000 g and
10,000 g to yield a post-mitochondrial supernatant, which was overlayed onto step
gradients of 1.5, 1.75 and 2 M sucrose (in RM buffer) and centrifuged overnight at
235,000 g at 4 �C using a Ti45 rotor (Beckman). Membranes banding at the
1.75–2 M cushion interface were collected, diluted with RM buffer without sucrose
(RM� ) and pelleted before resuspension in RM buffer at a concentration of
4 eq ml� 1 to yield RMs.

EKRMs were prepared by washing RMs with high salt (650 mM KOAc) before
resuspension in 20 mM HEPES–KOH pH 7.6, 20 mM EDTA, 650 mM KOAc,
2 mM DTT and 2 M sucrose. Membranes were held on ice for 30 min and then
overlayed with sucrose cushions of 1.5, 1 and 0.25 M in the same buffer and
centrifuged overnight in the SW40 rotor (Beckman) at 38,000 r.p.m. Membranes
floating at the 0.25–1 M interface were collected, diluted with RM(� ) buffer and
collected by centrifugation before resuspending in RM buffer to give EKRM.
PKRM were prepared in an identical manner, except salt-washed membranes were
resuspended in 20 mM HEPES–KOH pH 7.6, 500 mM KOAc, 5 mM Mg(OAc)2,
2 mM puromycin, 2 mM GTP and 2 M sucrose (prewarmed to 25 �C), and
incubated at 25 �C for 20 min before floatation.

To purify translocon components, RMs were pre-extracted with 0.1% (w/v)
digitonin and then solubilised with 3% (w/v) digitonin in the presence of 500 mM
KOAc. The resulting extract was then centrifuged to yield a ribosome pellet and
supernatant. To purify SPC, the supernatant was applied to a concanavilin A
column. Bound proteins were eluted with a-methylmannoside and then SPC
purified on an SP-sepharose ion exchange column45. SR was purified from the
flow-through of the concanavalin A column using an anti-SRa immunoaffinity
column45,64. Sec61 was purified from the ribosome pellet fraction by ion-exchange
chromatography with Q and SP-sepharose, following release from the ribosome by
puromycin treatment45,64.

Purified components were detergent exchanged from digitonin into 0.2% (w/v)
deoxyBigCHAP on a SP-sepharose column and reconstituted into liposomes by
combining with 10 mg ml� 1 phosphatidlycholine:phosphatidlyethanolamine (4:1)
and incubated overnight with SM2 Biobeads (Bio-Rad)45,64.

Ten equivalents of EKRMs or PKRMs were incubated with 0.7–10 mM of
mammalian SR and linker deletion variants in a 20 ml reaction in the assay buffer
(25 mM HEPES–KOH pH 7.5, 120 mM KOAc, 2 mM Mg(OAc)2, 250 mM sucrose)
at 25 �C for 10–15 min. BMH was added to the final concentration of 10 mM and
the reaction mixture was further incubated at 25 �C for 10 min. The crosslinking
reaction was stopped by the addition of 1 mM DTT and incubating the sample on

ice for 15 min. The whole sample was then mixed with SDS sample buffer and
proteins and crosslinking adducts were analysed by SDS–PAGE and western
blotting with either Sec61b (1:3,000), SRa (1:1,000) or Sec62 (1:1,000) antibodies.
Complete blot images for cropped panels are shown in Supplementary Fig. 7.

For immunoprecipitation of endogenous cross-linked SRa, EKRM (100 eq)
were treated with 40 mM BMH for 10 min at 30 �C. After quenching with 10 mM
DTT, membranes were reisolated by centrifugation and then resuspended in 70 ml
of 20 mM Tris-HCl pH 8.0. 2% (w/v) SDS and 2 mM EDTA and heated for 10 min
at 70 �C. The denatured membranes were diluted with 700ml of ice-cold
immunoprecipitation (IP) buffer A (20 mM Tris-HCl pH 8.0, 0.4% (v/v) Nonidet-
P40, 150 mM NaCl, 1 mM EDTA, 1 mM PMSF (phenylmethylsulfonyl fluoride))
and then 2 ml of anti-SRa or a non-related rabbit antiserum were added. After
rolling for 1 h at 4 �C, immune complexes were recovered with protein A-sepharose
(Genscript) and then washed two times with IP buffer A, two times with 20 mM
Tris-HCl pH 8.0, 0.2% (v/v) Triton X-100, 500 mM NaCl, 1 mM EDTA and once
with 10 mM Tris-HCl pH 8.0, before elution with SDS–PAGE sample buffer at
70 �C for 10 min. Samples were then analysed by SDS–PAGE and western blot with
Sec61b antibodies (1:1,000) and detection with protein A–horseradish peroxidase
(Sigma) to reduce cross-reaction with IgG heavy chains.

Preparation of Canine and Chaetomium 80S ribosomes. To prepare canine
ribosomes47, dog RM were resuspended in 50 mM HEPES–KOH pH 7.6, 600 mM
KOAc, 12 mM Mg(OAc)2, 2 mM DTT, with protease inhibitor cocktail and treated
with 0.5 mM puromycin for 15 min at 25 �C. The reaction was then overlayed onto
a 1.5 M sucrose cushion made up in the same buffer and centrifuged at 444,000 g
for 1 h 20 min at 15 �C in the MLA-80 rotor (Beckmann). The resulting ribosomal
pellet was then rinsed and resuspended in 25 mM HEPES–KOH pH 7.6, 120 mM
KOAc, 2 mM Mg(OAc)2, 1 mM DTT.

For purification of Chaetomium ribosomes56, C. thermophilum cells were grown
in a rotary shaker at 90 r.p.m. at 55 �C for 3 days. Cells were then harvested with a
vacuum filter and ground to a fine powder in a mortar in the presence of liquid
nitrogen. The powdered mycelium was then resuspended in 20 mM HEPES–KOH
(pH 7.5), 100 mM potassium acetate, 125 mM sucrose, 7.5 mM Mg(OAc)2, 1 mM
DTT and 0.5 mM PMSF and centrifuged at 28,000 g in SS-34 rotor (Sorvall), for
15 min to remove the insoluble material. To pellet ribosomes, the supernatant was
overlaid on a high-salt sucrose cushion (500 mM potassium acetate, 1.5 M sucrose)
prepared in the same lysis buffer and centrifuged at 300,000 g in a Ti70 rotor
(Beckman) for 18 h. The translucent ribosomal pellet of ribosomes was then
resuspended in 20 mM HEPES–KOH (pH 7.5), 120 mM potassium acetate, 5 mM
magnesium acetate, 1 mM DTT and 0.5 mM PMSF.

Ribosome co-sedimentation assay. For the co-sedimentation assay, 25 pmol of
ribosomes was incubated with 100 pmol of each protein in the assay buffer con-
taining (25 mM HEPES pH 7.5, 250 mM KOAc, 2 mM Mg(OAc)2, 0.05% (v/v)
Triton X-100 and 1 mM DTT). The reaction mixture was incubated at 25 �C for
20 min and then loaded onto a 0.5 M sucrose cushion prepared in the assay buffer.
Ribosomes were pelleted by ultracentrifugation at 267,000 g at 4 �C for 1 h using a
TLA100.3 rotor (Beckman). The proteins in the pellet fraction and in the super-
natant (following precipitation with trichloroacetic acid) were analysed using SDS–
PAGE and staining with Coomassie Brilliant Blue.

In vitro translocation assays. Templates for preprolactin65, opsin-tagged
preprocecropin A, apelin, statherin39 and cytochrome B566 were generated by
PCR39. Transcription reactions were carried out in a volume of 100 ml for 2 h at
37 �C, in the presence of 1� transcription-optimised buffer (Promega), 10 mM
DTT, 0.5 mg of template DNA, 0.25 mM each of rATP, rCTP, rGTP and rUTP
(Promega), 0.5 mM Cap analogue (m7G[50]ppp[50]G; New England Biolabs), 80
units of T7 RNA Polymerase (Promega) and 100 units of RNasin Plus RNase
Inhibitor (Promega). Transcripts were then purified with an RNeasy Mini kit
(Qiagen) according to the manufacturer’s instructions.

For post-translational translocation assays, translation reactions (25ml) were
carried out using nuclease-treated rabbit reticulocyte lysate (Promega).
Translations were performed in the presence of [35S] methionine (0.769 MBq,
43.48 TBq mmol� 1; Perkin Elmer). Amino acids minus methionine (Promega)
were added to 30 mM. 1 mg of in vitro-transcribed RNA was then added and the
sample was incubated for 15 min at 30 �C. Puromycin was added to 1 mM
following the translation and incubated at 30 �C for a further 5 min to ensure
effective release of the polypeptide from the ribosome. Recombinant SR was added
to 10 mM as well as 10 eq of RM and the sample was then incubated for 20 min at
30 �C. Membranes were recovered by centrifugation through an 80 ml high-salt
cushion (0.75 M sucrose, 0.5 M KOAc, 5 mM Mg(OAc)2, 50 mM HEPES–KOH, pH
7.9) at 100,000 g for 10 min at 4 �C in the TLA100 rotor (Beckman). The membrane
pellet was resuspended in 20 ml low-salt buffer, 100 mM sucrose, 100 mM KOAc,
5 mM Mg(OAc)2, 50 mM HEPES–KOH pH 7.9, 1 mM DTT and treated with
250 mg ml� 1 RNase A at 37 �C for 10 mins. The resulting samples were analysed by
SDS–PAGE and phosphorimaging using a Typhoon FLA-7000 (GE Healthcare).

For co-translational reactions, RMs were preincubated with 10 mM of the
indicated recombinant SR (or an equal volume of SR buffer) on ice for 20 min and
were then recovered by spinning at 100,000 g for 20 min and resuspended in RM
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buffer (250 mM sucrose, 50 mM HEPES–KOH pH 7.5, 50 mM KOAc, 2 mM
Mg(OAc)2, 1 mM DTT). Translation reactions (25 ml) were carried out as above in
the presence of 10 eq of SR/buffer-treated RMs and the samples were incubated for
30 min at 30 �C. Translated products were then immunoprecipitated by adding 10
volumes of Triton IP buffer (10 mM Tris-HCl pH 7.5, 140 mM NaCl, 1 mM EDTA,
1% (v/v) Triton X-100) and the appropriate antisera (anti-opsin67 or anti-pPL (a
gift from Sharon Tooze)). The resulting samples were analysed by SDS–PAGE and
phosphorimaging using a Typhoon FLA-7000 (GE Healthcare). Data were
quantified using Aida (Raytek) and statistical analysis (one-way analysis of variance
with Dunnett’s post hoc test) was performed using GraphPad (Prism).

Antibodies. The following antibodies, raised in rabbits against the indicated epitopes,
were used: Sec61b (PGPTPSGTNC)45, SRb (CADIQDLEKWLAKIA)64,SRa
(KKFEDSEKAKKPVRC)45, Sec62 (a gift from R. Zimmermann—DGETPKSS-
HEKS)36 and Sec62 (Sigma HPA014059—residues 257–395), as well as a mouse
monoclonal anti-opsin tag (GPNFYVPFS) antibody67. The uncropped immunoblots
are provided in Supplementary Fig. 7.
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