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Abstract

Records of excitatory postsynaptic currents (EPSCs) are often complex, with overlapping signals that display a large range of
amplitudes. Statistical analysis of the kinetics and amplitudes of such complex EPSCs is nonetheless essential to the
understanding of transmitter release. We therefore developed a maximum-likelihood blind deconvolution algorithm to
detect exocytotic events in complex EPSC records. The algorithm is capable of characterizing the kinetics of the prototypical
EPSC as well as delineating individual release events at higher temporal resolution than other extant methods. The
approach also accommodates data with low signal-to-noise ratios and those with substantial overlaps between events. We
demonstrated the algorithm’s efficacy on paired whole-cell electrode recordings and synthetic data of high complexity.
Using the algorithm to align EPSCs, we characterized their kinetics in a parameter-free way. Combining this approach with
maximum-entropy deconvolution, we were able to identify independent release events in complex records at a temporal
resolution of less than 250 ms. We determined that the increase in total postsynaptic current associated with depolarization
of the presynaptic cell stems primarily from an increase in the rate of EPSCs rather than an increase in their amplitude.
Finally, we found that fluctuations owing to postsynaptic receptor kinetics and experimental noise, as well as the model
dependence of the deconvolution process, explain our inability to observe quantized peaks in histograms of EPSC
amplitudes from physiological recordings.
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Introduction

The deconvolution tasks involved in astronomy, fluorescence

microscopy, and electrophysiology display several useful parallels

(Table 1). Although the nomenclature and dimensionality are

different in these three cases, the mathematical model that

describes the system as a convolution of a signal with an

impulse-response function is essentially the same. Reconstructing

the location and intensity of each object from the superposition of

blurred images is known as deconvolution. Sometimes the basis of the

blurring is known theoretically; in an ideal, diffraction-limited

telescope, for example, it is an Airy function. An algorithm is said

to be blind if, in addition to reconstructing the positions of the

objects, it also reconstructs the impulse-response function associ-

ated with the blurring. An important subclass of such problems is

characterized by a data set that is largely empty, peppered with

only very few objects or events. Such problems are called sparse

because one may safely assume that the information in the data is

captured concisely by the locations and intensities of a small

number of spatially point-like or temporally brief objects.

Sparseness of the original signal introduces important mathemat-

ical simplifications that make the reconstruction process more

tractable. As a result, reconstruction of sparse signals by

deconvolution has been applied to many different fields. We

present here a deconvolution algorithm that aids in the analysis of

complex but sparse electrophysiological recordings obtained in the

course of studying synaptic transmission.

Chemical synaptic transmission, which involves the exocytotic

release of neurotransmitter from synaptic vesicles, results in

excitatory postsynaptic currents (EPSCs) that can be measured

electrophysiologically in a postsynaptic neuron by tight-seal,

whole-cell recording. Records of such postsynaptic currents are

often complex, with overlapping signals that display a large range

of amplitudes (Fig. 1; [1]). Because this complexity results from the

superposition of neurotransmitter release events from various

ensembles of vesicles, the postsynaptic response to a single

presynaptic release event, the unitary EPSC, provides an

appropriate basis for characterizing a sparse representation. In

the auditory system, an additional complication arises from the

tendency of presynaptic release events to synchronize and

therefore produce apparently unitary EPSCs that may in fact

reflect responses to neurotransmitter from several presynaptic

vesicles.

Although statistical analysis of the kinetics and amplitudes of

complex EPSCs is essential in the development of mechanistic

models of neurotransmitter release, multiphasic waveforms
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containing multiple overlapping EPSCs pose a challenge for

existing algorithms. We therefore approached EPSC deconvolu-

tion using a Bayesian framework, constructing and then solving a

generative model. We aimed to improve upon existing algorithms

in several ways. First, we sought to distinguish individual events

even as the temporal proximity of neighboring events ap-

proached the risetime of the EPSC. Second, variability in

experimental conditions demanded that the algorithm adapt

automatically to each recording situation without the need for

the user to supply precise EPSC profiles. Finally, we desired a

blind algorithm that could estimate the shape of the unitary

EPSC directly from the EPSCs detected in each recording. We

expected that obtaining a good estimate of the unitary EPSC’s

shape–the impulse-response function–would result in increased

temporal acuity of the algorithm, permitting an improved

analysis of multiphasic waveforms. We developed and imple-

mented such an algorithm, then evaluated its performance on

real and synthetic data.

Methods

The algorithm was tested on data obtained from paired whole-

cell patch-clamp recordings performed at hair-cell synapses in the

amphibian papilla of the American bullfrog (Rana catesbeiana) as

previously described [1].

Results

We describe a general framework for a blind deconvolution

algorithm, in which the observed data x are the sum of the signal s
filtered through a convolution with impulse response f and noise n:

x~s � fzn: ð1Þ

Given observation x, we wish to infer the signal and impulse

response. We can write the posterior using Bayes’ rule:

P s,fDx,hð Þ~ P xDs,f,hð ÞP s,fDhð Þ
P xDhð Þ , ð2Þ

in which h represents the remaining parameters such as the noise

variance and regularization constant described below. Because we

wish to minimize the number of parameters that must be provided

to the algorithm by the user, we intend to automatically estimate

or marginalize over several of them.

The likelihood P xDs,f,hð Þ describes the character of the noise n,

which for the noise in electrophysiological experiments is typically

additive and Gaussian. Although s and f appear symmetrically in

the likelihood, they have different properties and priors and

therefore require different approaches to their numerical solution.

These differences and constraints are captured by the prior

Table 1. Analogous components in three different inverse problems.

Electrophysiology Astronomy Fluorescence microscopy

Signal Neurotransmitter release accompanying vesicle
fusion

Position of a star Location of a fluorescence source

Filter Shape of excitatory postsynaptic current (EPSC) Point-spread function of telescope Point-spread function of imaging system

Data Current trace Photograph Z-stack of images

Dimensionality One Two Three

doi:10.1371/journal.pone.0038198.t001

Figure 1. Structure and responses of a hair cell’s ribbon synapse. A, Fast exocytosis owing to the fusion of a synaptic vesicle with the
presynaptic cell’s plasma membrane floods the synaptic cleft with neurotransmitter. Postsynaptic receptors, in particular AMPA receptors at the hair-
cell synapse, open and allow the flow of current into the postsynaptic nerve terminal on the right. B, The impulse response of the system is the
excitatory postsynaptic current (EPSC) of stereotyped amplitude and timecourse evoked by the release of transmitter from a single presynaptic
vesicle. Postsynaptic AMPA receptor channels open and close stochastically; here the mean current is shown for 150 channels. Although the channels
open quickly, the risetime of the measured current is limited by the time constant of the postsynaptic membrane. The reclosure of AMPA receptors is
a slower process that is well approximated by a single exponential with a time constant of 1–2 ms. C, Postsynaptic-current recordings are modeled
statistically in three steps. In the first row, peaks in the density of neurotransmitter in the synaptic cleft are caused by stochastic fusions of vesicles in
several size classes. In the second row, these spikes of neurotransmitter produce in the postsynaptic cell bursts of current shaped by the kinetics of
receptor activation and deactivation (panel B). In the third row, noise from processes in the cell and the experimental apparatus are added to the
postsynaptic signal. The purpose of our algorithm is to reconstruct the first record from observation of the third record, inferring and using the
response shown in panel B.
doi:10.1371/journal.pone.0038198.g001
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P s,fDhð Þ. The signal is sparse, meaning that s is zero over most of

its length. At any time when s is non-zero an event may have

occurred; these abrupt spike-like events are spread along the

length of s (Fig. 1C). In contrast, f is dense, much shorter than s,

and mostly smooth (Fig. 1B). Lastly, we know that our signal must

be everywhere positive and the impulse response must be

everywhere negative. This problem is ill-posed because the

number of degrees of freedom in the variables we wish to infer,

s and f, exceeds that of the data x. There is an infinity of ways of

maximizing the likelihood by fitting the noise, so a regularizer is

needed to guide the algorithm toward the type of sparse solution

that we require.

A specific aim of our algorithm is to analyze electrophysiological

records with complex EPSCs. We therefore developed a method

that takes EPSC kinetics into account to accurately disentangle

most complex EPSCs. Fitting complex EPSCs by multiple events

cannot be achieved by simply extending the process used to fit a

single event: the nature of the task changes dramatically when

events are allowed to overlap. For instance, although fitting a

single Gaussian to data is trivial, fitting a sum of two or more

Gaussians is challenging and is an active area of research in the

field of clustering [2]. A special case of deconvolution occurs when

the likelihood is separable in the data, all events being separated by

a time greater than the length of the filter. The equations then

simplify substantially and each event can be fitted individually

(Appendix S1). But unless the data are separable in the sense

described here–that is, containing no complex EPSCs–an algo-

rithm must overcome the challenge of complex EPSCs by

optimizing the signal globally rather than on an event-by-event

basis.

A consequence of our sparseness prior is a non-linear filtering

process, described below as the deconvolution step, which we use

to separate s from f. Linear deconvolution filters, such as the

Wiener filter, do not break the symmetry between s and f, and

hence algorithms that use linear filters cannot be blind but require

f to be fully specified a priori [3–5].

With the prior and likelihood defined, the posterior must be

characterized. A point estimate, in the form of the maximum or

mean of the posterior, is a common and convenient way to convey

information about the posterior, and is also practical from the

point of view of an experimentalist seeking an optimal way to

visualize the signal. However, it is difficult to solve for signal and

filter simultaneously. Although Monte Carlo techniques are

applicable to the problem, we opted to make use of approximation

techniques that are nearly as accurate but considerably faster.

With this approach, the run-time of the algorithm scales

approximately linearly with the length of the data.

We decompose the problem into two parts. During the first step,

deconvolution, we find the optimal signal given the data and a

preliminary estimate of the filter. During the second step, filter

estimation, we improve our estimate of the filter given the data

and our current estimate of the signal. We alternate between these

two steps in a way analogous to expectation maximization.

Deconvolution
Starting with the data x and a filter f, we find a sparse

representation by optimizing the strength of a maximum-

entropy regularizer. A regularizer is a cost function introduced

into the optimization procedure to ensure the smoothness,

magnitude, or some other property of the representation being

sought, and often corresponds from the Bayesian perspective to

the logarithm of a prior. A common family of regularizers seeks

to minimize the Lp norm of the signal vector s:

sk kp~
P

i

Dsi Dp
� �1=p

. There are efficient optimization techniques

for deconvolution under certain conditions, for instance when

the regularizer is an L1 norm [6] or L2 norm [7]. The L1 norm

ensures sparseness; neither enforces positivity of the signal.

Although our algorithm works with a variety of priors, for

instance a Gaussian or a Burg entropy, we primarily use the so-

called quantified maximum entropy (QME) prior [8] defined by

the negative of the entropy, the negentropy H:

H~
X

i

mi{sizsi log si=mið Þ½ �, ð3Þ

in which si are the elements of s, and mi are the elements of

the default signal m, usually set to the same constant value for

all times. H has useful regularization properties by enforcing

both positivity and sparsity in accordance with our stated prior

assumptions about s. QME approximates the true maximum

entropy prior while remaining numerically favorable due to the

differentiability and convexity of H. In the following paragraph

we outline the treatment of the QME prior implemented in the

commercial software package MemSys5 [9].

When the filter is kept constant, the posterior is given by

P sDx,f,a,hð Þ~
exp {

1

2
x2{aH

� �

Z
, ð4Þ

in which x2~
1

s2
x{s � fk k2

is the sum of squared errors. We have

introduced the regularization strength a, which determines the

influence of the regularizer. The normalization constant or

evidence, Z~
Ð

ds exp {
1

2
x2{aH

� �
, which depends on f, a

and additional parameters h, ensures that the posterior is a

normalized probability density. Finding the best value of the

regularization parameter is frequently a challenge in deconvolu-

tion problems, as sparsity comes about only at the correct value of

a. When a is too large, the prior dominates and the inferred signal

lacks the full resolution available from the data. When a is too

small, x corresponds to fitting the noise. Because of our Bayesian

formulation, we can use the evidence framework [10] to optimize

a. Instead of fully marginalizing over a, we maximize the evidence,

Z, with respect to a, because fluctuations in a around its optimal

value are very small. At the maximum,
LZ

La
~0 defines the optimal

regularization âa. Due to the form of x2, both the noise strength s2

and the regularization constant a may be optimized at the same

time, drawing attention to the fundamental importance of the

signal-to-noise ratio in determining the resolution.

The point estimate of the signal is found by maximizing the

posterior probability P sDx,f,âað Þ with respect to s, for

ŝs~ arg max
s

P sDx,f,âað Þ. The presence of noise and the approx-

imate nature of the prior means that ŝs is nearly, but not

exactly, zero in regions where there are no events but there is

noise. Any point estimate suffers from the presence of spurious

tiny events in ŝs; if we were to inspect the full posterior, we

would find that their location and presence is highly uncertain.

The process of obtaining a sparse representation by thresholding

ŝs reduces the degrees of freedom significantly, typically by three

orders of magnitude on our experimental data. This sparse

representation is the key contribution of this first step, the

Blind Deconvolution of Postsynaptic Currents
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maximum entropy deconvolution, and allows us to proceed to

refine our estimate of f.

Estimation of the Impulse Response
The quality of the estimate ŝs computed in the previous step

depends crucially on the estimate of f we supplied. In this section,

we show how to recursively improve the estimate of f over the

initial guess.

We have formulated the problem such that the impulse

response–the fundamental EPSC shape–is invariant, although

the amplitude and location in time of each event differs.

Conditional on ŝs, we estimate the impulse response non-

parametrically by f̂f~ arg max
f

P fDx,̂ssð Þ, in close analogy to ŝs.

Because f has finite support, its degrees of freedom are far fewer

than provided by x and ŝs. In this well-posed situation, if we

consider the likelihood on its own, f̂f is the solution to the Wiener-

Hopf equations [7]:

{s21

2
+fx

2~Cxs{f � Css~0, ð5Þ

in which Cxs and Css are cross-correlation functions defined by

Cxy(t)~
P
t’

x(tzt’)y(t’) and * is the convolution operator.

We may simply use the sparse ŝs we inferred in the previous step

and optimize f, taking care to enforce the negativity of f as we do

so. When the events are all well-separated, this process is similar to

identifying the isolated events and finding the impulse response

that best fits them in a self-consistent manner.

Convergence of Iteration
Successive applications of the deconvolution and impulse-

response estimation steps quickly converge to the optimal signal

and impulse response. Our computational approach is described

in Appendix S1, with the nested nature of the resulting iterative

loops shown in Figure S2. Despite the availability of a sparse

representation following the second step above, the overlap among

events implies that directly optimizing the amplitudes and times of

events could converge to the wrong result. In general, it may also

be prudent to run the algorithm from a variety of starting

conditions in order to verify that the phenomenon under study is

not strongly dependent on artifacts that have been introduced

during deconvolution. When we explored different initial condi-

tions with our data sets, we found that the algorithm always

converged to the same solutions.

Unlike typical software packages, our method is defined not by

an algorithm but by the generative model in the likelihood and the

priors over the variables of interest. We can take advantage of

additional capabilities by analyzing the posterior; we can, for

instance, generate the error of an estimate. As better approxima-

tion techniques improve the quality of the solutions, the limit set

by the signal-to-noise ratio may be approached to arbitrary

proximity.

Although many aspects of EPSC deconvolution are analogous

to image deconvolution, there are several features that are unique

to electrophysiology. The additive noise in experimental record-

ings is often non-white and records can exhibit baseline drift over

time. Furthermore, the impulse response is always negative.

Because the AMPA receptors that generate EPSCs are fluctuat-

ing–unlike most point-spread functions–the impulse response is

nondeterministic. The impulse response may vary owing to the

presence of more than one synapse. Parameters of the model

whose values we assume to be constant for the duration of a

record, such as the power spectrum of the additive noise and the

membrane time constant involved in the recording, may in fact

exhibit non-stationarity. Incorporating the effects of AMPA

receptors, multiple synapses, and non-stationarity would be a

useful goal of future research.

Performance on Physiological Data
To test the performance of our algorithm, we analyzed data

recorded from the bullfrog’s amphibian papilla, an auditory end-

organ whose spontaneous exocytosis reveals complex, highly

overlapping EPSCs [1]. The experiments were conducted under

protocols approved by the Institutional Animal Care and Use

Committee of The Rockefeller University. In a first example, we

sought to demonstrate the ability of our algorithm to identify

individual EPSCs from complex records. From long, stable records

(Fig. 2A) the algorithm readily recovered the characteristic sum-of-

exponentials shapes of the constituent EPSCs (Fig. 2B). The

distributions of EPSC amplitudes (Fig. 2C) were compatible with

distributions found elsewhere [11]. The distributions of inter-

EPSC time intervals were well approximated by exponential

functions (Fig. 2D). We also characterized the data by examining

correlations between event amplitudes and timing. Little or no

correlation was apparent between amplitudes and interevent

intervals in our recordings (Fig. 2E–G).

In a second example, we sought to use our algorithm to answer

a physiologically important question: are stimulus-dependent

increases in the postsynaptic current the consequence of an

increase in the rate of EPSCs or an increase in the mean amplitude

of EPSCs? Without deconvolving the signal, it is not possible to

answer this question. We explored the complex waveforms

resulting from an experiment in which the presynaptic cell was

given a series of depolarizing steps between 265 mV and

220 mV. This procedure was a rigorous test of our algorithm,

for large depolarizations produce postsynaptic currents that are

highly complex and overlapping. Using our algorithm, we

conclude that the increase in total postsynaptic current stems

primarily from an increase in the rate of EPSCs (Fig. 3A) rather

than an increase in their amplitudes (Fig. 3B).

Performance on Synthetic Data
We also estimated the performance of our algorithm by

analyzing synthetic data whose EPSC amplitudes, timings, shapes,

and noise spectrum were fully controlled. We tested our

algorithm’s ability to extract from a complex record the

characteristic EPSC impulse response as well as the timing and

amplitude of individual events. We also informally compared the

performance of our algorithm to that of MiniAnalysis [12], a

popular software program for the analysis of physiological

recordings. MiniAnalysis represents a heuristic approach that

provides flexibility at the cost of requiring operator assistance. By

contrast, our global deconvolution approach is self-consistent and

allows the program to run with less intervention.

Synthetic data were constructed by simulating AMPA

receptors to generate EPSCs: at an instant drawn from a

Poisson process, a fraction 0.1–0.5 of 150 receptors was selected

to be open instantaneously by drawing from a binomial

distribution. The receptors were allowed to reclose stochastically

with a timescale of about 1 ms. The result was low-pass filtered

with a time constant of approximately 0.25 ms and sampled at

50 ms intervals, parameters selected to match the membrane

time constants and sampling frequencies of typical recordings,

such as those in Figure 2. Additive Gaussian noise was filtered

with a low-pass filter fitted to the shape of a typical noisy

experiment and adjusted to a root-mean-square amplitude of

Blind Deconvolution of Postsynaptic Currents
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10 pA. The significance of coloring the noise is that the typical

noise correlation time was about 1 ms, close in timescale to the

typical time constant of EPSC decay, making the assay more

challenging. For each test, the algorithm was run to recover the

EPSC impulse response as well as the times and amplitudes of

events.

To determine the temporal resolution of our algorithm, we

tested its ability to detect individual EPSCs embedded in a series of

paired EPSCs separated by increasing time delays. The separation

at which individual events can be reliably distinguished depends

on the signal-to-noise ratio, the event kinetics and amplitudes, and

the algorithm. In this test paradigm, we achieved accuracy–that is,

the fraction of test cases classified correctly–greater than 0.8 when

EPSCs were separated by 250 ms (Fig. 4A). In contrast, EPSCs

must be separated by at least 800 ms to obtain a similar accuracy

with MiniAnalysis (Fig. S1).

To assess the amplitude sensitivity of our algorithm, we

generated a series of individual EPSCs with amplitudes ranging

from –1 pA to –30 pA (Fig. 4B). As with the temporal-resolution

assay, the accuracy curves of the amplitude-sensitivity assay have a

sigmoidal shape. Because EPSCs are non-overlapping in this assay,

we were not analyzing a complex record. Nevertheless, our

algorithm improved upon MiniAnalysis by achieving an accuracy

of 0.8 at –14 pA; MiniAnalysis reached the same level of accuracy

at –19 pA. The standard deviation of the error in amplitudes was

5 pA for our algorithm and 7 pA for MiniAnalysis. The jitter in

timing estimates had a standard deviation of 50 ms for our

algorithm and of 90 ms for MiniAnalysis.

To simulate a more realistic scenario, we synthesized complex

records containing EPSCs with amplitudes drawn from a gamma

distribution and intervals drawn from an exponential distribution

(Fig. 4C). We compared the algorithm’s estimate with the true

distributions of amplitudes and intervals (Fig. 4D and F).

For each of the assays, we asked the algorithm to retrieve the

EPSC impulse-response function. We compared the results to the

ideal function obtained by low-pass filtered, mean AMPA kinetics

Figure 2. Processing of EPSC records. A, Selections from three records of postsynaptic current display typical EPSCs. The bottom trace shows the
deconvolution of the third record. The color coding of the records applies as well to the subsequent panels. B, Estimates of the EPSC impulse
response for the three experimental records of which segments are shown in panel A reveal the variability in EPSC kinetics. For records 1, 2 and 3, we
detected respectively 7799, 825, and 3800 EPSCs. C, The probability distributions display the EPSC amplitudes detected by the algorithm for the three
records. D, Cumulative probability distributions of inter-EPSC intervals for the three records (continuous lines) are adequately fit by single exponential
functions (dotted lines). Perhaps because of a lack of true stationarity of the process, the magenta curve deviates most from a single exponential. E–
G, Scatter plots relate the time delay to the amplitude ratio of successive pairs of EPSCs for the three records. No significant correlation between
these variables is apparent.
doi:10.1371/journal.pone.0038198.g002
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sampled at 50 ms intervals. MiniAnalysis experienced difficulties in

aligning complex EPSCs and performed well only when well-

separated EPSCs were present in the amplitude sensitivity assay

(Fig. 4E). In contrast, our algorithm retrieved the correct impulse-

response function after only one or two iterations.

Detection of Multiquantal Peaks
Amplitude histograms of measured EPSCs are often used in

electrophysiological studies to investigate the quantization of

neurotransmitter release. To assess whether multiquantal events

could be discerned with our algorithm, we performed simulations

in which we fixed the quantities of neurotransmitter to be integer

multiples of a smaller quantum and then calculated amplitude

distributions at three stages between ligand binding and

deconvolution. Stage one (Fig. 5A for a total of 150 receptors

and Fig. 5B for 300 receptors) records the number of AMPA

receptors open due to a burst of neurotransmitter. Stage two

(Fig. 5C and D) includes filtering of the incoming current by the

membrane time constant and the stochastic reclosure of AMPA

receptors. Stage three (Fig. 5E and F) includes colored noise and

subsequent deconvolution by our algorithm.

The blurring evident in the simulated records is a result of

several sources of noise: stochastic ligand binding, stochastic

channel reclosure, and additive noise. Additional noise may arise

at stage one because neurotransmitter released from presynaptic

vesicles is imperfectly quantized. Stages two and three may be

contaminated by signals originating from different presynaptic

cells or active zones, whose waveforms may be filtered to different

extents before reaching the recording electrode.

The blurring of the EPSC amplitude distribution may be

mitigated in at least two ways. First, increasing the number of

AMPA receptors or the proportion of AMPA receptors that a

single vesicle’s neurotransmitter opens will reduce the relative

fluctuations in ligand binding and channel reclosure. Second,

reducing the experimental noise will permit more accurate

amplitude estimation by any deconvolution algorithm.

If the simple model used here captures a minimum of the

stochastic processes involved in generating EPSCs, we may

conclude that intrinsic fluctuations provide a rationale for the

inability to observe quantization peaks in EPSC amplitude

histograms derived from complex physiological recordings.

Discussion

We have developed an automated self-consistent deconvolution

algorithm for the analysis of challenging EPSC data. The statistical

model on which the algorithm is based is simply stated and cleanly

separated from the details of the approximations used in the

implementation. Several numerical strategies allow the algorithm

to run efficiently, requiring a temporal duration approximately

proportional to the problem size. For instance, analyzing a 10 s

recording sampled at 50 ms intervals (size N~2:105
) requires less

than one minute on a mid-range workstation. We have

demonstrated the algorithm’s applicability by deconvolving

complex postsynaptic recordings from an auditory synapse. The

analysis reveals that increasing presynaptic depolarization leads to

more frequent postsynaptic events, rather than larger ones. A

series of tests using synthetic data shows that the algorithm

performs favorably compared to the widely used MiniAnalysis

program.

Most algorithms require the noise level or the impulse response

to be supplied by the user. Moreover, in algorithms that use a

regularizer, for instance those based on Wiener filtering, the

regularization constant must be adjusted empirically. Our

algorithm automates the estimation of the impulse response, the

noise, and the regularization constants. For users requiring manual

control, however, these automatic steps may be selectively

overridden. A switch changes the prior from QME to Gaussian,

making the algorithm perform as a Wiener filter. The noise and

regularization constants can be overridden and the impulse

response need not be estimated from the data if it is known from

previous experimentation.

Integral to the study of synaptic dynamics through EPSC

measurements is the kinetics of the EPSCs themselves. A

fundamental challenge facing all algorithms is that of separating

multiple overlapping EPSCs from individual EPSCs that simply

have intrinsic variability in their kinetics. Highly sparse records

seem to indicate that EPSC kinetics do not vary wildly, so it is

parsimonious to introduce that assumption into our analysis and

classify multiphasic EPSCs as being due to multiple overlapping

EPSCs. The possibility cannot be excluded, however, that when

multiple vesicles fuse in synchrony there are additional factors

modulating the postsynaptic response and thus changing the

EPSC kinetics. It remains unlikely that the analysis of

postsynaptic records alone will adequately resolve this issue.

The range of observed EPSC amplitudes and multiquantal

release might emerge from a number of mechanisms, including

synchronized exocytosis [13] and sequential fusion. A further

possibility is prefusion, in which several vesicles combine to

form a supervesicle prior to exocytosis. If the area of vesicle

membrane is conserved during fusion, and if exchangers bring

the concentration of neurotransmitter to some constant level,

then a supervesicle originating from the fusion of q single

vesicles experiences a volume increase–and hence an increase in

transmitter content–from q-fold to q3/2–fold that of a single

vesicle. This change prior to or during the exocytotic process

Figure 3. A test of the basis for the increased magnitude of
EPSCs with progressive depolarization of the presyanptic hair
cell. A, The mean EPSC rate grows appreciably as a function of
depolarization. B, The mean EPSC amplitude displays negligible
dependence on the extent of depolarization. The error bars indicate
95% confidence intervals. The measured mean amplitude of about
2100 pA is consistent with that reported in Figure 4C of [11].
doi:10.1371/journal.pone.0038198.g003
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could further impair our ability to observe multimodal

amplitude histograms.

Recent experiments have determined that a single presynaptic

vesicle contributes only about a quarter to a half of the average

postsynaptic EPSC amplitude at the hair cell’s auditory synapse

[11]. Experimentally measured amplitude distributions neverthe-

less show little evidence of multiquantal peaks (Fig. 2C, [11]).

Should we be able to find evidence of multiquantal release in

EPSC amplitude distributions? We used the simulation framework

developed here to investigate the distinct contributions of the

intrinsic noise of AMPA receptor binding and kinetics, experi-

mental noise, and the deconvolution process to the blurring of

peaks in the distribution of EPSC amplitudes. For typical

parameters of postsynaptic AMPA receptors, we found that

multiquantal peaks are sufficiently blurred to obscure the evidence

for multiquantal release. Stochastic ligand binding and channel

reclosure usually suffice to make the amplitude distribution appear

unimodal. Because we are unlikely to observe multiquantal peaks

in such experimental amplitude histograms, they provide little

evidence to test hypotheses of multiquantal neurotransmitter

release.

We have developed a flexible framework to perform

deconvolution of time series data in an efficient and automated

manner. Any data in which underlying time-sensitive or

rhythmic information has been blurred in a systematic way

benefit from deconvolution. The applicability of this approach

ranges from electrical current to gene-expression profiles and

population fluctuations. We have explicitly demonstrated the

algorithm’s relevance to experimental records containing

stereotyped responses of varying amplitudes, such as those

obtained during the recording of postsynaptic currents reflecting

neuronal activity. Users can determine the statistics of events,

Figure 4. Evaluation of the algorithm’s performance. A, The novel algorithm reliably detects pairs of unitary EPSCs separated by about
0.25 ms, an interval about one-third that required by the MiniAnalysis program. In this and the subsequent panels, the results from the new
algorithm are displayed in red and those from MiniAnalysis in blue. B, The accuracy of amplitude estimation is slightly improved by the new
algorithm. C, A synthetic record consisting of 3968 EPSCs, of which three small segments are displayed, was used to evaluate the two procedures. D,
The probability distribution of amplitudes determined by the new algorithm agreed more closely with the true distribution than did the result from
MiniAnalysis. E, EPSC impulse-response functions were determined by the algorithms for the three schemas shown in this figure and compared to the
true impulse response. ‘‘Pairs assay’’ and ‘‘Amplitude assay’’ refer to the tests plotted in panels A and B; ‘‘Complex record’’ refers to the test plotted in
panel C. The new algorithm provided an excellent fit by all criteria. F, The new algorithm fit the true cumulative probability distribution of the inter-
EPSC intervals, which was an exponential function.
doi:10.1371/journal.pone.0038198.g004
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such as their location and amplitude, or the shapes of events,

even if the events are highly overlapping and the signal-to-noise

ratio is low. By publishing the algorithm and its source code in

an open manner at https://github.com/andorardo/fade, we

encourage users to add our algorithm to their repertory.

Supporting Information

Figure S1 Detection parameters used for analysis with MiniA-

nalysis.

(TIFF)

Figure S2 Schematic of the algorithm’s nested loops.

(PDF)

Appendix S1 The implementation and computational aspects of

the algorithm are described in the Appendix.

(DOC)

Acknowledgments

We thank J. Agapiou, W. Bialek, and D. J. C. MacKay for informative

discussions.

Author Contributions

Conceived and designed the experiments: DA ECK AJH MOM.

Performed the experiments: ECK AJH. Analyzed the data: DA MOM.

Contributed reagents/materials/analysis tools: DA. Wrote the paper: DA

ECK AJH MOM. Wrote the software: DA.

Figure 5. Fits of amplitude distributions for model data from simulations. A, The distribution of channel openings was derived for 8000
events with a model comprising 150 AMPA receptors. The magnitude of a single quantum was set to 0.1 of total receptor saturation, or 15 channels;
the mean number of quanta per fusion event was 4 and the root-mean-square experimental noise was 10 pA. B, The distribution was derived from
8000 simulated events for a model with 300 AMPA receptors. The single quantum was set to 0.125 of total receptor saturation, or 37.5 channels. C, D,
Convolving the data in respectively panels A and B with the kinetics of channel reclosure and the membrane time constant blurs both distributions.
E, F, The final amplitude distributions, which include the additional effect of additive noise, lack distinct peaks.
doi:10.1371/journal.pone.0038198.g005
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