Genetic Variation in Saccharomyces cerevisiae: Circuit Diversification in a Signal Transduction Network

 *Whitehead Institute for Biomedical Research and **Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, and ${ }^{\dagger}$ Banting and Best Department of Medical Research, ${ }^{\ddagger}$ Department of Molecular Genetics, and §Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada

Abstract

The connection between genotype and phenotype was assessed by determining the adhesion phenotype for the same mutation in two closely related yeast strains, S288c and Sigma, using two identical deletion libraries. Previous studies, all in Sigma, had shown that the adhesion phenotype was controlled by the filamentation mitogen-activated kinase ($f \mathrm{MAPK}$) pathway, which activates a set of transcription factors required for the transcription of the structural gene FLO11. Unexpectedly, the fMAPK pathway is not required for FLO11 transcription in S288c despite the fact that the fMAPK genes are present and active in other pathways. Using transformation and a sensitized reporter, it was possible to isolate RPI1, one of the modifiers that permits the bypass of the fMAPK pathway in S288c. RPI1 encodes a transcription factor with allelic differences between the two strains: The RPI1 allele from S288c but not the one from Sigma can confer fMAPK pathway-independent transcription of FLO11. Biochemical analysis reveals differences in phosphorylation between the alleles. At the nucleotide level the two alleles differ in the number of tandem repeats in the ORF. A comparison of genomes between the two strains shows that many genes differ in size due to variation in repeat length.

RECENT advances in DNA sequencing have identified many nucleotide polymorphisms in the human genome, but it has been challenging to associate this genetic variation to specific phenotypic differences among individuals for complex traits (Jakobsdottir et al. 2009; Manolio et al. 2009; Dickson et al. 2010). This difficulty has been variously attributed to both genetic and nongenetic factors (Hartman et al. 2001; Carlborg and Haley 2004; Korbel et al. 2007; Dickson et al. 2010). Among the genetic factors are many genes contributing a small effect to the final phenotype (QTL) and complex (epistatic) gene interactions. The baker's yeast Saccharomyces cerevisiae, with its compact and easily manipulated genome, offers the potential for identifying

[^0]the relevant polymorphisms and, more importantly, identifying the molecular basis for the phenotypic differences.

Sequence studies comparing S. cerevisiae to other yeast species that diverged by 20 million years advanced our understanding of yeast evolution, but did not address how small genetic differences affect phenotypes (Kellis et al. 2003). Other studies have examined large numbers of both feral and laboratory S. cerevisiae strains, but have focused on population structure and evolutionary origins of the strains rather than the problem of connecting genotype to phenotype (Liti et al. 2009; Schacherer et al. 2009).

More recently, insights into the genotype-to-phenotype problem have been gained from linkage studies using modern genotyping techniques. Several examples can be seen in the cross of the wild vineyard strain RM11 to the standard laboratory strain S288c. A number of traits have been examined using this cross, including gene expression, cell morphology, resistance to DNA-damaging agents, and telomere length (Brem et al. 2002; Gatbonton et al. 2006; Nogami et al. 2007; Demogines et al. 2008). The genetic complexity for most of these traits is high, with many of them influenced by more than three loci. By examining large pools of progeny, recent techniques have
further increased the ability to map relevant loci; however, it is still challenging to determine the exact alleles responsible and to understand how those alleles affect the phenotype (Ehrenreich et al. 2010; Connelly and Akey 2012).

Recent studies developed a model system that enables a comprehensive assessment of phenotypic differences for the same mutation in the two genetic backgrounds S288c and $\Sigma 1278$ b (Sigma) (Dowell et al. 2010). The two strains have very similar genomic sequences: Their divergence of $\sim 0.3 \%$ is similar to that between unrelated humans. To assess functional differences between these two strains, ~ 5100 genes were deleted in Sigma for comparison with the same set of deletions in S288c (Winzeler et al. 1999; Dowell et al. 2010). The analysis identified strain-specific essential genes. The basis for the strain specificity was likely a complex set of background modifiers.

Here we compare these deletion libraries for the genes that control the key morphogenetic trait of adhesion/ filamentation. In Sigma, adhesion requires the filamentation mitogen-activated kinase (fMAPK) pathway, but our library comparison showed that S288c can adhere in the absence of the fMAPK pathway. Although fMAPK-independent adhesion is a complex genetic trait, we devised a transformation protocol that enabled the isolation of RPI1, one of the modifiers responsible for the bypass of the fMAPK pathway. RPI1 is a transcription factor that is polymorphic between S288c and Sigma; the RPI1 allele from S288c ($R P I 1^{S 288 c}$) confers fMAPK pathway independence by activating FLO11 transcription, whereas the RPI1 allele from Sigma (RPI1 ${ }^{\text {Sigma }}$) cannot. RPI1 ${ }^{\text {S288c }}$ confers fMAPK pathway independence in either genetic background. Moreover, there is a biochemical difference between the alleles; RPI1 ${ }^{\text {S288c }}$, but not $R P I 1^{\text {Sigma }}$ is hyperphosphorylated in both S288c and Sigma. The two forms of RPI1 differ in the number of tandem repeats in the ORF. A comparison of the S288c and Sigma genomes shows that many other genes with intragenic tandem repeats are highly polymorphic with respect to repeat size, a polymorphism that has been associated with phenotypic changes (Verstrepen et al. 2005).

Materials and Methods

Strains, media, microbiological techniques, and growth conditions

Yeast strains used in this study are derived from S288c and $\Sigma 1278$ b. Standard yeast media were prepared and genetic manipulation techniques were carried out as described in Guthrie and Fink (2002). The list of strains used in this study can be found in Supporting Information, Table S5. Adhesion assays were carried out by densely patching strains onto YPD or SC plates. These were grown overnight at 30° and then replica plated onto YPD or SC plates. The replica plates were grown at 30° for 3 days and then washed. The S288c strain expresses FLO1, which leads to flocculation that can influence agar adhesion phenotypes.

To compare agar adhesion between S288c and Sigma, which does not express FLO1, the washes were performed by partially filling the petri dishes with 10 mM EDTA (which disrupts FLO1-dependent aggregates) and gentle shaking at $\sim 75 \mathrm{rpm}$ on an orbital shaker. To visualize the difference between the strains, the media used for both the adhesion and the transcription assays were optimized for intrinsic growth differences between S288c and Sigma (e.g., flocculation and mother-daughter cell separation). However, the controls intrinsic to each experiment always permitted a comparison between strains grown under the same media conditions. To induce pseudohyphal growth, single cells were microdissected and grown on SLAD media (Gimeno et al. 1992).

The S288c library was constructed using previously published methods (Voynov et al. 2006). Each of the 4705 deletion strains in the standard S288c flo8 library was transformed with a CEN/ARS plasmid carrying the Sigma FLO8 gene under the control of its own promoter. The 4633 FLO8 deletion strains successfully recovered from these transformations formed the S288c deletion library. Screening the S288c library and the comparable Sigma deletion library for adhesion uncovered 599 deletions with decreased adhesion (Ahs ${ }^{-}$) (Table S1, Table S2, and Table S3). Only 46 deletions affected adhesion the same way in both strains (Table S3).

For quantitative (q)PCR and chromatin immunoprecipitation (ChIP), cells were grown overnight in liquid media as noted, diluted to $\mathrm{OD}_{600}=0.25$, and grown to $\mathrm{OD}_{600}=4$ 4.5. For protein preparations, cells were grown as for qPCR in synthetic complete media.

Yeast strains carrying gene deletions were constructed by PCR amplification of kanamycin-resistance gene cassettes from the yeast deletion library (Winzeler et al. 2000) with ~ 200 bases of flanking sequence. The list of oligos used in this study can be found in Supporting Information, Table S6. Correct integrants were identified by PCR, with the exception of tec1D, which was additionally checked by Southern blot using standard techniques (Brown 2001). FLO11 promoter swaps were carried out by first deleting the FLO11 promoter with the URA3 cassette. The reciprocal swap was carried out by PCR amplifying the sequences from each strain and using the PCR products to transform the opposite strain from which the sequence was amplified. The same procedure was performed for the RPI1 swaps but with only the ORF sequences. $3 \times$ FLAG-tagged constructs were created by amplifying the URA3 cassette from PRS306, using a primer (BCP534) that contained the $3 \times$ FLAG epitope. This construct was then subjected to another round of PCR to add 50 bp of flanking homology to the RPI1 C terminus. The resulting PCR product was used for transformation. The haploid MATa deletion collection was transformed with plasmid pHL1, using previously published protocols (Liu et al. 1996; Voynov et al. 2006).

GFP measurements

Cultures for GFP measurements were grown overnight in liquid YPD in 96-well plates and then pelleted and resuspended
in water. Samples were transferred to Corning 96-well black clear-bottom plates and OD_{600} and GFP fluorescence were measured in a Tecan Safire2 plate reader. For backcrosses, high-fluorescing progeny were backcrossed to the low-fluorescing Sigma tec1D for three generations.

tec14 bypass screen

The CLN2 PEST sequence was added to the end of the HIS3 gene to target the protein product to the proteasome. Without this modification, a Sigma FLO11pr-HIS3, tec1 Δ strain produces enough His3p protein from the FLO11 promoter to be His ${ }^{+}$, even in relatively high concentrations of the His3p competitive inhibitor 3-aminotriazole. The HIS3-PEST construct was created by Infusion PCR cloning (Clontech) the PEST sequence from CLN2 immediately upstream of the HIS3 stop codon in PRS315. The CLN2 PEST sequence was amplified using primers BCP316 and BCP317 and PRS315 was linearized by PCR using primers BCP320 and BCP321. To create the FLO11pr-HIS3-PEST strain, the HIS3-PEST construct was PCR amplified with primers BCP249 and BCP324. These primers have homology to replace the endogenous FLO11 ORF with the HIS3-PEST ORF, and the PCR product was transformed into yBC172. Transformants were selected on -HIS media and then correct transformants were screened for by PCR. TEC1 was deleted in FLO11pr-HIS3-PEST transformants by PCR transformation.

The FLO11pr-HIS3-PEST, tec1D strain was transformed with an S288c CEN/ARS genomic library (Rose et al. 1987). Transformants were first selected for 24 hr on -URA plates and then replica plated onto -URA, -HIS plates plus 5 mM 3 -amino-1,2,4-triazole.

We obtained ~ 300 His $^{+}$transformants from $>15,000$ total transformants, and we examined whether the His ${ }^{+}$ phenotype was dependent upon the plasmid by selecting for strains that had lost the plasmid on 5-FOA. After 5FOA selection, these strains were examined, by dilution series, on -HIS plates.

Fifty-four strains required the library plasmid to be His ${ }^{+}$, and the plasmid from these strains was isolated and the ends of the insert were sequenced. Potential bypass strains were identified by examining the overlapping regions among the inserts.

qPCR

Total RNA was obtained by standard acid phenol extraction from 2 ml of culture. The QIAGEN (Valencia, CA) QuantiTect Reverse Transcription Kit was used to remove residual genomic DNA and reverse transcribe the RNA templates to generate cDNAs. Aliquots of cDNA were used in real-time PCR analyses with reagent from Applied Biosystems (Foster City, CA) and the ABI7500 real-time PCR system.

Chromatin IP

Protocols have been described in Lee et al. (2006). Briefly, IPs were performed with Dynal Protein G magnetic beads preincubated with antibodies against FLAG epitope (Sigma

M2). To examine enrichment, SYBR Green qPCR (Applied Biosystems) was performed on IP and whole cell extract, using gene-specific primers.

Protein manipulations

Total protein was extracted using standard TCA precipitation with slight modifications (Graham 2001). Namely, after TCA precipitation the acetone wash was omitted and instead the cells were washed once with 1 M Tris, pH 8. For phosphatase assays, $5 \mu \mathrm{l}$ of total protein was treated with $2 \mu \mathrm{l}$ λ-phosphatase (New England Biolabs, Beverly, MA) for 2 hr at 30° and the reaction was stopped by adding $6 \times$ Laemmli loading buffer to $1 \times$ concentration and boiling for 10 min . Samples were run out on a 10\% TGX gel [Bio-Rad (Hercules, CA) 456-1036S]. The phosphorylation of RPI1 causes it to run as a diffuse smear and the amount of signal is distributed across this entire range. To visualize phosphorylated RPI1 alongside phosphatase-treated RPI1, up to five times the amount of phosphorylated RPI1 was loaded. Blotting against FLAG was performed using HRP-conjugated antiFLAG M2 antibody (Sigma A8592).

Bioinformatics

Gene ontology term enrichment was performed using the AMIGO term enrichment tool version 1.8 (http://amigo. geneontology.org/cgi-bin/amigo/term_enrichment).

To find intragenic repeats, the EMBOSS program ETANDEM (Rice et al. 2000) was used to screen the sequences of all S. cerevisiae (S288c version 2010 downloaded from the Saccharomyces Genome Database in April 2011) and the $\sum 1278$ b strain (Sigma downloaded from http://mcdb. colorado.edu/labs1/dowelllab/pubs/DowellRyan/ in October 2010) for repeat units of length $3-500 \mathrm{bp}$. For each ORF, we compared the length in the two strains. We screened 6685 ORFs in S288c and 6450 ORFs in Sigma. A total of 6439 ORFs were common to both strains. Of these 6439 ORFs, 5928 were identical in length. Of the remaining 511 ORFs, 127 ORFs differed in total length by at least 6 bp and showed a length difference in the repeat region of at least 6 bp . We eliminated an additional 11 ORFs because of large truncations in either the 5^{\prime} or the 3^{\prime} region of the ORF, accounting for the length differences between strains. All but 9 of the length differences in the 116 ORFs were a multiple of 3 . These discrepancies could be due to sequencing errors. The length of the ORF was longer in Sigma for 60 ORFs (43 ORFs with base pair differences of 6-33, and 17 ORFs with base pair differences of ≥ 36). A total of 56 ORFs were longer in S288c (43 ORFS with base pair differences of 6-33, and 13 ORFs with base pair differences of ≥ 36).

Repeat length PCRs

Primers flanking the repeat region were designed using PRIMER3 (Rozen and Skaletsky 2000). PCR products were visualized on 10% polyacrylamide gels.

A

B WT tec $1 \Delta /$ tec 1Δ flo $11 \Delta /$ flo11s

C

Figure 1 The fMAPK pathway is not required for FLO11 expression in S288c. (A) Adhesion assays performed on S 288 c strains (right half of the plate) or Sigma strains (left half of the plate). The same plate is shown before (top) and after (bottom) washing. (B) Pseudohyphal growth on SLAD media for diploid Sigma, S288c, or Sigma/S288c hybrids. (C) qPCR assay of FLO11 transcript levels was performed on Sigma and S288C strains that were WT or tec14. Mean FLO11 levels normalized to ACT1 levels are presented $\pm \mathrm{SD}$. $* P<$ 0.01 compared to WT.

Results

Creation of an S288c FLO8 deletion library

Systematic deletion library comparison of S288c and Sigma for the adhesion phenotype required the creation of a new S288c FLO8 library because the progenitor to the standard S288c deletion library carries a flo8 mutation that prevents adhesion to agar. When S288c flo8 is transformed to $\mathrm{Flo8}^{+}$, it adheres in a FLO11-dependent fashion (Liu et al. 1996). We next assayed the entire library for the adhesion phenotype (Adh ${ }^{+}$or Adh^{-}) and identified deletions in the S288c library with the Adh^{-}phenotype.

The fMAPK pathway is required for adhesion and FLO11 transcription in Sigma but not in S288c

Comparison of the loss of adhesion mutants in the Sigma and S288c deletion libraries revealed that many genes have strain-specific roles in adhesion (Table S1, Table S2, and Table S3). The strain specificity of the Ahs ${ }^{-}$phenotypes is not attributable to an integrated FLO8 in the Sigma library, but to a plasmid-borne FLO8 in the S288c library. The Ahs ${ }^{-}$phenotype was the same in 28/30 deletions tested from the S288c deletion library whether FLO8 was plasmid borne or integrated at the resident FLO8 locus (replacing the flo8 allele). All strains pursued further had the FLO8 gene integrated at its native locus in S288c.

The comparison of S288c and Sigma adhesion mutants revealed that the fMAPK pathway is required for adhesion in Sigma but it is not required for adhesion in S288c (Figure 1A). Strains carrying deletions in kinase genes-STE7, STE11, and KSS1-and the transcription factor genesSTE12 and TEC1-have a clear adhesion defect in Sigma but adhere well in S288c (Figure 1A). qPCR measurements revealed that wild-type S288c and S288c tec14 both show strong expression of FLO11, whereas Sigma tec1D has a 50fold decrease in FLO11 RNA levels relative to the wild-type control (Figure 1C). The distinct requirement for the fMAPK pathway in Sigma but not in S288c suggests that adhesion is controlled differently in the two strains.

The fMAPk pathway in Sigma activates FLO11 transcription for haploid adhesion and diploid filamentation (Liu et al. 1993; Roberts and Fink 1994; Lo and Dranginis 1998). To determine whether the fMAPK pathway is dispensable for diploid filamentation in S288c, we constructed diploid S288c strains. Filamentation in the S288c tec1D/ tec1 Δ strain is indistinguishable from that in wild type, whereas the Sigma tec $1 \Delta /$ tec 1Δ strain has a filamentation defect (Figure 1B). A hybrid S288c/Sigma tec1 $\Delta /$ tec1 Δ strain is able to filament, showing that the ability of S288c to bypass an fMAPK defect for filamentation is dominant. Homozygous diploid S288c flo11s/flo11s and Sigma flo11 $\Delta / f l o 11 \Delta$ strains failed to form filaments. Thus, FLO11 function is required for adherence and filamentation

Figure 2 S288c with FLO11prsigma::FLO11 is fMAPK independent. Agar adhesion assays were performed on S288c strains (right half of the plate) or Sigma strains (left half of the plate) in the FLO11 promoter swap experiment (see text). The same plate is shown before (left) and after (right) washing. Strains with their endogenous FLO11 promoter are labeled with their relevant genotype. Strains carrying a swapped FLO11 promoter are labeled numerically: (1) S288c FLO11prsigma::FLO11; (2) S288c FLO11prsigma.:.FLO11, tec14; (3) Sigma FLO11pr ${ }^{\text {S288c.:.FLO11, }}$ tec14; and (4) Sigma FLO11pr ${ }^{\text {s288c.:.FLO11. }}$
in both S288c and Sigma even though the requirement for the fMAPK pathway is restricted to Sigma.

Differences in the FLO11 promoter sequence do not account for S288c fMAPK-independent FLO11 expression

Reciprocal promoter swap strains were used to determine whether the sequence differences between the S288c and Sigma FLO11 promoters ($F L O 11 p r^{S 288 c}$ and $F L O 11 p^{S i g m a}$, respectively) could account for the fMAPK independence of S288c. S288c FLO11pr ${ }^{\text {Sigma }}$ adhered like a wild-type S288c as did S288c FLO11pr ${ }^{\text {Sigma }}$ tec14, showing that FLO11pr ${ }^{5288 c}$ is not necessary for fMAPK-independent adhesion of S288c cells (Figure 2). FLO11 RNA levels in the S288c FLO11pr ${ }^{\text {Sigma }}$ strain were consistent with the adhesion phenotypes; specifically, in S288c there was no significant difference in FLO11 RNA levels, regardless of the promoter or the presence of a tec1D (Figure S1A).

The $F L O 11 p r^{S 288 c}$ does not promote FLO11 transcription as efficiently in Sigma as it does in S288c. This difference is reflected both in the adhesion assay and in the qPCR measurement of FLO11 RNA levels (Figure 2 and Figure S1B). Nevertheless, the FLO11pr ${ }^{S 288 c}$ in Sigma is TEC1 dependent for both adhesion and FLO11 transcription, whereas it is TEC1 independent in S288c. These results imply that the sequence differences in the promoters are not responsible for the fMAPK independence of S288c.

The strain difference in FLO11 regulation is genetically complex

Crosses between the adherent S288c tec1 Δ strain and the nonadherent Sigma tec1 Δ strain did not yield a simple segregation pattern for adherence:nonadherence. Analysis of 24 complete meiotic tetrads produced novel phenotypes (24/96 progeny were clearly adherent, 56/96 were nonadherent, and 16/96 displayed various partially adherent phenotypes) (Figure S2). Backcrosses of the F_{1} adherent progeny to the Sigma tec1 Δ strain continued to yield non-Mendelian segregations and novel adherent phenotypes.

We considered the possibility that the failure to isolate modifiers by backcrosses was due to the lack of robustness of the adhesion assay. Moreover, agar adhesion can be affected by both transcriptional and posttranscriptional regulation of FLO11 (Voynov et al. 2006; Wolf et al. 2010). In addition, FLO11 manifests epigenetic switching between on and off states (Halme et al. 2004; Bumgarner et al. 2009). To quantitatively assess the FLO11 phenotype we used a FLO11pr:: GFP construct to monitor the segregation of FLO11 transcription in S288c tec $1 \Delta \times$ Sigma tec 1Δ crosses. These crosses directly examined the variation affecting FLO11 transcription, yet the segregation of GFP fluorescence was still complex in both the F_{1} generation and subsequent backcrosses (Figure S3).

Tetrad analysis of crosses between the adherent wildtype S288c and Sigma strains provided further insight into the cause of the anomalous segregation patterns. Since both wild-type strains were adherent, we expected the F_{1} progeny would all be adherent. However, many of the F_{1} progeny were nonadherent (Figure S 4). These data suggest that polymorphisms between wild-type Sigma and S288c combine in the progeny to suppress FLO11 expression. This situation considerably complicates using either conventional tetrad genetic analysis or bulk segregation analysis to find alleles that bypass the fMAPK pathway. Isolation and analysis of any of the many polymorphisms contributing to fMAPK independence required another approach.

Transformation permits the isolation of a modifier from S288c conferring fMAPK-independent expression of FLO11

To overcome the challenges of mapping polymorphisms for fMAPK-independent adhesion, we developed a transformation protocol to select for plasmids carrying S288c genes that bypass the fMAPK pathway. The selection required replacement of the FLO11 ORF with a HIS3-PEST construct in the Sigma tec1 Δ strain. This PEST modification enabled the visualization of slight differences in FLO11 expression when selecting for His^{+}transformants. The Sigma FLO11pr-HIS3-PEST, tec1D strain is His ${ }^{-}$whereas the S288c FLO11pr-HIS3-PEST, tec1D strain is His ${ }^{+}$. Modifiers from S288c that could bypass the requirement for the fMAPK pathway in Sigma were obtained by transforming the Sigma FLO11pr-HIS3-PEST, tec1D strain (His ${ }^{-}$) with a S288c CEN/ARS genomic library (Rose et al. 1987) and selecting for His ${ }^{+}$transformants.

Sequence analysis of the plasmids capable of conferring the His ${ }^{+}$phenotype to the Sigma FLO11pr-HIS3-PEST, tec1 Δ strain identified several genes (including TEC1 itself). A gene with a relevant S288c polymorphism should have a sequence difference from its Sigma allele and the ability to confer the His^{+}phenotype (bypass the tec 1Δ defect) when integrated in the chromosome in a single copy. RPI1 ${ }^{S 288 c}$ was the only gene obtained that fulfilled these criteria. When RPII ${ }^{\text {S288c }}$ replaced RPI1 ${ }^{\text {Sigma }}$ in the chromosome, the Sigma FLO11pr-HIS3-PEST, tec1D strain was His ${ }^{+}$. Moreover,

RPI1

Figure $3 R P I 1$ alleles vary in the number of intragenic repeats. The S288c and Sigma alleles of $R P I 1$ have intragenic repeats, but the repeat lengths differ between the two strains. The schematic illustrates the alignment of the two alleles. The boxes represent individual repeat elements and arrowheads represent locations of SNPs. Open areas represent the shortened repeat length in that allele.

RPII ${ }^{\text {S288c }}$ and RPI1 ${ }^{\text {Sigma }}$ differ in numerous SNPs and stretches of intragenic repeats that differ in length (Figure 3, Figure S5, and Figure S6).

RPI1 ${ }^{\text {S288c }}$ but not RPI1sigma is a bypass suppressor of the fMAPK pathway

Consistent with the hypothesis that $R P I 1^{S 288 c}$ has an allelespecific role in FLO11 expression, deletion of RPI1 ${ }^{\text {S288c }}$ in S288c results in a strong adhesion defect and decreased FLO11 RNA, whereas deletion of RPI1 Sigma in Sigma does not (Figure 4, A-C). To further characterize the allele specificity of RPI1, we swapped RPI1 alleles between the strains. S288c RPI1 ${ }^{\text {Sigma }}$ displayed an adherence phenotype and FLO11 RNA levels that were not significantly different from an rpi1A, suggesting that RPI1 Sigma is not functional in FLO11 regulation (Figure 4, A and B). Deletion of TEC1 in S288c RPI1 Sigma does not further decrease adhesion or FLO11 levels. Reciprocally, the Sigma RPI1 ${ }^{\text {S288c }}$ strain had FLO11 mRNA levels that were comparable to wild type, and when TEC1 is deleted, Sigma $R P I 1^{\text {S288c }}$ tec 1Δ had more FLO11 RNA than the Sigma RPI1 Sigma tec1 Δ, but less than wild type (Figure 4C). These results show that the RPI1 ${ }^{S 288 c}$ allele promotes FLO11 expression and can partially bypass the tec 1Δ; however, the RPI1 ${ }^{\text {Sigma }}$ allele is unable to bypass tec1 Δ.

Rpi1p interaction with the FLO11 promoter is Rpi1p allele specific

To determine whether the difference in fMAPK-independent FLO11 expression is a consequence of differences in the ability of Rpi1p ${ }^{\text {Sigma }}$ and Rpi1p ${ }^{\text {S288c }}$ to interact with the FLO11 promoter, we performed ChIP and tested for enrichment of the FLO11 promoter. Rpi1p ${ }^{\text {S288c }}$ interacts with the FLO11 promoter with a peak around -1300 bp (Figure 5A), the site bound by other positive activators of FLO11 such as Tec1p, and Flo8p (Zeitlinger et al. 2003; Borneman et al. 2006). Immunoprecipitation of the Rpi1p ${ }^{\text {S288c }}$ allele enriches for the FLO11 promoter regardless of the strain background. In contrast to Rpi1p ${ }^{\text {S288c }}$, immunoprecipitation of Rpi1p ${ }^{\text {Sigma }}$ results in strain-background-specific enrichment for this same region of the FLO11 promoter. When Rpi1p ${ }^{\text {Sigma }}$ is immunoprecipitated from a Sigma strain, it enriches for the FLO11 promoter; when it is immunoprecipitated from an S288c strain, it does not.

This difference between Rpi1p ${ }^{\text {S288c }}$ and Rpi1pSigma promoter binding is also observed at the promoter of MIT1, previously identified as a target of Rpi1p and a "master regulator" of FLO11 transcription (Zeitlinger et al. 2003; Cain
et al. 2011; Wang et al. 2011). However, Wang et al. and Cain et al. provided only strain-specific analyses of MIT1 and RPII function: The Mit1p ${ }^{\text {Sigma }}$ protein was shown to bind to the FLO11 promoter in Sigma, and Rpi1p ${ }^{\mathrm{S288c}}$ has been reported to localize to the promoter of MIT1 ${ }^{S 288 c}$ in S288c. Our ChIP data show that Rpi1p ${ }^{\text {S288c }}$ localizes to the MIT1 promoter, regardless of strain background, but Rpi1psigma localizes to the MIT1 promoter only in the Sigma background (Figure 5B). Furthermore, Rpi1p ${ }^{\text {S288c }}$ requires a functional MIT1 to suppress a defect in the fMAPK pathway in both S288c and Sigma. Rpi1p ${ }^{\text {Sigma }}$ can interact with both the FLO11 and the MIT1 promoters in Sigma, but not in S288c. Thus, Rpi1p ${ }^{\text {Sigma }}$ must be structurally different from Rpi1p ${ }^{S 288 c}$ and require additional factors to function.

The Rpi1p protein is differentially phosphorylated in the two strains

Analysis of the Rpi1p protein showed that Rpi1ps288c is structurally different from Rpi1psigma. Figure 6 shows that $3 \times$ FLAG-tagged Rpi1p ${ }^{\text {S288c }}$ extracted from S288c and visualized on Western blots runs as a diffuse species different from the Rpi1p ${ }^{\text {Sigma }}$ band from Sigma. When Rpi1p ${ }^{\text {S288c }}$ is expressed in Sigma, it again runs as a diffuse higher molecular weight species, but when Rpi1p ${ }^{\text {Sigma }}$ is expressed in S288c, it runs as a single band (Figure 6).

To determine whether the difference between the isoforms of Rpi1p is due to phosphorylation, protein extracts were treated with λ-phosphatase. The broad Rpi1p ${ }^{\text {S288c }}$ band collapsed to a single band. This change in migration pattern occurs regardless of the strain background that expresses Rpi1p ${ }^{\text {S288c. Treatment of Rpi1p }}{ }^{\text {Sigma }}$ with phosphatase changed its migration only if the protein was obtained from a Sigma strain. These experiments show that Rpi1p ${ }^{\text {Sigma }}$ has strain-specific phosphorylation and likely has a different phosphorylation pattern from that of Rpi1p ${ }^{\text {S288c. This al- }}$ tered phosphorylation pattern of Rpi1p ${ }^{\text {Sigma }}$ may account for its inability to activate FLO11 transcription in either strain.

The RPI1 polymorphism is not restricted to laboratory strains

The striking difference in the control of FLO11 transcription between these two strains could be attributed to their longterm culture in the laboratory. Indeed, all S288c strains have a nonsense mutation in FLO 8 and many have a mutation in the KSS1 gene as well, both affecting FLO11 expression (Elion et al. 1991; Liu et al. 1996). However, an assessment RPII sequences shows that the S288c-like polymorphisms

A

B S288cios

Figure $4 R P I 1^{S 288 c}$ can partially bypass the fMAPK pathway for agar adhesion and FLO11 expression. (A) Agar adhesion of S288c and Sigma strains carrying reciprocal allele swaps of RPI1. The top row shows adhesion assays performed on S288c strains grown on YPD and the bottom row shows adhesion assays performed on Sigma strains grown on synthetic media (see Materials and Methods). The same plates are shown before and after washing. (B and C) qPCR assay of FLO11 transcript levels performed on (B) S288c strains grown in synthetic media and (C) Sigma strains grown on YPD. Mean FLO11 levels normalized to ACT1 levels are presented \pm SD. $* * P<0.01$. Strains with their endogenous RPI1 allele are labeled with their relevant genotype. Strains carrying a swapped RPI1 allele are labeled numerically: (1) S288C RPI1Sigma; (2) S288c RPI1Sigma, tec14; (3) Sigma RPI1 ${ }^{\text {S288c; }}$ and (4) Sigma RPITS288c, tec1 Δ.
are widespread and found in both feral and laboratory strains (Figure S6). Thus, the expansion and contraction of RPI1 appears to be a common avenue for diversity both in the laboratory and in the wild.

Intragenic tandem repeats are highly polymorphic within a species

The difference in repeat length between the RPI1 alleles of S288c and Sigma led us to ask how many other genes differ in this way. Previous studies focused on cell surface proteins and have found profound phenotypic consequences for changes in the size of an internal repeat region (MacDonald et al. 1993; Verstrepen et al. 2005; Levdansky et al. 2007; Fidalgo et al. 2008; Tan et al. 2010; Sheets and St. Geme 2011), but it is difficult to perform genome-wide examinations of repeat length changes because few organisms have multiple genomes of sufficiently high quality to compare repeat regions. With the release of the Sigma genome, this comparison can be done because both the S288c and the Sigma genomes are of a high enough quality to ask, like in RPI1, how many genes differ in size due to repeat length changes? By computationally comparing the size of every ORF between S288c and Sigma, we identified 107 genes that differ in length due to in-frame expansions or contractions of intragenic repeat sequences (Table S4). The set of genes with intragenic repeat length differences includes genes involved in diverse biological processes, including transcription, chromatin modification, and signal transduction. To ensure that these differences are not due to sequencing errors, 24 of these length differences were verified by PCR (Figure 7 and Figure S7). Twenty-two of 24 genes show the predicted size difference, confirming the size differences
predicted from the genome sequences' reflected length differences in the repeats.

Discussion

Individuals within a species may signal gene expression through different pathways

Our analysis of comparable deletion libraries in two interfertile strains of S. cerevisiae (Sigma and S288c) with nearly identical genomes (Dowell et al. 2010) allowed us to ask the question: Do the same signal transduction pathways control development in both strains? Previous mutational analyses identified the fMAPK pathway as required for adhesion and FLO11 transcription in Sigma (Roberts and Fink 1994; Cook et al. 1996; Lorenz and Heitman 1998). A recent comprehensive genome-wide analysis of the Sigma deletion library for adhesion, filamentation, and biofilm formation again uncovered the fMAPK genes (Ryan et al. 2012). Therefore, the finding that S288c does not require the fMAPK pathway was unanticipated. This functional difference is not a consequence of gene duplication but rather involves distinct genes encoding two separate pathways, each capable of eliciting the same phenotype. The two strains differ by polymorphisms in the transcription factor RPI1; the RPI1 ${ }^{5288 \mathrm{c}}$ allele is active and suppresses the loss of function of the fMAPK pathway; the RPI1 ${ }^{\text {Sigma }}$ allele is inactive and incapable of suppressing of a defect in the fMAPK pathway. These RPI1 polymorphisms must alter phosphorylation sites, change the conformation to prevent access to the sites, or prevent interaction with a kinase.

The discovery of RPII ${ }^{5288 c}$ as a bypass suppressor of the fMAPK pathway provides insight into the mechanism by

Figure 5 RPI1 ${ }^{\text {S288C }}$ shows strainindependent localization to the MIT1 and FLO11 promoters. (A and B) Localization of Rpi1p using FLAG-tagged alleles in Sigma and S288c assayed by ChIP followed by qPCR for enrichment at (A) -1.3 kb in the FLO11 promoter and (B) -1 kb in the MIT1 promoter. Data were normalized to ACT1 and are expressed as the mean fold enrichment \pm SD. *P <0.01 compared to untagged.
which allelic polymorphisms can buffer the effect of mutations and rewire a signaling pathway. Although previous studies have identified many QTL in intraspecies crosses of S. cerevisiae, many of these polymorphisms have not been connected to differences in function. As with the adhesion phenotype, each of the polymorphisms may have only a modest effect on the phenotype, making it difficult to isolate and assess the mechanism of action. We were able to tune the conditions so that we could use transformation to select for modifiers such as RPI1 that only partially restore FLO11 expression.

The presence of RPI1 ${ }^{S 288 c}$ in S288c means that loss of function of any member of the fMAPK pathway will fail to manifest an adhesion phenotype because FLO11 can now be activated by RPI1 ${ }^{S 288 c}$. Even MSB2, the protein believed to be the sensor for the fMAPK pathway, is not needed for S288c adhesion (Table S2). The activation of FLO11 by RPI1 ${ }^{5288 c}$ raises the question: What is upstream of RPI1 in S288c? Our genome-wide screen of the S288c library for strains with adhesion defects identified a number of potential candidates that do not have adhesion/filamentation defects in Sigma. In the future a systematic analysis of these is likely to identify those genes required for RPI1 activation.

The evolution of circuit diversification begins within a species

Comparing species that evolved from a common ancestor before and after the whole-genome duplication (WGD) (Kellis et al. 2004; Wapinski et al. 2007) has elucidated the gradual rewiring of transcription circuits in the fungal lineage. For example, yeast species post-WGD have two proteins controlling the ribosomal protein stress response, a positive (IFH1) and a negative (CRF1) regulator, whereas organisms that did not undergo the WGD have a single ancestral protein with both positive and negative activities (Wapinski et al. 2010). Post-WGD, the duplicate genes specialized with one losing a positive function and the other a negative one, while both retained "stress response control."

The plasticity of these regulatory networks is most dramatically seen in the comparison of the regulatory circuit that regulates mating type in the human fungal pathogen Candida albicans with that of S. cerevisiae. The ensemble of genes controlling mating is largely conserved in the two
organisms; however, the a-specific genes in Candida are under positive control by the a2 protein and in S. cerevisiae they are under negative control by the $\alpha 2$ protein. This transition from positive to negative regulation of the aspecific genes involved slight changes over evolutionary time in both the cis-acting elements in the promoters of the a-specific genes and the trans-acting regulatory proteins a2 and $\alpha 2$ (Tsong et al. 2006).

These variations in regulatory control observed in different species, which evolved over evolutionary time, must have arisen from variations that occurred within a single species and subsequently became fixed as sexual isolation took place. As we have shown, such variation in the circuitry of key signaling pathways exists among contemporary members of the same species. This apparent redundancy in FLO11 activation raises the question: Why are the two pathways retained? Despite the overlapping functions of the fMAPK pathway and RPI1, the organization of these genes into complex networks likely imposes constraints on the loss of one or the other of these activation pathways. The elements of the fMAPK pathway that have been conserved in both S288c and Sigma (Ste20p, Ste11p, Ste7p, and Ste12p) are under strong positive selection because they have cross-pathway functions in additional signal transduction pathways (mating, osmotic sensing). Since RPI1 regulates the cell wall under different conditions, it is also likely to function in conjunction with many pathways (Sobering et al. 2002; Puria et al. 2009; Wang et al. 2011). The finding that RPI1 localizes not only to the FLO11 promoter but also the MIT1 promoter (Wang et al. 2011), itself a transcriptional activator of FLO11 and many

Figure 6 The Rpi1p ${ }^{5288 c}$ protein is hyperphosphorylated. Shown is Western blot analysis of Rpi1p phosphorylation state in strains expressing either $3 \times$ flag-tagged $R P / 1^{5288 c}$ or $R P / 1^{\text {Sigma. }}$. Samples were treated with either buffer or λ-phosphatase.

Figure 7 Many S288c genes differ from Sigma genes due to changes in intragenic tandem repeats. Twenty-four of the 107 genes predicted to differ between S288c and Sigma in the length of internal repeats were examined by PCR. Twenty-two of these genes had the predicted size difference. Five genes are shown and the results for the other genes are shown in Figure S7. PGD1 and SPT8 have two repeat regions that both change in size. For each pair the left sample is the S288c product and the right sample is the Sigma product.
other genes (Cain et al. 2011), is consistent with the idea that RPI1 is also constrained by its participation in many regulatory networks.

RPI ${ }^{\text {S288c }}$ and RPI1 ${ }^{\text {Sigma }}$ differ by intragenic tandem repeat expansions

Although the two RPI1 alleles differ by several nucleotide changes, the most striking difference is the alteration in the size of a repeat region present in the coding sequence of the gene. These repeat polymorphisms in RPI1 are present in wild isolates of yeast as well as in many laboratory strains (Figure S6). Some wild isolates have the RPI1 ${ }^{\text {S288c }}$ length repeat and others have the $R P I 1^{\text {sigma }}$ length.

Repeats within a coding sequence create enormous flexibility for the evolution of diversity within a species. Because repeats can expand and contract at high frequencies, they permit a species to adapt to changing environments without becoming irreversibly committed to a phenotype (Rando and Verstrepen 2007). Although SNPs remain the major type of variation between S288c and Sigma, >100 genes differ in size due to repeat length differences. These data suggest that in a cross between S288c and Sigma these size polymorphisms could generate as many as 2^{100} genotypes in a cross. Phenotypic effects from even a tiny fraction of this variation, would provide ample grist for evolution's mill.

Acknowledgments

We thank William Timberlake for critical reading of this manuscript. This work was supported by National Institutes of Health grant GM035010. C.B. was supported by the Natural Sciences and Engineering Research Council of Canada and Howard Hughes Medical Institute.

Literature Cited

Borneman, A. R., J. A. Leigh-Bell, H. Yu, P. Bertone, M. Gerstein et al., 2006 Target hub proteins serve as master regulators of development in yeast. Genes Dev. 20: 435-448.
Brem, R. B., G. Yvert, R. Clinton, and L. Kruglyak, 2002 Genetic dissection of transcriptional regulation in budding yeast. Science 296: 752-755.

Brown, T., 2001 Southern Blotting in Current Protocols in Molecular Biology. John Wiley \& Sons, New York.
Bumgarner, S. L., R. D. Dowell, P. Grisafi, D. K. Gifford, and G. R. Fink, 2009 Toggle involving cis-interfering noncoding RNAs controls variegated gene expression in yeast. Proc. Natl. Acad. Sci. USA 106: 18321-18326.
Cain, C. W., M. B. Lohse, O. R. Homann, and A. D. Johnson, 2011 A conserved transcriptional regulator governs fungal morphology in widely diverged species. Genetics 190: 511-521.
Carlborg, O., and C. S. Haley, 2004 Epistasis: Too often neglected in complex trait studies? Nat. Rev. Genet. 5: 618-625.
Connelly, C. F., and J. M. Akey, 2012 On the prospects of wholegenome association mapping in Saccharomyces cerevisiae. Genetics 191: 1345-1353.
Cook, J. G., L. Bardwell, S. J. Kron, and J. Thorner, 1996 Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae. Genes Dev. 10: 2831-2848.
Demogines, A., E. Smith, L. Kruglyak, and E. Alani, 2008 Identification and dissection of a complex DNA repair sensitivity phenotype in Baker's yeast. PLoS Genet. 4: e1000123.
Dickson, S. P., K. Wang, I. Krantz, H. Hakonarson, and D. B. Goldstein, 2010 Rare variants create synthetic genome-wide associations. PLoS Biol. 8: e1000294.
Dowell, R. D., O. Ryan, A. Jansen, D. Cheung, S. Agarwala et al., 2010 Genotype to phenotype: a complex problem. Science 328: 469.
Ehrenreich, I. M., N. Torabi, Y. Jia, J. Kent, S. Martis et al., 2010 Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature 464: 1039-1042.
Elion, E. A., J. A. Brill, and G. R. Fink, 1991 FUS3 represses CLN1 and CLN2 and in concert with KSS1 promotes signal transduction. Proc. Natl. Acad. Sci. USA 88: 9392-9396.
Fidalgo, M., R. R. Barrales, and J. Jimenez, 2008 Coding repeat instability in the FLO11 gene of Saccharomyces yeasts. Yeast 25: 879-889.
Gatbonton, T., M. Imbesi, M. Nelson, J. M. Akey, D. M. Ruderfer et al., 2006 Telomere length as a quantitative trait: genomewide survey and genetic mapping of telomere length-control genes in yeast. PLoS Genet. 2: e35.
Gimeno, C. J., P. O. Ljungdahl, C. A. Styles, and G. R. Fink, 1992 Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68: 1077-1090.
Graham, T. R., 2001 Metabolic labeling and immunoprecipitation of yeast proteins, pp. 7.6.1-7.6.9 in Current Protocols in Cell Biology, edited by J. S. Bonifacino, M. Dasso, J. B. Harford, J. Lippincott-Schwartz, and K. M. Yamada. John Wiley \& Sons, New York.
Guthrie, C., and G. Fink, 2002 Guide to Yeast Genetics and Molecular and Cellular Biology. Academic Press, San Diego, CA.
Halme, A., S. Bumgarner, C. Styles, and G. R. Fink, 2004 Genetic and epigenetic regulation of the FLO gene family generates cellsurface variation in yeast. Cell 116: 405-415.
Hartman, J. L., IV, B. Garvik, and L. Hartwell, 2001 Principles for the buffering of genetic variation. Science 291: 1001-1004.
Jakobsdottir, J., M. B. Gorin, Y. P. Conley, R. E. Ferrell, and D. E. Weeks, 2009 Interpretation of genetic association studies: markers with replicated highly significant odds ratios may be poor classifiers. PLoS Genet. 5: e1000337.
Kellis, M., N. Patterson, M. Endrizzi, B. Birren, and E. S. Lander, 2003 Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423: 241-254.
Kellis, M., B. W. Birren, and E. S. Lander, 2004 Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428: 617-624.

Korbel, J. O., A. E. Urban, J. P. Affourtit, B. Godwin, F. Grubert et al., 2007 Paired-end mapping reveals extensive structural variation in the human genome. Science 318: 420-426.
Lee, T. I., S. E. Johnstone, and R. A. Young, 2006 Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat. Protoc. 1: 729-748.
Levdansky, E., J. Romano, Y. Shadkchan, H. Sharon, K. J. Verstrepen et al., 2007 Coding tandem repeats generate diversity in Aspergillus fumigatus genes. Eukaryot. Cell 6: 1380-1391.
Liti, G., D. M. Carter, A. M. Moses, J. Warringer, L. Parts et al., 2009 Population genomics of domestic and wild yeasts. Nature 458: 337-341.
Liu, H., C. A. Styles, and G. R. Fink, 1993 Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science 262: 1741-1744.
Liu, H., C. A. Styles, and G. R. Fink, 1996 Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144: 967-978.
Lo, W. S., and A. M. Dranginis, 1998 The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol. Biol. Cell 9: 161-171.
Lorenz, M. C., and J. Heitman, 1998 Regulators of pseudohyphal differentiation in Saccharomyces cerevisiae identified through multicopy suppressor analysis in ammonium permease mutant strains. Genetics 150: 1443-1457.
MacDonald, M. E., C. M. Ambrose, M. P. Duyao, R. H. Myers, C. Lin et al., 1993 A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72: 971-983.
Manolio, T. A., F. S. Collins, N. J. Cox, D. B. Goldstein, L. A. Hindorff et al., 2009 Finding the missing heritability of complex diseases. Nature 461: 747-753.
Nogami, S., Y. Ohya, and G. Yvert, 2007 Genetic complexity and quantitative trait loci mapping of yeast morphological traits. PLoS Genet. 3: e31.
Puria, R., M. A. Mannan, R. Chopra-Dewasthaly, and K. Ganesan, 2009 Critical role of RPI1 in the stress tolerance of yeast during ethanolic fermentation. FEMS Yeast Res. 9: 1161-1171.
Rando, O. J., and K. J. Verstrepen, 2007 Timescales of genetic and epigenetic inheritance. Cell 128: 655-668.
Rice, P., I. Longden, and A. Bleasby, 2000 EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16: 276277.

Roberts, R. L., and G. R. Fink, 1994 Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev. 8: 2974-2985.
Rose, M. D., P. Novick, J. H. Thomas, D. Botstein, and G. R. Fink, 1987 A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60: 237-243.
Rozen, S., and H. Skaletsky, 2000 Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132: 365-386.

Ryan, O., R. S. Shapiro, C. F. Kurat, D. Mayhew, A. Baryshnikova et al., 2012 Global gene deletion analysis exploring yeast filamentous growth. Science 337: 1353-1356.
Schacherer, J., J. A. Shapiro, D. M. Ruderfer, and L. Kruglyak, 2009 Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature 458: 342345.

Sheets, A. J., and J. W. St. Geme, III, 2011 Adhesive activity of the haemophilus cryptic genospecies cha autotransporter is modulated by variation in tandem peptide repeats. J. Bacteriol. 193: 329-339.
Sobering, A. K., U. S. Jung, K. S. Lee, and D. E. Levin, 2002 Yeast Rpi1 is a putative transcriptional regulator that contributes to preparation for stationary phase. Eukaryot. Cell 1: 56-65.
Tan, J. C., A. Tan, L. Checkley, C. M. Honsa, and M. T. Ferdig, 2010 Variable numbers of tandem repeats in Plasmodium falciparum genes. J. Mol. Evol. 71: 268-278.
Tsong, A. E., B. B. Tuch, H. Li, and A. D. Johnson, 2006 Evolution of alternative transcriptional circuits with identical logic. Nature 443: 415-420.
Verstrepen, K. J., A. Jansen, F. Lewitter, and G. R. Fink, 2005 Intragenic tandem repeats generate functional variability. Nat. Genet. 37: 986-990.
Voynov, V., K. J. Verstrepen, A. Jansen, V. M. Runner, S. Buratowski et al., 2006 Genes with internal repeats require the THO complex for transcription. Proc. Natl. Acad. Sci. USA 103: 1442314428.

Wang, H., D. Mayhew, X. Chen, M. Johnston, and R. D. Mitra, 2011 Calling cards enable multiplexed identification of the genomic targets of DNA-binding proteins. Genome Res. 21: 748-755.
Wapinski, I., A. Pfeffer, N. Friedman, and A. Regev, 2007 Natural history and evolutionary principles of gene duplication in fungi. Nature 449: 54-61.
Wapinski, I., J. Pfiffner, C. French, A. Socha, D. A. Thompson et al., 2010 Gene duplication and the evolution of ribosomal protein gene regulation in yeast. Proc. Natl. Acad. Sci. USA 107: 55055510.

Winzeler, E. A., D. D. Shoemaker, A. Astromoff, H. Liang, K. Anderson et al., 1999 Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285: 901-906.
Winzeler, E. A., H. Liang, D. D. Shoemaker, and R. W. Davis, 2000 Functional analysis of the yeast genome by precise deletion and parallel phenotypic characterization. Novartis Found. Symp. 229: 105-109, discussion 109-111.
Wolf, J. J., R. D. Dowell, S. Mahony, M. Rabani, D. K. Gifford et al., 2010 Feed-forward regulation of a cell fate determinant by an RNA-binding protein generates asymmetry in yeast. Genetics 185: 513-522.
Zeitlinger, J., I. Simon, C. T. Harbison, N. M. Hannett, T. L. Volkert et al., 2003 Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling. Cell 113: 395-404.

Communicating editor: C. D. Jones

GENETICS

Supporting Information
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.112.145573/-/DC1/

Genetic Variation in Saccharomyces cerevisiae: Circuit Diversification in a Signal Transduction Network

Brian L. Chin, Owen Ryan, Fran Lewitter, Charles Boone, and Gerald R. Fink

Figure S1 S288c with FLO11pr ${ }^{\text {Sigma }:: F L O 11 ~ i s ~ s t i l l ~ f M A P K ~ i n d e p e n d e n t . ~ q P C R ~ a s s a y ~ o f ~ F L O 11 ~ t r a n s c r i p t ~ l e v e l s ~ w a s ~ p e r f o r m e d ~ o n ~}$ (A) S288c and (B) Sigma strains carrying FLO11 promoter swaps. Mean FLO11 levels normalized to ACT1 levels are presented \pm SD. Strains with their endogenous FLO11 promoter are labeled with their relevant genotype. Strains carrying a swapped FLO11 promoter are labeled numerically: (1) S288c FLO11pr ${ }^{\text {Sigma }}::$ FLO11; (2) S288c FLO11pr ${ }^{\text {Sigma }}::$ FLO11, tec14; (3) Sigma FLO11pr ${ }^{\text {S288c }:: F L O 11 ; ~(4) ~ S i g m a ~ F L O 11 p r ~}{ }^{\text {S288c }}::$ FLO11, tec1 Δ.

Unwashed

Washed

Figure S2 tec1 1Δ bypass is a complex trait. Agar adhesion assays of 24 tetrads from an S288c tec10 x Sigma tec10 cross. Two complete tetrads per row with one example underlined. Parental strains and controls spotted on the bottom of the plate. The same plate is shown before and after washing.

Figure S3 fMAPK bypass of FLO11 expression is a complex quantitative trait. GFP fluorescence, measured in arbitrary units for (A) 276 F1 meiotic progney from a S288c / Sigma FLO11pr::GFP / FLO11pr::GFP tec1 / tec1 diploid or (B) 276 meiotic progeny from the third generation of backcrossing (see methods). The average GFP fluorescence normalized to OD600 of 3 biological replicates are plotted. The progeny are sorted from highest to lowest fluorescence. Fluorescence of control strains are labeled and shown in green.

Washed

Figure S4 Regulation of adhesion differs between S288c and Sigma. Adherent, wild-type S288c and Sigma were crossed and from 24 complete tetrads, $15 / 96$ progeny show an adhesion defect. Each column contains two complete tetrads.

RPI1

Figure S5 RPI1 contains intragenic repeats. Dot plot analysis of the S288c allele of RPI1 nucleotide sequence compared against itself. Repeat regions produce a characteristic box pattern. The horizontal bar represents 100 nt . The plot was generated using http://www.vivo.colostate.edu/molkit/dnadot/ with a windows size of 9 and a mismatch limit of 2.

A

Repeat \#1

5288c	TCAAATTCGAATTCGAACTCCAATTCTAATTCGAACTCCAACTC
303	CAAATTCGAATTCGAACTCCAATTCTAATTCGAACTC
K1	TCCAGTTCAAATTCGAAT TCGAACTCCAATTCTAATTCGAACTC
	TCCAGTTCAAATTCGAATTCGAACTCCAATTCTAATTCGAA
M789	TCCAGTTCAAATTCGAATTCGAACTCCAATTCTAATTC
11	TCСАGTTCTAATTCTAATTCGAACTCCAACTCC

B

Repeat \#2

Figure S6 Comparison of RPI1 repeat regions between different S. cerevisiae strains. The sequences for the repeat regions from $R P I 1$ were aligned using ClustalW. (A) 5^{\prime} repeat region and (B) central repeat region. For repeat \#1 the translation for the S288c sequence is shown, and for repeat \#2 the translation for the Sigma sequence is shown. Strain names in blue are wild isolates and nucleotides in red represent nucleotide polymorphisms. In S288c, the repeats account for 16% of the coding sequence (195/1224 bases). The 5' repeat region consists of a hexanucleotide repeat. In S288c there are nine repeated units while in Sigma there are only six repeated units. The central repeat region consists of a trinucleotide repeat. In S288c there are 46 repeated units but in Sigma they have expanded to 63 repeated units. Both repeats encode primarily for serines and asparagines.

Figure S7 Many genes have intragenic tandem repeats that differ in size between S288c and Sigma. Four of five gels used to examine the length differences between S288c and Sigma for 24 genes and $F L O 8$ which was used as a control for a gene without repeats. $22 / 24$ genes had the predicted repeat length differences. The gene SNF5 has two repeat regions that both changed in size. For each pair the left sample is S288c and the right sample is Sigma.

Table S1 Deletions leading to an Ahs- phenotype only in S288c.

YIR020C
YJL218W
YJR018W
YJR054W
YJR080C
YKL023W
YKLO44W
YKL090W
YKL094W
YLLO30C
YLL055W
YLR021W
YLR065C
YLR125W
YLR168C
YLR184W
YLR352W
YLR358C
YLR374C
YLR434C
YML010C-B
YML010W-A
YMR135W-A
YMR158C-B
YMR191W
YMR316C-A
YMR326C
YNLO23C
YNL170W
YNL175C
YNL226W
YNR025C
YOL032W
YOL042W
YOL048C
YOL159C
YOR021C
YOR029W

YOR082C	YBR231C
YOR154W	YBR289W
YOR183W	YDR073W
YOR186W	YDR334W
YOR200W	YJL176C
YOR225W	YOR290C
YOR258W	YOL012C
YOR285W	YDL074C
YPL017C	YDR469W
YPL068C	YDR207C
YPL182C	YBR107C
YPL184C	YDR254W
YPL216W	YDR318W
YPL220W	YGR275W
YPL246C	YPR046W
YPL257W	YER068W
YPL260W	YAL012W
YPR170C	YER056C
YER086W	YMR032W
YDR200C	YNL166C
YCL058C	YNL229C
YBL006C	YLR420W
YPR030W	YML106W
YER083C	YJL115W
YCR017C	YOL090W
YGL027C	YLR418C
YHR181W	YBR228W
YDL225W	YGL058W
YBR200W	YML021C
YHLOO3C	YOR144C
YLL026W	YDR364C
YJR060W	YCL061C
YDR176W	YMR048W
YGL066W	YBL082C
YLR055C	YKL213C
YNL107W	YDR069C
YDR485C	YDR320C
YML041C	YNR006W

YJL095W
YKR054C
YBR159W
YBR171W
YGR135W
YFL011W
YHR094C
YBR133C
YOR178C
YNL117W
YLR330W
YJL062W
YDL035C
YOR101W
YKR029C
YOL064C
YGLO45W
YHLO07C
YOL101C
YKR042W
YOL091W
YDL115C
YLR219W
YML128C
YMR167W
YBR034C
YMR031W-A
YKJR051W
YDL016C
YLR1009W W
YLR368W
YGR163
YAL047C

YPR087W
YERO2OW
YML035C
YBR221C
YIL119C
YKL109W
YALO24C
YER059W
YPL219W
YMR179W
YML014W
YOL105C
YOR008C
YGL244W
YHR087W
YNR060W
YBL075C
YGR055W
YGL033W
YLR453C
YGR104C
YHR041C
YPL144W
YPL258C
YNL248C
YJL189W
YGR054W
YNL125C
YOR081C
YPL212C
YDR354W
YKL211C
YCL075W
YDR330W
YHL016C
YPR036W
YLR373C
YMR174C
YHLO19C

Table S2 Deletions leading to an Ahs- phenotype only in Sigma.

	YPL031C
	YDL044C
	YBR191W
	YGR105W
	YKL119C
	YOR085W
	YNR051C
	YEL059C-A
	YPL086C
	YPL024W
	YIL008W
	YFR019W
	YPL193W
	YJL124C
	YPR040W
	YDR512C
	YNL098C
	YOL051W
	YDR289C
	YGR257C
	YLLO41C
	YNLO37C
	YOR136W
	YEL051W
	YKL080W
	YDL067C
	YLR295C
	YBL099W
	YDR298C
	YBL066C
	YBR162C
	YLR404W
	YNL097C
	YGR180C
	YCR086W
	YDR129C
	YML008C
	YGL084C

YDR405W
YER050C
YGR215W
YHR147C
YHR168W
YIL093C
YKLO03C
YKL138C
YKL155C
YKL170W
YKR006C
YLR312W-A
YLR439W
YMR024W
YMR193W
YNLO05C
YNL081C
YNL252C
YPL173W
YPR047W
YBL090W
YDR115W
YDR337W
YELO50C
YGL143C
YGR165W
YGR220C
YHR091C
YJL063C
YKR085C
YLR139C
YMR097C
YNL177C
YOR150W
YPR100W
YPLO02C
YBLO22C
YBR083W
YGL064C

YMR287C
YPL029W
YML055W
YLL033W
YMR228W
YJL102W
YLR069C
YOR187W
YDR470C
YDR268W
YPL097W
YPL019C
YGR219W
YAL004W

Table S3 Deletions leading to an Ahs- phenotype only in both S288c and Sigma.

YKL007W
YBR023C
YPL203W
YBL058W
YGR056W
YOL001W
YOLO72W
YLR357W
YOLO76W
YPL181W
YDR350C
YMR154C

YKRO01C
YKL185W
YNL183C
YDR392W
YOR035C
YJL140W
YHR167W
YKL204W
YJR113C
YCLO08C
YJR102C
YOLO04W

YDR065W
YMR116C
YDL233W
YEL007W
YGR122W
YBR095C
YOR275C
YOR030W
YLR025W
YMR077C
YCR084C
YDL006W

YDR462W
YNR037C
YLR417W
YMR164C
YGR200C
YGR063C
YMR063W
YHLO27W
YNL294C
YJL175W

Table S4 ORFs with intragenic repeat length differences between S288c and Sigma.

	YJL162C
	YKL028W
	YKL032C
	YKL105C
	YKR092C
	YKR102W
	YLLO10C
	YLR055C
	YLR106C
	YLR114C
	YLR177W
	YLR406C-A
	YML049C
	YML113W
	YMR016C
	YMR044W
	YMR124W
	YMR173W
	YMR173W-A
	YMR317W
	YNL271C
	YNL327W
	YNR052C
	YOR010C
	YOR054C
	YOR113W
	YOR267C
	YPL216W
	YPR021C
	YPR123C
	YPR124W

Table S5 List of strains used in this study

Strain	Genotype	Source
BY4741	S288c MATa his301 leu240 ura300 met1500 flo8-1	Brachmann et al. (1998)
yBC37	S288c MATa his301 leu200 ura3D0 met1500 FLO8	this study
yBC06A10	S288c MATa his301 leu240 ura3D0 met1500 FLO8 tec14::KanMX4	this study
yBC06B5	S288c MATa his301 leu240 ura300 met1500 FLO8 ste74::KanMX4	this study
yBC06G7	S288c MATa his301 leu240 ura300 met1500 FLO8 ste114::KanMX4	this study
yBC07A3	S288c MATa his301 leu240 ura340 met1500 FLO8 kss14::KanMX4	this study
yBC06B5	S288c MATa his301 leu200 ura300 met1500 FLO8 ste124::KanMX4	this study
yBC0192	S288c MATa his3 31 leu $2 \Delta 0$ ura3 $\Delta 0$ met $15 \Delta 0$ flo11 $\mathrm{pr}^{\text {S288c }} \Delta::$ FLO11pr $^{\text {Sigma }}$ FLO8	this study
yBC0195	S288c MATa his3 31 leu2 20 ura3 00 met15 40 flo11pr ${ }^{\text {s288c }} \Delta:: F L O 11 \mathrm{pr}^{\text {sigma }}$ tec1 $\Delta::$ KanMX4 FLO8	this study
yBC11E2	S288c MATa his301 leu240 ura300 met1500 flo114::GFP-URA3 FLO8	this study
yBC11H2	S288c MATa his3 31 leu2 $\Delta 0$ ura3 00 met15 40 flo114::GFP-URA3 tec10::KanMX4 FLO8	this study
yBC16A3	S288c MATa ura300 FLO8	this study
yBC16F4	S288c MATa / α ura3D0/ura3 ${ }^{\text {a }}$ FLO8/FLO8	this study
yBC20A1	S288c MATa ura300 tec10::hyg FLO8	this study
yBC20D1	S288c MATa ura300 tec10::hyg FLO8	this study
yBC20A3		this study
yBC11E8	S288c MATa his301 leu240 ura340 met1500 flo114::HIS3PEST FLO8	this study
yBC11H8	S288c MATa his3 31 leu2 $\Delta 0$ ura3 40 met15 40 flo114::HIS3PEST tec10::KanMX4 FLO8	this study
yBC18A1	S288c MATa ura3D0 rpi14::URA3 FLO8	this study
yBC18A6	S288c MATa ura300 rpi14::RPI1 ${ }^{\text {Sigma }}$ FLO8	this study
yBC18A8	S288c MATa ura3D0 rpi14::RPI1 ${ }^{\text {Sigma }}$ tec $\Delta 1:$:KanMX4 FLO8	this study
yBC29A9	S288c MATa ura3D0 RPI1-3xFLAG-URA3 FLO8	this study
yBC29D9		this study
10560-6B	Sigma MAT his3::hisG leu2::hisG trp1::hisG ura3-52	Fink Collection
yBC0172	Sigma MATa his3::hisG leu2::hisG trp1::hisG ura3-52	this study
Sigma tec1号	MATa can14::STE2pr-Sphis5 lyp14::STE3pr-LEU2 his3::hisG leu24 ura3 tec14::KanMX4	Dowell and Ryan et al. (2010)
Sigma ste74	MATa can14::STE2pr-Sphis5 lyp14::STE3pr-LEU2 his3::hisG leu24 ura3 ste74::KanMX4	Dowell and Ryan et al. (2010)
Sigma ste114	MATa can14::STE2pr-Sphis5 lyp1D::STE3pr-LEU2 his3::hisG leu24 ura3D ste114::KanMX4	Dowell and Ryan et al. (2010)
Sigma kss14	MATa can14::STE2pr-Sphis5 lyp14::STE3pr-LEU2 his3::hisG leu24 ura3A kss14::KanMX4	Dowell and Ryan et al. (2010)

Sigma ste12ム	MATa can14：：STE2pr－Sphis5 lyp14：：STE3pr－LEU2 his3：：hisG leu24 ura3ム ste12ム：：KanMX4	Dowell and Ryan et al． (2010)
yBC0193	Sigma MATa his3：：hisG leu2：：hisG trp1：：hisG ura3－52 flo11pr ${ }^{\text {sigma }} \Delta:: F L O 11 \mathrm{pr}^{\text {5288c }}$	this study
yBC0196	Sigma MATa his3：：hisG leu2：：hisG trp1：：hisG ura3－52 flo11pr ${ }^{\text {Sigma }} \Delta:$ ：FLO11 pr ${ }^{\text {S288c }}$ tec14：：KanMX4	this study
yBC11G1	Sigma MATa his3：：hisG leu2：：hisG trp1：：hisG ura3－52 flo110：：GFP－URA3	this study
yBC11B2	Sigma MATa his3：：hisG leu2：：hisG trp1：：hisG ura3－52 flo114：：GFP－URA3 tec1ロ：：KanMX4	this study
yBC16H3	Sigma MATa ura3－52	this study
yBC16B4	Sigma MATa ura3－52	this study
yBC16G4	Sigma MATa／α ura3－52／ura3－52	this study
yBC20G1	Sigma MATa ura3－52 tec10：：hyg	this study
yBC20B2	Sigma MAT ura3－52 tec10：：hyg	this study
yBC20C3	Sigma MATa／α ura3－52／ura3－52 tec10：：hyg／tec10hyg FLO8／FLO8	this study
yBC11A7	Sigma MATa his3：：hisG leu2：：hisG trp1：：hisG ura3－52 flo114：：HIS3－PEST	this study
yBC11D7	Sigma MATa his3：：hisG leu2：：hisG trp1：：hisG ura3－52 flo114：：HIS3－PEST tec14：：KanMX4	this study
yBC18G1	Sigma MATa ura3－52 rpi14：：URA3	this study
yBC18G6	Sigma MATa ura3－52 rpi14：：RPI1 ${ }^{\text {S288c }}$	this study
yBC18G8	Sigma MATa ura3－52 rpi14：：RPI1 ${ }^{\text {Sigma }}$ tec $\Delta 1:$ KanMX4	this study
yBC29G9	Sigma MATa ura3－52 RPI1－3xFLAG－URA3	this study
yBC29B10	Sigma MATa ura3－52 rpi1D：：RPI1 ${ }^{\text {Sigma }}-3 x F L A G-U R A 3$	this study
yBC09H1	S288c ${ }^{\text {FLO8 } / S i g m a ~ M A T a ~ / ~} \alpha$ ura3 $40 / u r a 3-52$ his3 $30 /$ his3：：hisG leu240／leu2：：hisG met1500／MET15 TRP1／trp1：：hisG tec10：：hyg／tec14：：hyg flo114：：GFP－URA3／flo114：：GFP－URA3	this study
yBC03A10	S288c ${ }^{\text {fLO8 } / S i g m a ~ M A T a ~ / ~} \alpha$ ura3 0 ／ura3－52 his3 $\Delta 0 /$ his3：：hisG met1540／MET15 tec1 $\Delta:: K a n M X 4 / t e c 1 \Delta:: K a n M X ~$	this study

Table S6 List of oligonucleotides used in this study

Name	Sequence (5^{\prime} to 3^{\prime})	Description
BCP10	agtgcttaaccggaacaaacc	FLO8F
BCP15	tatgatcatgatttacgatgaccgt	FLO8R
BCP46	ggaaacaagctgagctggac	Flanking TEC1
BCP47	tcgtggtttcatccaagtga	Flanking TEC1
BCP191	cccaagcgagacctagagtg	Flanking STE12
BCP192	gaacatcgatgccttcacct	Flanking STE12
BCP195	aagtgattcgtggggtaacg	Flanking STE7
BCP196	tgggttattaatcgccttcg	Flanking STE7
BCP199	attctcgcccaacttttcct	Flanking STE11
BCP200	tcttcgtgcttccatctgtg	Flanking STE11
BCP236	tccccttggtgaaagaaatg	Flanking kss1
BCP237	ttgattacagtcgcgtcagc	Flanking kss1
BCP249	GGTTCTAATTAAAATATACTTTTGTAGGCCTCAAAAATCCATATACGCACACTatgac agagcagaaagccctag	to replace the FLO11 ORF with HIS3
BCP257	tgatgagggtgaagggaaac	RPI1 swap
BCP316	ggtGCATCCAACTTGAACATTTCGAGAAAGC	For amplifying PEST seq from CLN2
BCP317	CTATATTACTTGGGTATTGCCCATACC	For amplifying PEST seq from CLN2
BCP320	GCTTTCTCGAAATGTTCAAGTTGGATGCacccataagaacacctttggtggag	linearize pRS313 to add PEST seq from CLN2
BCP321	GGTATGGGCAATACCCAAGTAATATAGtgacaccgattatttaaagctg	linearize pRS313 to add PEST seq from CLN2
BCP324	atttaagaatgaaaacatcgtaatgaagaaacgaacatgttggaattgtatcaCTATATTACTTGGGT ATTGCCCATACC	To replace FLO11 with HIS3PEST
BCP358	CTTTTTTTTAAGTCTTTTTTTTTTTTTCTCATCATTTTATTACTGATATTTATAAAagatt gtactgagagtgcac	rpi1::ura3
BCP359	TAGAATTAAAGGGGTAGAAAATTTATGGTGGAGACTTCCCGATACATACTctgtgcg gtatttcacaccg	rpi1::ura3
BCP360	cgtattcgtttaactatttctcagtcc	RPI1 swap
BCP412	ctcaacagcagatccagcag	MSS11F repeats
BCP413	gaaggcataagtccggttga	MSS11R repeats
BCP419	cattgaagccgaacaagaatg	RPI1F repeats
BCP420	cttgactgaatatgctctggtg	RPI1R repeats
BCP423	tgcaagatttcaggctgttt	SLT2F repeats
BCP424	atccacatctgaaggctgct	SLT2R repeats
BCP534	GACTACAAGGATGATGACGATAAAGGTGACTATAAAGATCATGACATTGATTATA AAGACCATGACTAAgcaggtcgacaacccttaat	to build a C terminal flag tagging construct
BCP535	GCGGCCGCATAGGCCACT	to build a C terminal flag tagging construct
BCP536	ACCGTTGCATAATATGTCAACTTCAGACTCAGAAAATTTTATGCAACAACATgactac aaggatgatgacgata	C-terminally tag RPI1 with FLAG
BCP537	GAATTAAAGGGGTAGAAAATTTATGGTGGAGACTTCCCGATACATACTTTAgcggcc gcataggccact	C-terminally tag RPI1 with FLAG
BCP572	cattaaacccgtggaacagc	GAL11F repeats
BCP573	gggaataggtgccactttca	GAL11R repeats

BCP574	ctgaatgggtggatccaaat	URA2F repeats
BCP575	agaacagatggatcacctgga	URA2R repeats
BCP576	gaaccggcaagacttaacca	EPL1F repeats
BCP577	ttctgtttcgcttctgaattg	EPL1R repeats
BCP580	ggacaggagcaggaagaaaa	NUP159F repeats
BCP581	tccgaatgcagatgtaccaa	NUP159R repeats
BCP584	atgggcataaacggtgacat	VHS3F repeats
BCP585	agatcgctgtagccetcctt	VHS3R repeats
BCP586	aacctgcacaggaaacatcc	TFA1F repeats
BCP587	ctgaagcagtggcagtagca	TFA1R repeats
BCP588	cccacgactacaagcacaaa	WSC4F repeats
BCP589	cttgtagaaatgggggctga	WSC4R repeats
BCP628	aaggctgcagtggtcaagtt	DNF2F repeats
BCP629	atatctgaactgcccgatgg	DNF2R repeats
BCP632	tacaatcccacgcagtttca	ULP2F repeats
BCP633	ttccgtagttgcatcatcaaa	ULP2R repeats
BCP634	gctggaaaacgactcaaagc	SPT8F repeats
BCP635	agcagccttttgctcatcat	SPT8R repeats
BCP636	atgatgagcaaaaggctgct	SPT8F repeats
BCP637	tccattagcagaggcttcgt	SPT8R repeats
BCP638	ctgtgtcaggacgccataga	RIM15F repeats
BCP639	tccttggggaaaactgaaaa	RIM15R repeats
BCP640	tcaaatgtgatgccaggttc	SNF2F repeats
BCP641	ttgctcggcagtaaacattg	SNF2R repeats
BCP642	agtacggggaccttgaacct	SWE1F repeats
BCP643	tacgagaatccacgctttcc	SWE1R repeats
BCP644	cagctggtgttcagggaaat	PTP3F repeats
BCP645	ccaaatcaggccaatttttc	PTP3R repeats
BCP646	acaacggcgatgaaaagaat	MED2F repeats
BCP647	tgccgttatcgtcattgttg	MED2R repeats
BCP648	aggctggataacctgcaaga	DSN1F repeats
BCP649	ttgcagtcgcatctccacta	DSN1R repeats
BCP650	caagaccattcgctgcagta	IXR1F repeats
BCP651	taaggcgcttgttgttgttg	IXR1R repeats
BCP654	atgggaactccaaccgtaca	PGD1F repeats
BCP655	agtcgactgctgtgcgtaga	PGD1R repeats
BCP656	ccaataacaccccgctacag	PGD1F repeats
BCP657	tactgtggttgaggctgctg	PGD1R repeats
BCP658	tagtttgaaggaacgcgaca	UBP10F repeats
BCP659	gaacccaagttttcaccaatg	UBP10R repeats
BCP660	atgattcagcaacgacacca	SNF5F repeats

BCP661	aggaggaggggtagaagtcg	SNF5R repeats
BCP662	tgttgcacaacaacaagtgc	SNF5F repeats
BCP663	gctgttgtcgctgtatttgg	SNF5R repeats
FLO11 FW	cactttgaagtttatgccacacaag	FLO11 qPCR
FLO11 RV	cttgcatattgagcggcactac	FLO11 qPCR
ACTI FW	ctccaccactgctgaaagagaa	ACT1 qPCR
ACTI RV	ccaaggcgacgtaacatagtttt	ACT1 qPCR

[^0]: Copyright © 2012 by the Genetics Society of America
 doi: 10.1534/genetics.112.145573
 Manuscript received September 4, 2012; accepted for publication October 1, 2012 Available freely online through the author-supported open access option.
 Supporting information is available online at http://www.genetics.org/lookup/suppl/ doi:10.1534/genetics.112.145573/-/DC 1/.
 ${ }^{1}$ Present address: Department of Systems Biology, Harvard Medical School, Boston, MA, 02115.
 ${ }^{2}$ Present address: Energy Biosciences Institute, University of California, Berkeley, CA 94720.
 ${ }^{3}$ Corresponding author: Whitehead Institute/MIT, 9 Cambridge Ctr., Cambridge, MA 02142. E-mail: gfink@wi.mit.edu

