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Introduction

Abstract

Background and Aim: This study aims to construct a strategy that uses assistance from
artificial intelligence (Al) to assist radiologists in the identification of malignant versus be-
nign focal liver lesions (FLLs) using contrast-enhanced ultrasound (CEUS).

Methods: A training set (patients = 363) and a testing set (patients = 211) were collected
from our institute. On four-phase CEUS images in the training set, a composite deep learn-
ing architecture was trained and tuned for differentiating malignant and benign FLLs. In the
test dataset, Al performance was evaluated by comparison with radiologists with varied
levels of experience. Based on the comparison, an Al assistance strategy was constructed,
and its usefulness in reducing CEUS interobserver heterogeneity was further tested.
Results: In the test set, to identify malignant versus benign FLLs, Al achieved an area un-
der the curve of 0.934 (95% CI 0.890—0.978) with an accuracy of 91.0%. Comparing with
radiologists reviewing videos along with complementary patient information, Al
outperformed residents (82.9-84.4%, P = 0.038) and matched the performance of experts
(87.2—-88.2%, P = 0.438). Due to the higher positive predictive value (PPV) (Al: 95.6% vs
residents: 88.6—-89.7%, P = 0.056), an Al strategy was defined to improve the malignant
diagnosis. With the assistance of Al, radiologists exhibited a sensitivity improvement of
97.0-99.4% (P < 0.05) and an accuracy of 91.0-92.9% (P = 0.008-0.189), which was
comparable with that of the experts (P = 0.904).

Conclusions: The CEUS-based Al strategy improved the performance of residents and re-
duced CEUS’s interobserver heterogeneity in the differentiation of benign and malignant
FLLs.

especially in China, where members of the population tend to have

The worldwide incidence of focal liver lesions (FLLs) is increasing
and is accompanied by an increase in the prevalence of hepatocel-
lular carcinoma, intrahepatic cholangiocarcinoma, and metastasis
from colorectal cancer.'* The noninvasive differentiation of malig-
nant lesions from benign lesions is a key diagnostic process before
treatment and routinely relies on computed tomography (CT) and
magnetic resonance (MR). Unfortunately, the reported error rate
of FLL characterization varies from 11% to 33%.>*

Compared with CT and MR, contrast-enhanced ultrasound
(CEUS) has the advantages of allowing real-time scanning and
providing dynamic perfusion information with fewer application
limitations.™® CEUS has been widely used in Europe and Asia,
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lower body mass index values. A meta-analysis demonstrated that
compared with CT and MR, CEUS has an equivalent diagnostic
sensitivity (Se) (87% vs 86% and 75%, respectively) and specific-
ity (Sp) (91% vs 88% and 82%, respectively).” The main contro-
versy regarding CEUS is its poor generalizability in the reading
of real-time videos between different readers. Regarding the differ-
entiation of diagnoses of hepatocellular carcinoma from target
FLLs, the Se of CEUS varied from 84% to 95%, and the Sp varied
from 25% to 77% among different radiologists at a single center.®
However, at different centers, the Se varied from 52% to 98%, and
the Sp varied from 71% to 100%.” To date, no solution to this crit-
ical issue has been proposed.
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Deep learning in liver lesion ultrasound

Attificial intelligence (AI) in medicine has been widely ex-
plored. Specifically, deep learning has been reported to achieve ex-
cellent performance on images of breast cancer,’” pulmonary
diseases,'*!! diabetic retinopathy,lz’13 and dermatoma,'*!> even
outperforming human experts.'®!'” Deep learning models can learn
the most predictive features directly from raw image pixels and
avoid the subjective feature engineering required in conventional
machine learning,'® making them independent of prior human
knowledge and capable of a high degree of fault tolerance.'’
Hwang et al*® reported a deep-learning-based algorithm that
could detect major thoracic diseases from chest radiographs, and
good validation results were achieved across five external test
datasets with an area under the curve (AUC) of 0.973—1.000.
These findings indicate that deep learning offers inherently good
generalizability across different radiologists at different centers;
thus, this methodology has the potential to overcome the disadvan-
tage of the poor generalizability of CEUS.

Previous studies applied machine learning algorithms to
CT/MRI/CEUS images to characterize FLL,>' >* but none of these
algorithms were targeted at reducing imaging interobserver hetero-
geneity or reported how these algorithms could interact with radi-
ologists and improve diagnosing accuracy (ACC). In this study,
we aimed to construct a deep learning model based on CEUS
video analysis for the differentiation of benign and malignant
FLLs. The performance of Al was compared with that of radiolo-
gists with varied experiences. The influence of the Al-radiologist
interaction on performance improvement was assessed, focusing
on AI’s potential to reduce interobserver heterogeneity.

Methods

Study design and participants. This retrospective study
was approved by the ICE for Clinical Research and Animal Trials
of the First Affiliated Hospital of Sun Yat-sen University (No.
[2015]106). Informed consent from patients was waived given
the retrospective nature of the study. Patients who underwent
CEUS examination for FLL characterization met the inclusion
criteria. Cases were excluded if they met the following criteria:
(i) patients who received pre-imaging treatment with surgery,
trans-arterial chemoembolization, ablation, systemic chemother-
apy, or catheterization; (ii) cases with simple cystic lesions that
were not indicated for CEUS examination; (iii) images with
greater than 1/3 of the target lesion covered by an acoustic
shadow; (iv) cases with missing images of any needed phase;
and (v) cases who could not be given a definite diagnosis based
on the reference standard. As shown in Table 1, two datasets were
collected from the hospital: a development set of 363 patients ob-
tained from January 2014 to May 2015 and a test set of 211
patients obtained from June 2015 to December 2015.

The reference diagnoses for malignant lesions, such as hepato-
cellular carcinoma and liver metastasis, were obtained by pathol-
ogy. For benign lesions, such as hemangiomas and focal nodular
hyperplasia, we used typical characteristics on contrast-enhanced
ultrasonography (CEUS) and at least 12 months of follow-up
without progression as standard criteria. For abscesses, the diag-
nosis was obtained by successful suction of pus or lesion shrink-
age after anti-infection treatment. For other benign and
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Table 1 Baseline characteristics of the included datasets
Data sets Development  Testing P
set set
Reference  Malignant, No. 281 164 0.984
standard Benign, No. 82 47
Gender Male, No. 273 152 0.457
Female, No. 90 59
Age Mean + SD, 52.64 + 13.77 5430 £ 1258 0.151
year
Lesion size Mean = SD, 5.10 + 3.27 4.74 £ 4.05 0.245
cm
No. of images 614,728 616 -
(augmented)
Ultrasound  Types, No. 5 6 -
devices
CEUS No. 10 11 -
examiners

CEUS, contrast-enhanced ultrasound; No., number; SD, standard
deviation.

malignant lesion categories, pathology was needed for diagnosis
confirmation.

Contrast-enhanced ultrasonography examina-
tion. Contrast-enhanced ultrasonography systems used were
listed in Appendix A. First, the target lesions were detected and
assessed by the unenhanced sonography. Second, patients intrave-
nously received a bolus injection of 2.4 mL (up to 3 mL) SonoVue
(Bracco) via the antecubital vein followed by 5 mL of 0.9% nor-
mal saline solution. Third, CEUS of the largest tumor
cross-section within 6 min was recorded as the arterial, portal ve-
nous, and delayed phases at 0-30 s, 31-120 s, and 121-360 s after
injection in separate clips with varied time duration. The images
and video clips were stored in the Digital Imaging and Communi-
cations in Medicine (DICOM) format.

Data preparation. All patients’ CEUS examinations, patho-
logical results, and clinical information, which included age, gen-
der, alpha-fetoprotein, hepatitis, liver cirrhosis, and history of
malignancy, were collected from the automatic storage and re-
trieval system in the hospital. Cases were deidentified before fur-
ther processing.

The results of the CEUS examinations were stored as plain
scans and video clips of enhanced phases in DICOM format.
Videos were converted into consecutive frames using the native
function of MicroDicom DICOM viewer 2.8.3. Based on the
2012 version of the Guidelines and Good Clinical Practice Recom-
mendations for CEUS in the Liver,” plain scans and enhanced
frames were extracted from specified time durations of CEUS
video clips. In total, 32 (1 unenhanced, 15 arterial, 15 portal, and
1 delayed phase images) or 46 (1 unenhanced, 15 arterial,
15 portal, and 15 delayed phase images) representative frames
were manually selected from each case (Appendix B). For the test
datasets, four representative frames per case (one from each phase)
were randomly selected. The frames were preprocessed into a
square image containing the lesion and a perilesional area that
was 1-2 cm in diameter. The preprocessed images were saved in
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an 8-bit JPEG format. Finally, 14 296 original frames for Al devel-
opment and 844 frames for testing were included in this study.
Gold standard labels for the images of each case were assigned
based on the reference diagnosis.

Artificial intelligence development: deep learning
model

Network architectures. Network architectures and the flow-
chart of Al development are presented in Figure 1. Microsoft’s re-
sidual neural network architecture (ResNet), which is regarded as a
4th-generation convolutional neural network, was used for deep
learning model training (Appendix C).2® Four 152-layer ResNet
branches on four-phase images were trained independently while
fused by a max-pooling layer and a fully connected layer to obtain
the final output. Given the limited data available for training, we

Deep learning in liver lesion ultrasound

applied a transfer learning algorithm that preserved most parts of
the network (152-layer ResNet) that had already been trained on
a large dataset (ImageNet) and retrained the weights of the fully
connected layer with random initialization on the target dataset
(our training set).>’

Input and output. The input images were resized to a resolution
of 224 x 224 pixels. To improve the model’s generalizability, we
applied an augmentation procedure to enrich the data diversity?®;
this augmentation was based on algorithms via brightness changes,
contrast adjustment, rotation, parallel shifting, and simple combi-
nations thereof to mimic the data diversity observed in clinical
practice (Appendix D). Through augmentation, 43 images (includ-
ing the original image) were generated from a single image. The
augmentation procedure generated 614 728 images for Al training.
The four-phase images were input to the corresponding four
branches of the 152-layer ResNet. The output for each case was

Data preparation
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Figure 1 Flowchart of data preparation and Al de- | Z
velopment. Data preparation consisted of data col- <
lection, decomposition of video clips into frames, 5
frame selection, and image cropping into square o
four-phase Al inputs. Al development consisted 8
of input, network architectures, and output.
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the risk probability of malignancy with values ranging from 0 to 1
and the initial diagnosis of benign or malignant.

Training protocol. Training was performed on a workstation
with a GeForce GTX 1080 Ti graphics processing unit (NVIDIA),
a Core 17-6700 K (Intel) central processing unit, and 64 GB of
random-access memory. Python 3.5 (https://www.python.org)
and the Torch (http://torch.ch) framework for neural networks
were used for this purpose. Augmentation was performed using
the Python imaging library of Pillow 3.3.1 (https:/pypi.python.
org/pypi/Pillow/3.3.1). During training, the dataset was randomly
divided into a training set (80%) and a tuning set (20%). Detailed
training configuration can be found in Appendix E.

Artificial intelligence performance and compari-
son with radiologists

Performance of the artificial intelligence model versus radi-
ologists. By applying the Al to the test set, each case was eval-
uated by the same input method as used in the training process,
and output was presented as a risk probability of malignancy for
each case and the corresponding diagnosis of benign or malignant.
For radiologists reading CEUS, the diagnosis was referenced to
the Guidelines and Good Clinical Practice Recommendations for
CEUS in the Liver (Update 2012).29 For lesions in the noncirrhotic
liver, those with arterial hyper-enhancement and late
hypo-enhancement tend to be malignant. Otherwise, lesions tend
to be benign. For lesions in the cirrhotic liver, sustained hyper-
or iso-arterial and late enhancement indicate benign features; oth-
erwise, lesions are considered malignant. Clinical information,
such as medical history and blood test, aided in diagnosing.

Four radiologists (two residents and two experts with 2, 3, 6,
and 8 years of experience with hepatic CEUS, separately) who
were blinded to the final diagnoses and did not participate in
the data preparation work reviewed the cases in random order.
The radiologists independently reviewed the CEUS videos along
with the patients’ clinical information. The performance was
evaluated in terms ACC, and the diagnostic tests were assessed
based on Se, Sp, positive predictive value (PPV), and negative
predictive value (NPV).

Performance of radiologists alone versus radiologists with
artificial intelligence assistance. By comparing the perfor-
mance of the Al with that of the radiologists, an Al assistance

H-T Hu et al.

strategy was developed based on Al’s advantage in the diagnostic
PPV or NPV, which suggested a more reliable diagnosis of malig-
nancy or benignity. After an additional 1-month interval, the radi-
ologists reviewed the CEUS cases again with Al assistance. By
assistance, the Al results provided a strong reference in cases of
conflict with the radiologists’ diagnoses, and the radiologists made
the final decision of whether to modify the diagnosis or adhere to
the initial diagnosis. Comparisons were drawn between the radiol-
ogists alone and the Al-assisted radiologist performance.

Statistical methods. The performances of the radiologists
and Al were mainly evaluated in terms of the AUC, ACC, Se,
Sp, PPV, NPV, and error rates. R software (version 3.4.1; https:/
www.r-project.org) was used for statistical analysis. Results with
two-sided P-values of less than 0.05 were considered to indicate
a statistically significant difference. Detailed statistical methods
can be found in Appendix F.

Results

Performance of the artificial intelligence model
versus radiologists. On the test set, the Al achieved an
AUC of 0.934 (95% CI 0.890-0.978) and an ACC of 91.0%
(95% CI 87.1-94.9%). Radiologists had an ACC varied from
82.0% to 86.7% (P = 0.116) (Table 2, Fig. 2a). In particular, the
residents achieved similar Se compared with the experts (88.4—
89.6% vs 88.4-90.2%, P = 0.380) but showed a deficiency in Sp
(59.6-63.8% vs 72.3-80.9%, P = 0.034) (Fig. 2b).

By comparison, Al outperformed residents (AUC: 82.9—-84.4%,
P =0.038; ACC: 91.0% vs 86.3-86.7%, P = 0.256) and matched
experts (AUC: 87.2-88.2%, P = 0.438; ACC: 91.0% vs 82.0—
83.9%, P = 0.021). Specifically, Al achieved a higher PPV than
the residents (95.6% vs 88.4-89.6%, P = 0.052) but comparable
with experts (95.6% vs 91.9-94.2%, P = 0.385). NPV of the Al
was higher than all four radiologists but not significantly (76.9%
vs 59.6—68.0%, P = 0.157-0.453). This indicated that Al is more
reliable diagnosis of malignancy than benignity (Table 2, Fig. 2).

Performance of radiologists alone versus radiolo-
gists with artificial intelligence assistance. The
higher diagnostic PPV of Al suggested a more reliable diagnosis
of' malignancy. The Al strategy was defined to improve the true ma-
lignant rate, especially for residents. When a radiologist made a di-
agnosis that conflicted with AI’s malignant prediction, a strong

Table 2 Detailed performance comparison between the Al and the four radiologists on the testing set

Statistics ACC Se PPV NPV

Al 0.910 (0.871, 0.949) 0.927 (0.887, 0.967) 0.851 (0.749, 0.953) 0.956 (0.924, 0.988) 0.769 (0.655, 0.884)
Expert1 0.867 (0.822, 0.913) 0.884 (0.835, 0.933) 0.809 (0.696, 0.921) 0.942 (0.905, 0.979) 0.667 (0.544, 0.789)
Expert2 0.863 (0.816, 0.909) 0.902 (0.857, 0.948) 0.723 (0.596, 0.851) 0.919 (0.877, 0.961) 0.680 (0.551, 0.809)
Resident1 0.839 (0.789, 0.888) 0.896 (0.850, 0.943) 0.638 (0.501, 0.776) 0.896 (0.850, 0.943) 0.638 (0.501, 0.776)
Resident2 0.820 (0.768, 0.872) 0.884 (0.835, 0.933) 0.596 (0.455, 0.736) 0.884 (0.835, 0.933) 0.596 (0.455, 0.736)

P (Al vs Experts) 0.256 0.419 0.297 0.385 0.453

P (Al vs Residents)  0.021* 0.406 0.016* 0.052 0.157

ACC, accuracy; Se, sensitivity; Sp, specificity. Bold fonts indicate the best performance per column.

"Statistically significant (P < 0.05).
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Figure 2 Performance comparison between Al and radiologists. (a) Error rate (1-accuracy) comparison between Al and radiologists. (b) Detailed com-
parison of diagnostic sensitivity and specificity between Al and the radiologists.

recommendation to modify his or her diagnosis was suggested.
While when the radiologist’s diagnosis conflicted with AI’s benign
prediction, the suggestion for diagnosis modification was general.

Compared with radiologists alone, radiologists with Al assis-
tance achieved 7.4—11.0% (P < 0.001-0.015) improved sensitiv-
ity for both residents and experts, 21.1-37.3% (P = 0.001—
0.031) NPV improvement and 5.1-9.9% (P = 0.004-0.080)

improved accuracy. Expert 1 experienced a 4.3% reduced Sp
(P = 0.801) and 0.7% decreased PPV (P = 0.998) (Table 3,
Fig. 3). With Al assistance, interobserver performance between
residents and experts was comparable based on ACC
(91.0-92.9%, P = 0.904), Se (97.0-99.4%, P = 0.360), Sp
(66.0-76.6%, P = 0.671), PPV (91.1-93.5%, P = 0.818), and
NPV (86.8-96.9%, P = 0.460) (Table 4, Fig. 3).

Table 3 Performance comparison of the four radiologists between radiologist-alone and Al assisted radiologists on the testing set

Statistics ACC Se Sp PPV NPV
Expert 1 Alone/Al assisted 0.867/0.924 0.884/0.970 0.809/0.766 0.942/0.935 0.667/0.878
P 0.080 0.006* 0.801 0.998 0.031*
Expert 2 Alone/Al assisted 0.863/0.929 0.902/0.982 0.723/0.745 0.919/0.931 0.680/0.921
P 0.038* 0.005* 1.000 0.852 0.014*
Resident 1 Alone/Al assisted 0.839/0.910 0.896/0.970 0.638/0.702 0.896/0.919 0.638/0.868
P 0.040* 0.015* 0.661 0.594 0.031*
Resident 2 Alone/Al assisted 0.820/0.919 0.884/0.994 0.596/0.660 0.884/0.911 0.596/0.969
P - 0.004* <0.001* 0.670 0.528 0.001*
ACC, accuracy; Se, sensitivity; Sp, specificity. Bold fonts indicate the best performance per column.
“Statistically significant (P < 0.05).
Radiologists alone vs. Al assisted (Expanded)
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Figure 3 Performance validation of the strategy of Al assistance in the testing dataset. Performance comparison between radiologists with Al assis-

tance and radiologists alone.
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Table 4 Performance comparison between the four radiologists with Al assistance on the testing set

Statistics ACC Se Sp PPV NPV

Expert1 0.924 (0.888, 0.960) 0.970 (0.943, 0.996) 0.766 (0.645, 0.887) 0.935 (0.898, 0.972) 0.878 (0.778, 0.978)
Expert2 0.929 (0.894, 0.964) 0.982 (0.961, 1.000) 0.745 (0.620, 0.869) 0.931 (0.893, 0.968) 0.921 (0.835, 1.000)
Resident1 0.910 (0.871, 0.949) 0.970 (0.943, 0.996) 0.702 (0.571, 0.833) 0.919 (0.878, 0.960) 0.868 (0.761, 0.976)
Resident2 0.919 (0.883, 0.956) 0.994 (0.982, 1.000) 0.660 (0.524, 0.795) 0.911 (0.869, 0.952) 0.969 (0.908, 1.000)
P 0.904 0.360 0.671 0.818 0.460

ACC, accuracy; Se, sensitivity; Sp, specificity. Bold fonts indicate the best performance per column.

Discussion

In this study, we constructed a CEUS-based Al for FLL differenti-
ation between benignity and malignancy, which significantly
outperformed resident radiologists and matched the performance
of experts who had access to complementary clinical information
on patients. Considering the advantage of AI’s high diagnostic
PPV compared with radiologists, the strategy of Al assistance
was developed to improve their true malignancy rate. For the inde-
pendent testing set, radiologists with Al assistance exhibited im-
proved performance especially for residents who reached the
expert level; thus, interobserver heterogeneity was reduced.

Contrast-enhanced ultrasound is complementary to and even
substitutable for CT and MR in the characterization of FLLs, and
the main advantages include the increased temporal resolution of
CEUS videos and their ability to show detailed blood perfusion
morphology. CEUS videos provide time-sequence information
on dynamic blood perfusion, enabling the differentiation of focal
nodular hyperplasia from atypical hepatocellular carcinoma.® In
addition to these visible features, potential pixel-based “features”
of time-sequence information may be recognizable with the aid
of deep learning techniques. By applying multiphase video-based
images and a deep neural network for model development, the ad-
vantages of CEUS could be optimally exploited. Our model
achieved a tested AUC of 93.4% and ACC of 91.0%. Compared
with models trained on single-frame images, our model
outperformed or matched the previously reported performances
of AI-CT (ACC: 82-90%),** and AI-MRI (ACC: 88.0—
91.9%).>**! For AI-US, our study reported the largest sample size
with an independent test dataset.** ** Compared with a previous
AI-US study with an independent test dataset,® our Al model ex-
hibited better performance (AUC: 93.4% vs 88.1%).

For multiphase imaging analysis, an architecture based on mul-
tiple ResNet branches was designed. ResNet was the first network
architecture to outperform human experts in the ImageNet Large
Scale Visual Recognition Challenge. Its pixel-based convolution
and backpropagation design for automatic weight optimization
make it powerful in recognizing the distinguishing features of dif-
ferent categories.”® An ACC of 96.4% has been achieved with the
use of ResNet in colonoscopy video analysis for polyp detection in
a study by Urban ef al.*® Our ResNet-based and video-based Al
model achieved an Se of 92.7% and an Sp of 85.1% for FLL dif-
ferentiation on the test dataset. Its performance was comparable
with or even better than the previously reported performance of
non-AI CT (Se: 89%, Sp: 94%) and MR (Se: 83%, Sp: 75%).” A
CEUS-based Al model was also reported in a recent study of
FLL differentiation®*; however, that study used machine learning
algorithms based on manually extracted features for model devel-
opment. That study reported an Se of 83.3% and an Sp of 62.7%,
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and these values are lower than those obtained with our deep learn-
ing model.

For the application of Al in clinical practice, the authority of
decision-making should remain under radiologists’ supervision. In
this study, we proposed a man—Al interaction strategy for FLL diag-
nosis, which improved residents’ performance and reduced interob-
server heterogeneity associated with CEUS. Because they lack
clinical experience, residents can be less confident in their diagno-
ses, especially for benign lesions in high-risk liver background,
leading to a low Sp. In this study, our residents achieved similar
Se results but significantly lower Sp results compared with experts
(59.6—63.8% vs 72.3—-80.9%, P = 0.034). By contrast, the Al had a
similar PPV and Sp compared with the best-performing expert and
outperformed residents. Therefore, the strategy of Al assistance
was designed to compensate for the residents’ deficiency in Sp by
referring to a more reliable diagnosis of malignancy. In the test pro-
cedure, radiologists were informed of AI’s high confidence in ma-
lignancy diagnoses (comparable PPV with experts) and low
confidence of benignity diagnoses (no better NPV than residents).
This information gave the radiologists evidence for their choice,
as they can modify their diagnosis or not when it conflicts with
the diagnosis provided by Al In the previously reported studies,
this specific man—Al interaction strategy was always missed.>>=’
As shown in the testing dataset, our strategy was proven to be effec-
tive. This Al system may also be helpful in radiology resident train-
ing programs and radiologist training at less developed centers.

This study has several limitations. First, we used only image
data for Al training, thus neglecting potentially important informa-
tion, such as patients’ clinical information related to alpha-
fetoprotein, hepatitis, and liver cirrhosis. Although this limitation
can be compensated by the intended purpose of the Al, that is, to
provide assistance for radiologists, a comprehensive Al model in-
tegrating CEUS and complementary patient information could en-
able a further breakthrough in FLL differentiation. Second,
although our study reported the largest cohort to date compared
with previous studies on CEUS, the sample size was still small
considering the deep learning nature of this study. Although trans-
fer learning allows the development of an accurate model with a
relatively small training dataset, the model performance will still
be inferior to that of a model trained from a random initialization
on an extremely large dataset.'? Future studies using a much larger
dataset that ideally includes data from multiple centers for training
may further improve the Al model’s performance.

Conclusion

In summary, we developed CEUS-based Al for differentiating be-
tween benign and malignant FLLs, which outperformed our radi-
ologists. Consequently, a clinically applicable strategy of Al
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assistance was developed, which improved the performance of res-
idents to the expert level and thus reduced interobserver heteroge-
neity associated with CEUS.
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Appendix A: CEUS systems used in the study

All CEUS examinations were performed by radiologists with at least 4 years of experience in hepatic CEUS, using an Acuson Sequoia 512
scanner (Siemens Medical Solutions, Mountain View, CA, USA) equipped with a 4V1 vector transducer (frequency range 1.0-4.0 MHz)
with contrast pulse sequencing (CPS, Mechanic Index from 0.15 to 0.21) or an Aplio 500 or Aplio XV (Toshiba Medical Systems, Tokyo,
Japan) scanner equipped with a 375BT convex transducer (frequency range 1.9—-6.0 MHz) with contrast harmonic imaging (CHI, Me-
chanic Index from 0.05 to 0.10).

Appendix B: Frame selection criteria

The frames were chosen in accordance with the following criteria: (i) images with at least 1 cm of perilesional hepatic parenchyma; (ii) the
lesion should remain close to the same location in the tri-phase frames; (iii) images without or with less than 1/3 of the target lesion cov-
ered by an acoustic shadow.

Appendix C: 152-layer ResNet architecture

The 152-layer ResNet architecture is separated into five parts: convl, conv2_x, conv3_x, conv4_x, and conv5_x. Not including conv1, the
remaining parts consist of 3, 8, 36, and 3 building blocks, respectively, with three convolutional layers (1 x 1,3 x 3, and 1 x 1) in each
block. With the 1 layer (7 % 7) in conv] and the fully connected layer, there are a total of 152 layers in the network.

Appendix D: Examples of image augmentation

The augmentation was based on algorithms via brightness changes (brighter by 1.2-fold or darker by 0.2), contrast adjustment (1.2-fold
increased or 0.2-fold reduced), rotation (by —30, —15, 15, and 30 degrees), parallel shifting (horizontally), and simple combinations
thereof to mimic the data diversity observed in clinical practice.

Original Flip

Rotatex15° Rotatex-15°
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Appendix E: Detailed training
configuration

The images of the training set were fed into the network. The out-
put probability of the malignancy or benignity of each image was
automatically compared with the reference label, and the error be-
tween them was backpropagated for weight optimization. The
weights in the fully connected layer were further updated by ap-
plying the network to the test set. Ten epochs (iterations through
the entire dataset), a constant learning rate of 0.001, batch normal-
ization [1], minibatch gradient descent, and a y value of 0.1 were
applied. Early termination of the training process was applied
when no further improvement in loss and accuracy on the tuning
set was achieved in at least 500 iterations.
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Appendix F: Detailed statistical methods

ROC curves were plotted using the “pROC” package by plotting
the Se against the Sp for a varying predicted probability threshold,
and the AUC values were calculated accordingly. For the calcula-
tion of the ACC, Se, Sp, PPV, and NPV metrics, the “confusion
matrix” function of the “caret” package was used, and the error
rate was calculated as 1-ACC. For the comparison of the statistical
metrics among the Al, the radiologists, and the radiologists with
Al assistance, Wilcoxon rank test was applied for AUC compari-
son, and y* test was applied for ACC, Se, Sp, PPV, and NPV.
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