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A critical analysis of Powell’s 
results on the interdivision time 
distribution
Vincent Quedeville1,2, Jérôme Morchain   2, Philippe Villedieu3,4 & Rodney O. Fox5

The cell-age and interdivision-time probability density functions (PDFs) have been extensively 
investigated since the 1940s due to their fundamental role in cell growth. The pioneering work of Powell 
established the first relationship between the interdivision-time and cell-age PDFs. In the literature, 
two definitions for the interdivision-time PDF have been proposed. One stands for the age-at-rupture 
PDF and is experimentally observable, whereas the other is the probability density that a cell divides at 
a certain age and is unobservable. From Powell’s results pertaining to the unobservable interdivision-
time PDF, Painter and Marr derived an inequality that is true but is incorrectly used by experimentalists 
to analyse single-cell data. Unfortunately, the confusion between these two PDFs persists. To dissipate 
this confusion, exact relationships between the cell-age and the interdivision-time PDFs are derived in 
this work from an age-structured model, which can be used by experimentalists to analyse cell growth 
in batch and continuous culture modes.

Understanding biological population dynamics in a fermenter has been of crucial importance in bio-process 
engineering and many other fields, such as pharmacology, that require a mass production of metabolic 
by-products. A strain will grow differently in a batch or continuous fermenter, to the extent that one population 
will exhibit different characteristics depending on the culture conditions and the observed features cannot be 
compared. In particular, in an open system, the fermenter dilution rate, D, will determine the ensemble-averaged 
behaviour, such as the mean age or mean interdivision time, in other words the cell-cycle duration. As early as 
1956 Powell1 hinted at the seminal conclusion that a continuous culture’s observed mean interdivision time, τ〈 〉, 
must be less that the so-called population doubling time, meaning that as soon as the interdivision-time distribu-
tion is asymmetric, the healthier cells will contribute more to maintaining a steady-state cell number than their 
less active counterparts. To date, that article has been cited in 372 research works, with significant interest from 
mathematicians2, physicists3, chemists4 and biologists5 on a variety of perspectives pertaining to the cell-cycle 
dynamics and the marginal distributions in different observable properties such as age, size or cell content. In the 
last decade, the development of microfluidic devices has broadened the biologists’ horizons and given more accu-
rate statistical information regarding the cell-cycle processes6–9, allowing modelling assumptions to be tested 
against experimental results. However, Powell’s logical reasoning leading to τ〈 〉 ≤ ln2/D is not a consensus view 
in the mathematical modelling community; indeed, in 1967 Painter & Marr10 demonstrated the exact opposite 
inequality starting from Powell’s work and no one has, to the authors’ knowledge, questioned this assessment to 
date. If anything, Painter & Marr’s demonstration has paved the way for experimental and analytical work, 
i.e.9,11,12, attempting to consolidate Painter & Marr’s viewpoint.

The very notion of interdivision-time distribution can embrace different quantities in spite of a common defi-
nition of the concept (i.e. the time elapsed between two consecutive division events of an observed organism), and 
no consensus has been reached to date on the relationship between these quantities. Consequently, some seman-
tics are required to provide a framework for the analytical results presented in this work and for their comparison 
with experimental data.
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•	 A cell’s age is defined as the time elapsed since the division event that produced it (that is the age in the cycle), 
entailing that the quantity is reset to zero after each recorded rupture. It does not encompass the lineage’s lon-
gevity that will be called the “age in the system”. The latter is tantamount to the abiotic phase’s lifespan because 
this time interval is just the residence time in the fermenter.

•	 An observable interdivision-time distribution, g, stands for a collection of recorded cell-cycle durations for 
which labels such as “generation time”1 or “doubling time”7 exist in the literature. The vocabulary is here bor-
rowed from6 so that interdivision time will be synonymous with the cell’s age at rupture. As a consequence, g 
refers to Powell’s so-called “carrier distribution” and g a da( )  defines the conditional probability that a cell that 
has divided has done so between age a and a da+ . It is essential to notice that g captures the Markovian 
nature of the cell cycle process and reports the fact that a cell has reached age a in the system. Throughout the 
article, ∫ ag a da( )  will be called obsτ .

•	 The unobservable interdivision-time distribution h, used by Powell1, is such that h a da( )  is the probability that 
a newly formed organism will have a generation time in the range [a, +a da]. Its first moment ah a da( )∫  will 
be called τuno.

Powell sheds light on the dissimilitudes between these two interdivision-time distributions. This distinction is 
relevant for both batch and continuous conditions for different reasons. In an open fermenter, a cell’s biological 
development must be considered along with its residence time so an organism’s interdivision time could refer to 
an unobservable and, hence, unmeasurable event (for instance from statistical considerations, from any 
steady-state group of tracked particles, half of them will be washed out before dividing). In batch culture, the 
younger elements outnumber their ancestors due to the biotic phase’s exponential growth and the statistical extra 
weight conferred on the less probable quicker interdivision times over a much larger share of the population 
pushes the age-at-rupture distribution to the left. Experimentally, the available data regarding interdivision time 
pertain to the age at rupture, and the PDF’s first moment is well approximated by the data set’s arithmetic mean, 
provided the collected data set is large enough. In 1956, Powell1 claimed he did produce an experimental equiva-
lent for h and fitted the histogram with a Pearson type-III distribution. However, he remarked in 196413 that “the 
generation times of the organisms which have, at a given time, completed their life span during the previous his-
tory of the culture do not compose” h; “they compose the carrier distribution” g. In fact, only information regard-
ing the cell’s age at rupture is available to experimentalists and, hence, it cannot be interpreted with analytical 
results intended for the unobservable interdivision-time PDF h. In 1967, Painter & Marr10 extracted a lower 
bound on the first moment of Powell’s interdivision-time distribution τuno and confused it with the observable 
mean interdivision time obsτ , prompting some equivocal assertions (a very good recent example being9) by lack of 
consensus. Keeping these considerations in mind, this work aims to reconcile the persistent misunderstanding 
about these distinct paradigms, and on presenting exact analytical results regarding the observable 
interdivision-time distribution that are accessible to experimentalists. To illustrate the most important points, 
numerical examples are provided from Monte–Carlo simulations of a population balance model. Furthermore, 
unlike14 or8 where the so-called “timer” or “adder” models are given prominence, by virtue of15 the rupture pro-
cess will be assumed to be a function of the cell length.

The first part of the paper presents the general framework of population balance modelling in the context of 
microbial populations, the particular population balance equation (PBE) chosen for the present study and the 
mathematical definition of the age and observable interdivision-time distributions. The second part is devoted to 
analytical results leading to relationships valid for the age and interdivision-time PDFs that are observable from 
batch and chemostat experimental measurements. These analytical results are further underpinned by numerical 
simulations using a Monte–Carlo algorithm. In the discussion, the results from the previous section are compared 
to experimental data from the literature. A resolution of the seemingly contradictory conclusions in Powell’s and 
Painter and Marr’s works is provided.

Mathematical Background and Definitions
General formulation of a PBE for biological populations.  Beginning with work in the 1960s16,17, PBEs 
have provided a general framework to describe the biological response to a user-defined experimental set-up. In 
this context, an inner coordinate is understood as a marginal variable and its law is retrieved through integration 
with respect to all other dimensions. When biological modelling of a continuous fermenter is addressed, the 
age-structured PBE takes the form
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with ξ ∈ Ω ⊂ξ
n , n 1≥ , the vector of inner coordinates, ξ their rate of change, K the redistribution kernel, and 

n t d( , )ξ ξ the cell number in an infinitesimal domain of Lebesgue measure dξ. In (1) γ (time unit−1) is the rupture 
function, or simply the cell-division frequency, and D (time unit−1) stands for the so-called dilution rate that 
drives both the input feed and cell washout to maintain the medium volume. In general, ξ  is a function of both ξ 
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and the organisms’ environment, but its formulation has no impact on the section’s results. Hereinafter, D will be 
assumed constant and washout is assumed uniform with respect to any inner coordinate (i.e., the fermenter is 
perfectly mixed).

In a continuous fermenter, an equilibrium will be reached when the time derivative in (1) vanishes and this 
condition is referred to as steady state. In a batch fermenter, the absence of a washout term will allow the cell 
number to grow at will as soon as the initial conditions have faded away. This equilibrium is thoroughly discussed 
in17 and will be referred to as self-similar exponential growth. The time derivative in (1) does not vanish in this 
case, and the stability property will relate to the marginal distribution’s geometrical shape. In other words, the 
scaled quantity

∫
ξ
ξ ξ

Ωξ

n t a
n t a d
( , , )
( , , )

will be constant (or self similar) for any ξ ∈ Ωξ.

Application to E. coli population dynamics.  Without loss of generality, this section will consecrate a 
two-dimensional PBE, ξ standing for the cells’ length ∈l l[0, [ (m), where l  is the maximum possible cell length 
before division. In this section, no laws for l are yet required. Nonetheless, it is understood that such a process 
must be a decreasing function of l since it involves the internal transport of membrane proteins from the cyto-
plasm, which takes longer as the cell grows larger. Indeed, as noted by Nobs & Maerkl7, synthesis of cell-membrane 
components could be one such factor setting limits on the cell-doubling time, what seems universal enough to 
feature in any biological population modelling. Other patterns are conceivable though (as mentioned in9) but the 
lack of experimental data makes any consensus unattainable.

Also, the redistribution kernel obeys P l l a dl( , , ) 1l

0∫ ′ ′ =
′ , which is the mathematical counterpart of the bio-

logical hypothesis that a given cell gives birth to only two daughter cells during the division process.
Hence, (1) reads in this case:
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In the system (2), a null-flux condition is assumed at the domain boundary in length, what is tantamount to 
the claim that no cell can grow beyond a certain length that challenges its biomechanical structure. From physical 
grounds, it will similarly be assumed that no cells will reach infinite age.

Definition of PDFs.  Considering that n t l a( , , ) refers to the number density of cells with length l, age a at 
time t in a continuous reactor and γ is the cell-division frequency, the function
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will designate the interdivision-time PDF as it is observed in experimental measurements. Its moments are 
denoted by ∫τ〈 〉 = a g dak k , ≥k 1, 1τ〈 〉 coinciding with τobs. It is brought to the reader’s attention that g a da( )  is not 
the probability that a cell divides between age a and a da+ . Instead, g denotes what Powell called the carrier 
distribution D in his 1956 article1 and corresponds to the observed cell-cycle duration.

Furthermore, the cell-age PDF f can be retrieved by integrating (2) with respect to l:

∫= =f t a
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where N t a n t l a dl( , ) ( , , )∫=  and = ∬N t n t l a dlda( ) ( , , ) . Thus f a da( )  is the probability that a cell in the reac-
tor has an age between a and +a da, and f is therefore tantamount to Powell’s φ in his 1956 article1.

Comparing (3) to (4), we observe that the interdivision-time PDF is weighted by the cell-division frequency, 
while the cell-age PDF is not. At steady state, or under self-similar conditions, both PDFs will be independent of t.

Analytical and Numerical Results
In this section, we establish exact results concerning the interdivision-time and cell-age PDFs arising from the 
solution to the PBE introduced above.

Steady-state relation between f and g in a continuous fermenter.  From the definition of f provided 
in (4), one gets:
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The first term on the right-hand side of (5) is obtained through an integration of (2) with respect to l, i.e.
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In (6), the first term on the left-hand side designates N t a( , )’s time derivative and the null-flux boundary con-
dition forces the second term to vanish. Furthermore,
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The same reasoning as before entails the conclusion that the first term on the left-hand side is in fact N(t)’s 
time derivative and the second term is null. Use of Fubini’s theorem and the fact that there is no cell with an 
infinite age in the system turns the third term into

∫ ∫ ∫
∫ γ

γ

∂
∂

=

= − ′ ′ ′ ′ ′ ′ ′ ′

= −

=
∞

∬
∬

a
n t l a dadl n t l a dl

l a P l l a n t l a dl da dl

l a n t l a dlda

( , , ) [ ( , , )]

2 ( , ) ( , , ) ( , , )

2 ( , ) ( , , ) (8)

a 0

Consequently,

t
N t l a n t l a dlda DN t( ) ( , ) ( , , ) ( ) 0 (9)γ∂

∂
− + =∬

Combining (9) and (7) in (5) and referring to the definition of f in (4) yields an equation for the time evolution 
of f:
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A steady-state relationship between f and g can be derived from this equation. Indeed, at steady state, f’s deriv-

ative with respect to time vanishes (removing the time dependence) and it also follows from (9) that
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The last step consists in using (3), the definition of g, and (11) in (12) to get the desired relationship:
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′ = − −f a Dg a Df a( ) ( ) ( ) (13)

An analytical solution for the cell-age distribution at steady state in a continuous fermenter.  
The differential equation (13) can be solved using Duhamel’s formula and yields
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One only needs to provide f(0) to completely define f. From the definition of f, given in (4), the null-age rela-
tion provided in (2) and the steady-state relation (11), the boundary condition reads:
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Consequently the cell-age distribution at steady state reads:
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This result extends Ramkrishna’s18 work dealing with analytical and numerical solutions of age and size PBMs 
in a closed bioreactor. It is worth mentioning that (15) and (16) echo Powell’s equation (9)1. Both derivations 
complement each other since the cell-age PDF definitions are in fact identical (Powell’s φ is equivalent to our f). 
However, Powell’s results involve an interdivision-time distribution that is unobservable from experiments con-
trary to our g.

For a continuous fermenter at steady state τobs ≤ ln(2)/D.  This result is obtained from rearranging 
(16) and taking the limit a → ∞. One can first check that the application a Da f a: exp( ) ( ) is strictly decreasing 
on +. Indeed:
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The last inequality does not prevent obsτ  from being equal to ln(2)/D, which would happen if all moments kτ〈 〉 
were equal to obs

kτ . This would basically force g to be a Dirac delta function: δ −a Dln(2)/ . In this case though, the 
observable and unobservable distributions are identical and mirror the behaviour of an unstructured model. A 
preliminary conclusion was first formulated by Tyson & Hannsgen2, but the authors missed Powell’s13 remark 
pertaining to the difference between the two interdivision-time distributions, preventing their result from being 
applicable to actual experimental data.

An additional conclusion that stems from (14) is that the outlet-age profile (that must be tantamount to the 
fermenter’s because of the uniform washout assumption) differs significantly from the liquid phase’s (i.e., De−Da), 
because the biological phase renewal is a consequence of two competing phenomena: dilution and cell division. 
A graphic comparison between the two residence time distributions is shown in Fig. 1.
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For a continuous fermenter at steady state 〈a〉 + τobs = 1/D.  Taking the first moment of (16) yields
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Figure 1.  Steady-state results for continuous culture with = . −D 0 15 hr 1. (A) Cell-age PDF f from the Monte–
Carlo simulation (blue points), compared with the analytical solution (red line) (16) where 〈 〉 ≈ .a 2 360 hr. (B) 
Cell-age PDF (blue line) compared with the fluid residence-time PDF (green line).
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Consider now an age-synchronised population, i.e., no variance in age is observed ( a a2 2〈 〉 = 〈 〉 ). Then using 
(18) and (20) one can determine whether a non-zero variance can exist in the interdivision-time distribution.
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The second-order polynomial would vanish for 〈 〉 ∈ − +D a {1 2 /2, 1 2 /2}, the latter value being impos-
sible given that +1 2/2 1> . However, if 〈 〉a  were equal to − D(1 2 /2) , the mean interdivision time obsτ  would 
be >

D D
2

2
ln(2) , which is not possible according to (17). In other words, an age-synchronised steady-state popula-

tion has to exhibit some variance in its interdivision time. As a consequence it can not remain age synchronised 
in a continuous fermenter, a result that was already conjectured by Yasuda6. This well-known result was also 
thoroughly discussed in19,20.

For a self-similar batch fermenter τobs ≤ 〈a〉 ln(2)/(1 − ln 2).  In a closed fermenter, (2) does not have 
a washout term and, as a consequence, reads
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with the same boundary condition. Hence, N(t)’s dynamics take the form
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and N(t, a) follows from the same reasoning as in the previous section:
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∬
For self-similar growth,

•	 f must be independent of t, which forces (21)’s left-hand side to vanish.
•	 ∬ γ l a n t l a dlda( , ) ( , , ) /N(t) reaches a constant value that was called νm by Powell.

Thus, for self-similar growth, (21) reads
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and the initial condition takes the form
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Once again, by virtue of Duhamel’s theorem,

f a e
N t

e e l a n t l a dlda( ) 2 1
( )

( , ) ( , , )
(22)m

a a a a
0

m m m∫ ∫ν γ= − ′ ′ ′ν ν ν− − ′

The similarity between (22) and (16), with νm playing the same role as D, allows the immediate conclusion
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and is accessible as soon as the cell-age and interdivision-time PDFs are measured. Furthermore, the same rea-
soning as in the previous paragraph yields the conclusion
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which is the same relation between obsτ  and 〈 〉a  as (19). The equality would hold if all cells were equally “healthy”. 
If this situation cannot be strictly ruled out, it was not observed experimentally by Powell and is highly unlikely 
to occur.

Numerical examples.  In this part, which deals with E. coli, all cells will be assumed cylindrical with con-
stant diameter d (m) (in accordance with6), so that both a cell’s surface and volume are functions of l only. The 
same assumptions regarding the cell geometrical feature can also be made for Bacillus subtilis (as discussed in9). 
In order to put our results to the test, a comprehensive model must be formulated and simulated using either 
Eulerian or Lagrangian methods. We draw the reader’s attention to the fact that Lagrangian methods allow the 
removal of the cell age from the PBE (1) because this very feature is accessible as soon as a cell is tracked in time. 
In fact, Monte–Carlo methods make the model one dimension smaller and, as a result, are preferable from a 
computational perspective. Our Monte–Carlo simulation aims at illustrating more complex metabolic features 
and involves more than two variables. Notwithstanding, this has no influence on the section’s results dealing with 
age-related PDFs, because these extra variables can always be taken out through partial integrations. In the model 
used in our Monte–Carlo simulations, ξ reads
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where S is the substrate concentration in the fermenter, ρ a cell’s mass density (~103 kg/m3), V its volume (a linear 
function of l), YSX (g/g) a (constant) substrate-to-mass ratio, and 1τ , τ2 (hr) characteristic times of the respective 
mechanism’s adaptation. The functions f1 and f2 are of Monod shape and associate S to respective qS1

 and qS2
. The 

function f3 serves at a restricting factor that aims at accounting for qS1
’s inhibiting influence over qS2

 in accordance 
with21. This refinement aims at uncoupling the substrate uptake and lengthening at the cell scale, but is not needed 
for steady-state conditions. The model for l ensures that a cell divides before crossing the =l l  border and the 
close-to-zero exponent guarantees that the lengthening phenomenon is almost linear with respect to l for most of 
the cell cycle.

Furthermore, the division frequency model is
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with T (hr) a time constant, linf (m) the minimal length at rupture, and lc (m) a characteristic division length.
The idea that γ depends only on l is borrowed from Robert & Al.15. Other assumptions have been investigated 

recently in the literature, such as an “adder” model8, which seems less convenient from a numerical simulation 
perspective. Indeed, due to the non-equivalent redistribution in length at rupture, such a mechanism could allow 
fractions of the population to grow more and more for generations on end until non-physical cell lengths are 
encountered.

For completeness, the redistribution kernels in l and qS are assumed independent, beta and symmetric. To 
explain the first hypothesis, it is inferred from raw experimental data for two different E. coli strains22 that the 
growth rate and the length at birth are relatively independent. With little appropriated cell-scale information to 
the authors’ knowledge, full uncorrelation was considered, easing the analysis of the model’s sensibility to this 
factor. The parameters employed are given in Table 1. It can be demonstrated that the inequality −κ η+ > 1 
entails the mathematical well-posedness of the problem. From physical grounds, this condition ensures that the 
rupture process overtakes lengthening as the cell length approaches the upper bound l .

Other elongation rate formulations, including linear or exponential laws can be found in the literature8,9,15,23. 
These laws are generally based on fitting single-cell measurements. In general none of these formulations suits 
the data better than the others23. Furthermore, Robert et al. evidence a sublinear elongation as the cell length 
approaches a critical value, what seems reasonable considering that it becomes increasingly difficult for any 
organism to maintain their growth rate as feeding an ever-growing cell membrane at a constant rate would likely 
end up mustering more resources than is available to them. Also, from a practical point of view, it is worth notic-
ing that any experimental device introduces a bias against the older cells that are also most probably the longest.

Modelling-wise, the linear and exponential formulations imply that nothing restrains the cell elongation. In 
any case, the choice of the lengthening rate model must be consistent with the division frequency in order to 
prevent the production of cells with an infinite length. Our l and γ respect this constraint, even though other 
combinations are valid as long as the above restriction is met. In the end, however, the analytical results derived 
in this work do not depend on any particular choice.

With these considerations in mind, the algorithm consists in tracking the cell’s inner coordinates with respect 
to time, from random clipped-Gaussian initial samples. Then the division and washout events are determined by 
sampling two random numbers u, x:
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•	 Let u [0,1]∼   sampled for each cell at each time step: mitosis occurs if e u1 l t( )− <γ δ−

•	 Let ( )x
D
1∼   sampled for each cell at birth: washout occurs should the cell’s age be greater than x.

When a cell divides, its inner properties are redistributed according to the kernel K, and each new cell is given 
a residence time drawn from ( )D

1 . The cell age is reset to zero for one of the daughter cells, making room for a new 
lineage in the fermenter, whereas the other daughter keeps the record of the mother-cell’s lineage. All algorithms 
are coded in C++11 and the data are processed with Matlab R2016a.

Comparison between analytical and Monte-Carlo simulations results.  The Monte–Carlo simula-
tion reaches a steady state after 4 to 5 times the slowest characteristic time D 6 667 hr1 ≈ .− . From this point 
onwards, consecutive division events are recorded for 1,003,306 cells over the course of 37.5 hr. Around 50% 
(501,322) divide at least twice and 25% (250,402) divide three times or more. This substantial database yields a 
numerical accuracy of approximately 10−3 for estimating averages. As can be seen from Fig. 1, the steady-state 
cell-age PDF matches many well-known results (see12,24 for instance), and its first moment is 〈 〉 ≈ .a 2 360 hr. In 
Fig. 2, the corresponding interdivision-time and length-at-division PDFs are provided, and it can be seen that 
both PDFs exhibit a right-skewed shape. Furthermore, the mean interdivision time can be retrieved and is 
approximately 4 314 hrobsτ ≈ . . It is worth noting that

•	 τ〈 〉 + ≈ .a 6 673 hrobs . This value differs from 1/D by less than 0.1%.
•	 τ≈ . >4 621 hr

D obs
ln(2)  and a 5 331 hr obs

ln(2)
1 ln(2)

⟨ ⟩ τ≈ . >
−

.

Batch-culture simulations (cf. Fig. 3) exhibit a fairly similar pattern once exponential growth is reached. In 
this context, νm is retrieved from the population’s growth in mass (that is tantamount to its growth in number as 
mentioned in13,25) over a certain time interval:

Parameter Value Description References

D 0.15 hr−1 Dilution rate From experiment

linf 7 × 10−6 m Minimal length at rupture 7

lc 11 × 10−6 m Standard length at rupture 7

l 18 × 10−6 m Maximal length at rupture 7

T 2 hr Time scale in the cell division rate Assumed

YSX 1/0.42 ≈ 2.38 g/g Substrate-to-mass ratio 26

τ1 25 s qS1
 characteristic time Assumed

τ2 5 s qS2
 characteristic time Assumed

d 10−6 m Cell diameter Assumed

η 0.05 Shape parameter Assumed

κ −0.96 Parameter Assumed

Table 1.  Parameter used in the simulations.

Figure 2.  Monte–Carlo simulation results for continuous culture with = . −D 0 15 hr 1. (A) Steady-state cell-age 
(blue points) and interdivision-time g distributions over three generations (red, grey, light blue points) where 

4 314 hrobsτ ≈ . . (B) Length distribution at division.
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with t, t + Δt belonging to the so-called “log phase”. In the Monte–Carlo simulation, Δt = 3.28925 hr, cell mass 
was multiplied by 2.471 to three decimal places, and 0 276 hrm

1ν ≈ . − . The mean cell age and interdivision time 
satisfy the properties:

•	 τ ≈ . <
ν

2 327 hrobs
ln(2)

m

•	 ⟨ ⟩ ≈ . >
ν

−a 1 302 hr 1 ln(2)

m
•	 a 3 629 hrobsτ〈 〉 + ≈ . .

In comparison, 1/ν ≈ .3 636 hrm , which differs from a obsτ〈 〉 +  by less than 0.2%.

Discussion
Powell’s analytical results in a continuous, well-mixed fermenter.  Before PBE tools were developed 
to address a population’s variability in different inner properties, the marginal distributions were retrieved from 
infinitesimal computations and Cauchy problems were extracted to be solved analytically and confronted with 
experimental data. Powell’s seminal article1 is no exception, and a relation coupling the cell-age and interdivi-
sion-time PDFs is discussed for both batch and continuous fermenters. However, (16) is not exactly the formula 
Powell retrieved from his own infinitesimal calculus, because the two interdivision-time PDFs do not share the 
same definition. Indeed, g is the conditional probability that, given a cell divides, it does so at age a, whereas 
Powell’s interdivision-time PDF relates to the probability that a cell divides at age a, the latter being less conven-
ient in practice because it disregards the available memory from cells that reach age a and do not fully embrace 
the Markovian nature of the cell-cycle process. In the following, Powell’s f distribution will be labelled h for the 
sake of clarity.

A Powell-like differential equation can be devised with our definition of g, by starting from a set of N cells of 
which Nf a da( )  belong to the age interval [a, a + da] at time t. Then, during an interval of Lebesgue measure δt, 

− δ−Nf a e( ) (1 )D t  cells are washed out and

∫ ∫ ∫γ γ′ ′ = ′ ′
δ δ+ +

l n t l a dlda g a da l n t l a dlda( ) ( , , ) ( ) ( ) ( , , ) (25)a
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a t ∬
produce daughter cells of age zero (from the (3) definition of g). Consequently, after division by N on both sides,
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Figure 3.  Monte–Carlo simulation results for Batch culture in the exponential-growth regime. (A) Cell-age 
PDF f from the Monte–Carlo simulation (blue points) and interdivision time, i.e. g (red points). (B) Length 
distribution at division.

https://doi.org/10.1038/s41598-019-44606-4


1 1Scientific Reports |          (2019) 9:8165  | https://doi.org/10.1038/s41598-019-44606-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

One immediately obtains ′ = − −f a Df a Dg a( ) ( ) ( ), which mirrors (13), showing that this result is independ-
ent from the calculation methodology. It is remarkable that the reference to g eliminates the need to compute any 
conditional probability.

However, if Powell’s definition of h, which contains all interdivision times, is used to establish a conservation 
equation for the number of cells with age a in a reactor then one has to check that a cell has actually reached that 
age a in the system. This leads to a conditional probability and Bayes’ theorem leads to

∩

∫ ∫

∫

∫

∫

δ
δ

≤ + | ≥

=
≤ + ≥

≥

=
′ ′ − ′ ′

′ ′

= −
′ ′

′ ′

δ

δ

∞

+

∞

∞

+

∞

∞

P a t a
P a t a

P a
h a da h a da

h a da

h a da

h a da

(interdivision time age )
(interdivision time interdivision time )

(interdivision time )
( ) ( )

( )

1
( )

( )

a a t

a

a t

a

In order to reach age a tδ+ , any cell has to reach age a, remain in the system for at least δt and not divide 
between a and a tδ+ . An infinitesimal calculation using Taylor’s formula entails:
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Developing and simplifying the second-order terms leads to:
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Straightforward computations then result in Powell’s proposed law for the relationship between the cell-age 
PDF and h, which is indeed consistent given his memoryless function h.
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While all relations described in1 are true in both batch and continuous culture, it is of crucial importance to 
draw the reader’s attention to a fallacious reasoning involving Powell’s definition of h. The latter aims at evaluating 
the probability that a cell’s interdivision time is more or less than its residence time, which is determined by the 
relation coupling f and h in (27):
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The latter basically results in the equalities
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This must be compared to Powell’s assumption that a cell has a probability of 1/2 of yielding two daughter cells 
before washout occurs, and the same probability that a cell is washed out before it begins a division event. Indeed, 
given that the residence time tres in a well-mixed fermenter obeys an exponential law:

t t De( )res
Dt= −

it follows that
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0 0

Then, using once again Fubini’s theorem,
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which is consistent with Powell’s result based on physical grounds.
Furthermore, the mean interdivision time is obviously not equal to ∫

∞ ah a da( )
0

 because Powell’s definition of 
h does not match the observable interdivision-time PDF. To convince oneself, the relations coupling the cell-age 
PDF with g (16) or h (27) entail the conclusion immediately:
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which provides the relation between g and h in a well-mixed fermenter. g(a) is conspicuously greater than h(a) if 
e 1Da >− / a2 ln(2)⇔ < /D, the reverse inequality holding if a ln(2)> /D.

To conclude the discussion of continuous cultures, the differences between g and h are shown in Fig. 4. 
Because h records all interdivision times, it lends weight to cells that are highly unlikely to divide in a fermenter. 
The observable interdivision-time PDF g references actual rupture events, these divisions being less and less likely 
as a approaches ln(2)/D. This physical reasoning testifies to the inequalities D ah a daln(2)/ ( )obs 0∫τ < <

∞ , and 
the relation = −g a e h a( ) 2 ( )Da  allows the conclusion g a h a( ) ( )>  for a D[0, ln(2)/ ]∈ , the inverse relation being 
satisfied for a ln(2)> /D.

Painter & Marr’s inequality for the unobservable PDF.  In their 1967 article10 addressing the 
interdivision-time PDF in a continuous, well-mixed fermenter, Painter & Marr incorrectly extracted the inequal-
ity ln(2)obsτ ≥ /D from Powell’s relation ∫=

∞ −e h a da1 2 ( )Da
0

. From their point of view, developing the exponen-
tial as a power series after factoring τ−e2 D obs would reduce to

Figure 4.  Distributions of interdivision time in Powell’s formalism: h (black dashed line) and its measurable 
counterpart g (black line). The numerical data retrieved from the Monte–Carlo code (red points) are shown for 
comparison. In general, h lends more weight to the older cells than g, so that τ < ln(2)obs /D unoτ< .
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and, using the fact that the exponential function is convex,

∫ τ− − ≥τ− ∞
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obs
0

obs

Then, Painter & Marr erroneously stated that ah a da( ) obs0∫ τ=
∞  to conclude. However, ∫

∞ ah a da( )
a

 is not τobs 
but refers to uno obsτ τ≥  instead. Once again, the confusing definition of the interdivision-time distribution lends 
artificial weight to zero-measure fractions of a population.

Referring to Painter and Marr’s work, van Heerden and co-workers produced a slightly biased fit of their 
experimental interdivision-time PDF. Hence, their data analysis procedure involving h instead of g, lead a fitτ〈 〉 +  
to be greater than D−1 by a significant 7% margin and fitτ  to be greater than 2.259〈 〉a . However, using their raw 
data for B. subtilis, we find that τobs, 〈 〉a  and D agree with both (18) and (19). Moreover, their Supplementary Data 
regarding E. coli are in complete agreement with τ〈 〉 + = −a Dobs

1. This analysis confirms that analytical, numer-
ical and experimental results are in perfect agreement provided that equation (16) is used instead of (27) when 
dealing with a set of measured interdivision times. To conclude this discussion, it is pointed out that the experi-
mental procedure itself affects the observed interdivision-time distribution. In Yasuda’s experiments using an 
optical tweezer to remove cells from the growth chamber following their division, no cell is washed out before 
dividing. Therefore, an interdivision-time distribution from such measurements resembles h more than the one 
stemming from a continuous system.

Concluding Remarks
The exact results developed in this work throw light on the equivocal interpretations of the notion of interdivision 
time appearing in the literature where two different PDFs were considered from the analytical and experimental 
perspective. Starting from a PBE, rigorous mathematical results for the observable interdivision-time distribution 
have been established (complementing recent work by Jafarpour et al.3 for instance), and numerical examples are 
provided to supplement the theoretical results. As expected, the steady-state PDFs from the Monte–Carlo simula-
tions proved to be in accordance with the analytical expressions. This paradigm is more suitable than Painter and 
Marr’s when it comes to experimental data treatment. Indeed their conclusions were based on the first moment of 
the unobservable cell interdivision-time distribution. The relationships provided in this work match the experi-
mental data by van Heerden and co-workers regarding E. coli and B. subtilis.

Analysis-wise, no expression for the PDF of the cell length is accessible because the integral 
l P l l n t l dl( ) ( , ) ( , )∫ γ ′ ′ ′ ′ has no specific shape. Furthermore, with two relations pertaining to P:

	 1.	 P l l P l l l( , ) ( , )′ = ′ − ′
	 2.	 ∫ ′ =

′ P l l dl( , ) 1l

0

one can extract the dynamics of the length distribution’s zeroth and first-order moments only, with the help 
of integrations by parts and Fubini’s theorem. However, no additional formulae are available if no other relations 
constrain P.
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