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Esophageal squamous cell cancer (ESCC) is one of the most common fatal human cancers. The identification of biomarkers for
early detection could be a promising strategy to decrease mortality. Previous studies utilized microarray techniques to identify
more than one hundred genes; however, it is desirable to identify a small set of biomarkers for clinical use. This study proposes a
sequential forward feature selection algorithm to design decision tree models for discriminating ESCC from normal tissues. Two
potential biomarkers of RUVBL1 and CNIH were identified and validated based on two public available microarray datasets. To test
the discrimination ability of the two biomarkers, 17 pairs of expression profiles of ESCC and normal tissues from Taiwanese male
patients were measured by using microarray techniques. The classification accuracies of the two biomarkers in all three datasets
were higher than 90%. Interpretable decision tree models were constructed to analyze expression patterns of the two biomarkers.
RUVBLI was consistently overexpressed in all three datasets, although we found inconsistent CNIH expression possibly affected
by the diverse major risk factors for ESCC across different areas.

5-year survival rate of ESCC patients is 19%: the fourth worst
among all cancers in the USA [3].

Esophageal cancer is the sixth most common fatal human
cancer in the world [1]. The histological type of esophageal
squamous cell carcinoma (ESCC) is also one of the most
common cancers in the Chinese population [2]. ESCC occurs
more frequently in males than females [1]. As an aggressive
tumor, the prognosis of ESCC is very poor because it is
typically diagnosed after the presence of symptoms. The

Early detection of ESCC could be a promising strategy
to decrease mortality. Microarray techniques are extensively
utilized to measure expression levels of a large number
of genes simultaneously and provide better understanding
of the molecular mechanism of ESCC carcinogenesis. The
microarray expression data could be analyzed to identify and
give insights into clinical biomarkers of ESCC for detection.
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Several efforts have been made to study gene expression
profiles and differential expressed genes for discovering
biomarkers using microarray techniques [4-7]. Usually, more
than one hundred genes are identified as either upregulated or
downregulated genes. However, for clinical use, a small set of
genes capable of distinguishing ESCC from normal tissues is
much more useful. Thus the identification of a small number
of biomarkers is desirable for ESCC detection.

The incorporation of classification and feature selection
algorithms has been widely used to identify promising
features for various classification problems such as ubiq-
uitylation sites [8], immunogenic peptides [9], pupylation
[10], and sumoylation sites [11]. The application of fea-
ture selection algorithm for cancer biomarker identifica-
tion could give better insights into the mechanisms. For
example, gene Signature Finder Algorithm has been recently
proposed to identify biomarkers in colorectal cancer [12].
Feature selection algorithms can remove irrelevant genes and
identify important genes to improve classification perform-
ance.

For the application of biomarkers for detecting ESCC, the
simple decision tree methods capable of generating human
interpretable rules were chosen instead of the black-box
methods such as support vector machines (SVM). In this
study, a sequential forward feature selection algorithm is pro-
posed to identify genes best for decision tree classifications
that is capable of selecting a small set of biomarkers with
human interpretable rules. Two public available microarray
datasets obtained from Gene Expression Omnibus (GEO)
database [13] are utilized to identify and validate the biomark-
ers, respectively. Furthermore, 34 microarray experiments of
17 pairs of ESCC and normal tissues from Taiwanese male
patients are performed to test the discrimination ability of
the identified biomarkers. Results show that RUVBLI1 (RuvB-
like 1) and CNIH (Cornichon homolog) genes are useful for
discriminating ESCC from normal tissues with a leave-one-
out cross-validation accuracy of 91.18%.

2. Materials and Methods

2.1. Datasets. In order to identify and validate genomic
biomarkers for ESCC, two microarray datasets of GSE23400
[6] and GSE20347 [7] were downloaded from Gene Expres-
sion Omnibus (GEO) database [13]. Both microarray exper-
iments were performed on the Affymetrix Human UI33A
platforms consisting of expression profiles of ESCC and
surrounding normal tissues of ESCC patients in China
and were normalized using the Robust Multiarray Aver-
age (RMA) algorithm [14, 15] in Bioconductor available at
http://www.bioconductor.org/. There are 18,400 transcripts
and variants in Affymetrix Human UI33 set, including
approximately 14,500 well-characterized human genes in
greater than 22,000 probe sets and 500,000 distinct oligonu-
cleotide features. GSE23400 consisting of 53 ESCC and 53
normal tissues from patients was utilized to identify genomic
biomarkers for ESCC. The GSE20347 consisting of 17 ESCC
and 17 normal tissues was applied to validate the identified
genomic biomarkers.
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2.2. Study Subjects and RNA Isolation from Tumor Tissue
and Adjacent Normal Tissue. We selected 17 incident male
ESCC patients who regularly consumed tobacco and alco-
holic beverage to validate the candidate biomarkers obtained
from the above two datasets. All of them underwent total
esophagectomy in Kaohsiung Medical University Hospital.
One pair of resected tumor and adjacent normal tissue for
each patient was immediately put into a portable container
with dry ice and then transferred and maintained in a
nitrogen tank until analysis. After review by a qualified patho-
logist (Dr. CC Wu), the tumor parts were found to have cancer
cells in >80% of the tissues, whereas the normal parts were
microscopically tumor-free. This study was in compliance
with the Helsinki Declaration and approved by the internal
review board of KMUH. All patients provided their written
informed consent.

Total RNA from each pair was isolated by a single-
step guanidinium isothiocyanate method using the Trizol
Reagent total RNA Purification Kit (Invitrogen Inc., USA)
according to the manufacturer’s instructions. The yield and
quality of RNA were assessed by spectrophotometry and the
Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto,
CA). All paired samples had an A260/A280 between 1.8 and
2.2 and A260/A230 ratio above 1.0 and were eligible for the
subsequent array experiment.

2.3. Reverse Transcription. After RNA isolation, cDNA was
prepared from each sample by Reverse Transcription System
(Cat: A3500, Promega Corporation, USA). For the appro-
priate efficiency of reverse transcription, 1 ug total RNA was
placed in a microcentrifuge tube and incubated at 70°C for
10 minutes in a thermocycler (Gene Amp PCR system 9700,
Applied Biosystems). After denaturing secondary structure of
RNA, the thermocycler was rapidly set at 4°C waiting for the
next step. During the RNA denatured process, the reaction
components were prepared according to the manufacturer’s
guideline. The final concentrations of reaction component
were 5mM MgCl,; 1X reverse transcription buffer (10 mM
tris-HCI (pH 9.0 at 25°C); 50 mM KCl; 0.1% triton X-100);
1mM each ANTP; 1u/uL recombinant RNasin ribonuclease
inhibitor; 15u/ug AMV reverse transcriptase (high conc.);
and 0.5 g oligo (dT),s. The reaction mixture was loaded into
a microcentrifuge tube mixed with total RNA and incubated
at42°C for 15 minutes. Subsequently, the reaction mixture was
heated to 95°C for 5 minutes for inactivating AMV reverse
transcriptase and stored the first-strand cDNA at —20°C until
analysis.

2.4. Human One-Array System. Human oligonucleotide
DNA microarrays (Human Whole Genome OneArray) from
Phalanx Biotech Group (Hsinchu, Taiwan) were used. The
Human Whole Genome OneArray (HOAv4.3, Phalanx Bio-
tech Group, Taiwan) contains 32,050 60-mer oligonucleotide
probes, including 28,703 probes corresponding to the anno-
tated genes in Unigene v175 and RefSeq database, 2,265
experimentally defined probes, and 1,082 control probes.

2.4.1. Microarray Experiment. The detailed experimental
method is described elsewhere [16]. Each cDNA sample from


http://www.bioconductor.org/

The Scientific World Journal

the paired tumor and normal parts of the 17 ECC patients
was hybridized; thus, a total of 34 chips were used in this
study. After nonspecific binding targets were washed, the
hybridization arrays were conjugated with fluorescent detec-
tor of Streptaavidin-Cy3. Finally, arrays were dried by cen-
trifugation and scanned by DNA Microarray Scanner (Agi-
lent Technologies, Santa Clara, US). Images from the scan-
ned arrays were quantified using GenePix Pro 4.0 (Molecular
Devices, Sunnyvale, CA).

2.4.2. Qualification and Normalization of Microarray Chips.
Spots in each array with foreground median intensity of
wavelength 532 nm greater than or equal to that of back-
ground median intensity plus 3-fold standard deviation of
wavelength 532 nm were considered as the “Present” flag and
included for the further analysis. In order to evaluate the
quality of each array in the entire array experiment, three
evaluation steps were performed: basic, reproducible, and
diagram. In the basic step, three parameters, including per-
centage of “Present” spots among all spots, the average inten-
sity of “Present” spots, and coeflicient of variation of inten-
sity for control spots in the entire arrays, were all considered.
If any two parameters in one array were located outside the
1.5-folds interquartile range (25th-75th) of the same param-
eters for all arrays, that array was excluded. The remaining
arrays were then evaluated in reproducible steps which the
repeated arrays of the same sample would pass, when their
Pearson’s correlation coefficient was larger than 0.95 and “2-
fold percentage” was less than 15%. The “2-fold percentage”
was the percentage of probes among all probes in which the
ratio of the same probe between two arrays exceeded 2-fold.
In the final diagram step, the density plot of repeated arrays
was used to examine the intensity profile of each array. An
array would pass if the profile was similar to the rest of arrays
in the same phenotype groups. When the arrays passed all
three steps, the raw intensity of spots was log-2 transformed
for subsequent analysis. To adjust the systematic variation of
experiments and dye effects, global Lowess normalizations
were performed within repeated arrays of the same sample
and between the samples. Spot was included for further
analysis when it was “Present” in at least one of the qualified
arrays.

2.5. Decision Tree Algorithm. Decision tree algorithms are
useful methods to generate interpretable rules based on gene
expressions for ESCC classification that are widely used in
various classification and regression problems such as immu-
nogenic peptides [17], promoters [18], and nongenotoxic
hepatocarcinogenicity [19]. In this study, a decision tree
method J48 implemented in WEKA [20], also known as C4.5
[21], is applied to construct decision tree classifiers and derive
interpretable rules. The construction of a decision tree is
described as follows. First, information gain is utilized to
rank features. Second, the top ranking features are iteratively
appended as nodes to split data into subsets. The tree growing
process stops when the data subset in each leaf node belongs
to the same class. The fully grown tree is prone to overfit
the training data. Therefore, a pruning process is applied to
reduce the tree size by replacing a subtree with a leaf node to

avoid overfitting problems. The pruning process is based on a
default threshold value of 25% confidence. The samples in the
leaf node are the covered samples of this rule. The class label of
aleafnode is determined by a majority rule. The samples with
a relative small size in the leaf node are regarded as misclas-
sified samples. The final decision tree can directly generate
if-then rules where one leaf node corresponds to one rule.

2.6. Sequential Forward Feature Selection. There are more
than forty thousand probes in a microarray experiments. The
selection of informative probes for discriminating between
ESCC and normal tissues is a crucial step for biomarker
identification. Although the decision tree algorithm J48 has
a built-in function for feature selection, the incorporation of
various feature selection algorithms could generate decision
trees with higher classification accuracy [22, 23].

In this study, a sequential forward feature selection algo-
rithm (SFFES) is proposed to identify useful biomarkers for
discriminating between ESCC and normal tissues. The sel-
ection process is based on the accuracy of leave-one-out
cross-validation (LOOCYV) using the decision tree algorithm
J48. Given a dataset of sample size n, n—1 sample is utilized to
train a decision tree classifier and the remaining one sample is
utilized to validate the decision tree classifier for each run of
LOOCV. The accuracy of LOOCYV is calculated by averaging
the » validation accuracies. Given an empty pool of selected
probes S, the SFFS algorithm iteratively selects informative
probes into S as shown as follows. First, the LOOCV accuracy
is evaluated for each probe. Second, the best probes with
highest LOOCV accuracy are appended into S. Third, for
each remaining probe p, its LOOCV accuracy is evaluated by
using p and probes in S. Fourth, the second and third steps
are repeated until the termination criteria are satisfied. The
resulting probe set S consists of the final biomarkers.

The SFES algorithm utilizes the greedy selection strategy
under the property monotonic assumption. In contrast to
univariate feature selection methods, the SFFS algorithm
considering the interaction effects of sequential selected
probes on the accuracy is expected to perform better. The
SFES algorithm is only applied to training dataset to identify
potential biomarkers.

2.7. Performance Measurement. To evaluate classifiers for
their prediction performance, the leave-one-out cross-valida-
tion method is applied as it is widely used as an objective
evaluation method for error rate estimation [8, 9, 24]. Three
measurements were applied to evaluate classifiers including
sensitivity, specificity, and accuracy defined as follows: sen-
sitivity = TP/(TP + FN), specificity = TN/(TN + FP), and
accuracy = (TP + TN)/(TP + FP + FN + TN), where TP,
FP, FN, and TN are the numbers of true positives, false posi-
tives, false negatives, and true negatives, respectively. In this
work, accuracy is used as major indicator for estimating the
performance of classifiers.

3. Results

3.1 Identification of Potential Biomarkers for ESCC. To iden-
tify potential biomarkers for ESCC, a microarray dataset
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FIGURE I: Selection results of the sequential forward feature selection
algorithm.

GSE23400 is fetched from GEO database for the following
analysis. GSE23400 consists of 53 pairs of ESCC and adjacent
normal tissue from 53 patients in China. For each probe, t-test
with multiple test correction of Benjamini and Hochberg is
applied to calculate its corresponding ¢-statistic and adjusted
P value using GEO2R [13]. The correction method of Ben-
jamini and Hochberg providing a good balance between
discovery of statistically significant genes and limitation of
false positives is a commonly used adjustment for microarray
data [25].

Because overexpressed genes are more useful for clini-
cal diagnosis than downexpressed genes, only significantly
differential expressed probes with adjusted P values smaller
than 0.001 and overexpressed in tumor tissue were selected
for subsequent analysis. A total of 3,910 probes were obtained
by the above criteria.

To identify potential biomarkers for discriminating ESCC
from adjacent normal tissues, a sequential forward feature
selection (SFES) algorithm is proposed to determine the best
probe set giving the highest leave-one-out cross-validation
(LOOCYV) accuracy using a decision tree algorithm J48. By
applying the proposed SFFS algorithm, two probes giving
the highest LOOCV accuracy were selected as potential
biomarkers whose gene names are RUVBLI1 and CNIH.

The selection process of SFFS is shown in Figure 1. The
first iteration of SFES selects one gene RUVBLI with an
LOOCYV accuracy of 95.28%. CNIH is selected in the second
iteration of SFFS. The combined use of RUVBLI and CNIH
yields a higher accuracy of 99.06%. The third and fourth
iterations select 3721 and 3905 genes without any further
improvement in LOOCYV accuracy. For further validation of
the selected biomarkers, 10-fold cross-validation (10-CV) is
applied to evaluate the classification performances. The 10-
CV accuracies of RUVBLI alone (95.28%) and combination
of RUVBLI and CNIH (9717%) are equal to and slightly
worse than the LOOCYV accuracies, respectively, showing the
usefulness of the biomarkers when less training samples are
available.

RUVBLI alone can be utilized to discriminate ESCC from
normal tissues. In contrast, CNIH alone is not suitable for
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this purpose with an LOOCV accuracy of 75.47%. However,
the combined use of RUVBLI and CNIH provides the best
LOOCYV accuracy. The decision tree models trained on the
whole dataset GSE23400 for RUVBLI1, CNIH, and both of
RUVBLI and CNIH are shown in Figure 2. The numbers
shown in a tree leaf node represent the covered and mis-
classified samples by the corresponding decision rules. For
example, in Figure 2(a), the rule of “If RUVBLI > 7523 then
Tumor” covers 57 samples with 53 correctly classified and
4 misclassified samples. On the other hand, the rule of “If
RUVBLI < 7523 then Normal” covers 51 samples that are all
correctly classified.

3.2. Biomarker Validation. To externally validate the two
potential biomarkers of RUVBLI and CNIH, another dataset
GSE20347 fetched from GEO database consisting of 17 pairs
of ESCC and normal tissues from patients in China. LOOCV
is applied to GSE20347 dataset to validate the discrimination
ability of RUVBLI and CNIH for ESCC. The use of RUVBLI
yields a high accuracy of 97.06% in GSE20347 that is con-
sistent with that in GSE23400. The same accuracy obtained
from 10-CV demonstrates the usefulness of the biomarkers.
However, CNIH alone failed to discriminate ESCC from
adjacent normal tissues with an LOOCYV accuracy of 44.18%.
By using both genes of RUVBLI and CNIH, the accuracy of
the decision tree model remains unchanged.

Figures 3(a) and 3(b) show the decision tree models
trained on the whole dataset of GSE20347 using RUVBLI
and CNIH, respectively. Consistent with the result of LOOCV
accuracies, the decision tree models using RUVBLI and both
genes of RUVBLI1 and CNIH are exactly the same. The CNIH
is not utilized by the decision tree algorithm because of its
poor discriminating ability.

3.3. Application of the Biomarkers for Predicting Esophageal
Squamous Cell Carcinoma. After the identification and val-
idation of the two biomarkers from the two public available
datasets, a total of 34 gene expression profiles from 17
pairs of matched tumor and adjacent normal tissues were
measured and collected to test the discriminating ability of
the two biomarkers for ESCC. The 34 profiles are generated by
using Human Whole Genome OneArray (HOAv4.3, Phalanx
Biotech Group, Taiwan) that is different from the two datasets
generated by using Affymetrix UI33A chips.

The LOOCV accuracy using RUVBLI was firstly eval-
uated. The sensitivity, specificity, and accuracy are 94.12%,
76.47%, and 85.29%, respectively. The performances using
both genes of RUVBLI and CNIH are 88.24%, 94.12%, and
91.18% for sensitivity, specificity, and accuracy, respectively.
Results show that performances can be improved by incor-
porating CNIH. The LOOCV and 10-CV accuracies are
exactly the same. The improvement is consistent with that in
GSE23400. A comparison of classification accuracies on three
datasets is shown in Table L.

The decision tree models trained on the 34 profiles
using RUVBLI and both genes of RUVBLI and CNIH are
shown in Figures 4(a) and 4(b), respectively. Although the
same accuracy improvement is observed in both datasets of
GSE23400 and 34 expression profiles of patients in China
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FIGURE 3: Decision tree classifiers based on GSE20347 dataset using (a) RUVBLI and (b) CNIH.

TaBLE 1: Classification accuracies using biomarkers of RUVBLI and
CNIH.

. Dataset
Biomarker
GSE23400 GSE20347 17 pairs
RUVBLI1 95.28% 97.06% 85.29%
RUVBLI + CNIH 99.06% 97.06% 91.18%

and Taiwan, respectively, it is surprising to find that CNIH
is downexpressed in these Taiwan patients.

4. Discussion

This study proposed a feature selection-based method to dis-
cover a small subset of genes to discriminate ESCC from nor-
mal tissues. The method was based on a sequential forward
feature selection algorithm to design decision tree models for
classifying expression profiles of ESCC and normal tissues.
Two genes of RUVBLI and CNIH were discovered with a
high LOOCV accuracy of 99.06% in a published dataset
GSE23400 (available at GEO database) consisting of 53 pairs
of ESCC and normal tissues. The gene set has been validated
in another dataset GSE20347 consisting of 17 pairs of ESCC
and normal tissues whose platform is the same as GSE23400.
A high LOOCYV accuracy of 97.06% for GSE20347 shows the
discrimination ability of the two genes.

To further test the two genes, microarray techniques were
applied to measure gene expression profiles of Taiwanese
patients. The dataset consists of 17 pairs of ESCC and normal
tissues. An LOOCV accuracy of 91.18% obtained by using
RUVBLI1 and CNIH shows their potential as biomarkers

for ESCC. Each gene alone performs worse in datasets of
GSE23400 and our dataset. It suggests that the two genes
should be used simultaneously to obtain the best perform-
ance. The 10-CV accuracies demonstrate that the perfor-
mance remains the same when less training samples are avai-
lable.

The relationship between the two newly identified bio-
markers of RUVBL] and CNIH genes and ESCC has not
been reported. The decision tree models show that RUVBLI
is overexpressed in all three datasets of patients in China
and Taiwan. However, CNIH is over- and downexpressed
in datasets of patients in China (GSE23400) and Taiwan,
respectively. For GSE20347 of patients in China, CNIH is
neither over- nor downexpressed.

RUVBLI plays important roles in chromatin remodeling,
transcriptional and developmental regulation, DNA repair,
and apoptosis. RUVBLI is ubiquitously and highly expressed
in thymus and testis [26-30] and interacts with major onco-
genic actors such as beta-catenin and c-myc [31]. It can inhibit
telomerase in cancer [32]. RUVBLI is reported to regulate
COX-2 gene expression that plays a crucial role in the pro-
gress and transformation of colon cancer [33]. Overexpres-
sion of RUVBLI was also reported in hepatocellular carcino-
ma [34, 35], colorectal tumor [36], nonsmall cell lung cancer
[37], B-cell lymphoma [38], and breast cancer [39]. Two SNPs
in RUVBLI were found to be associated with increased risk
of serous ovarian cancer [40]. RUVBLI/2 complex can form
a complex with Hsp90 and regulate phosphatidylinositol 3-
kinase-related protein kinase (PIKK) family proteins [41].
PIKKs are central regulators of stress responses including
DNA damage. Inhibition of Hsp90-RUVBLI1/2 complex is
effective for anticancer therapy [41].
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FIGURE 4: Decision tree classifiers based on our dataset using (a) RUVBLI and (b) both RUVBLI and CNIH.

CNIH is involved in the selective transport and matu-
ration of TGF-alpha family proteins. There is no research
reporting the relationship between CNIH gene and cancers.
Interestingly, the expression of CNIH mRNA is affected by
tetrachlorodibenzodioxin [33, 42-44]. Tetrachlorodibenzo-
dioxin enhances the expression of CNIH mRNA in Mus
musculus [33, 44] and inhibits CNIH expression in Homo
sapiens [43]. Cigarette smoking is a common source of human
exposure to tetrachlorodibenzodioxin and is well known as
an important environmental risk factor for ESCC [45]. Also,
kojic acid can increase the expression of CNIH mRNA in
Homo sapiens [46] and is a byproduct in the fermentation
process of malting rice for producing Japanese alcoholic
beverage. Alcohol consumption can increase the risk of ESCC
[45]. The different expressions of CNIH in ESCC tissues of
the three datasets might be affected by cigarette smoking
and alcohol consumption. In GSE23400, the percentages for
tobacco and alcohol users were 59% and 53%, which were
lower than other parts of the world. There was no data
for tobacco and alcohol uses in GSE20347. In our dataset,
we chose patients who were both smokers and drinkers to
validate the potential biomarkers because they are the major
risk factors in Taiwan and Western countries. Our previous
study has shown that consumption of alcohol plus cigarettes
explained 82.6% of the development of ESCC in Taiwanese
males [47]. Moreover, in Linxian of China, the predominant
risk factors for ESCC were diet and nutrition, instead of
alcohol and smoking [48]. The diversity in major risk factors
across different areas might explain the variable expression
patterns of CNIH.

5. Conclusions

In conclusion, using feature selection and decision tree mod-
els from two public available microarray datasets, we found
that two genes (RUVBLI and CNIH), particularly RUVBLI,
could be useful biomarkers in the clinic for discriminating
cancer and normal tissues in Taiwanese ESCC patients. The

collection of a larger dataset for independent test could
further validate the robustness of the two biomarkers. A
future work to study the mechanism of these two genes in the
carcinogenesis of ESCC is necessary.
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