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Plague vaccine Development: 
Current Research and Future Trends
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Plague is one of the world’s most lethal human diseases caused by Yersinia pestis, 
a Gram-negative bacterium. Despite overwhelming studies for many years worldwide, 
there is no safe and effective vaccine against this fatal disease. Inhalation of Y. pestis 
bacilli causes pneumonic plague, a fast growing and deadly dangerous disease. F1/
LcrV-based vaccines failed to provide adequate protection in African green monkey 
model in spite of providing protection in mice and cynomolgus macaques. There is still 
no explanation for this inconsistent efficacy, and scientists leg behind to search reliable 
correlate assays for immune protection. These paucities are the main barriers to improve 
the effectiveness of plague vaccine. In the present scenario, one has to pay special 
attention to elicit strong cellular immune response in developing a next-generation vac-
cine against plague. Here, we review the scientific contributions and existing progress in 
developing subunit vaccines, the role of molecular adjuvants; DNA vaccines; live delivery 
platforms; and attenuated vaccines developed to counteract virulent strains of Y. pestis.

Keywords: plague, Yersinia pestis, molecular adjuvants, subunit vaccines, lethal disease, cellular immunity, DNA 
vaccines, live delivery

iNTRODUCTiON

Plague is a historic disaster which has caused ~200 millions of deaths during the pandemics (1). It is 
an enzootic disease and prevalent in many parts of the world, with the organism being transmitted 
through infected fleas from rodent reservoirs to humans (2). Human is an accidental host and can 
carry bubonic plague if contacted by a flea containing plague bacilli. Bubonic plague can develop into 
septicemic plague or a secondary pneumonic plague if not treated in time. Besides, plague can also 
be contracted by direct transmission through aerosols to cause an extremely lethal form of primary 
pneumonic plague. Yersinia pestis exhibits intrinsic genetic plasticity (3, 4), can attain antibiotic 
resistance (5–8), and has been used as a biowarfare agent (9–11). Therefore, Centers for Disease 
Control has listed Y. pestis under the category A select agent.

To date, there is no approved vaccine against plague in the developed world, a live vaccine made 
in 1920s, has been used by many countries for immunization (12). Early diagnosis can help in the 
treatment of plague patients with antibiotics; however, there are few reports which confirm the 
existence of antibiotic resistance strains of Y. pestis (5, 6). Recently, naturally harboring multidrug 
resistance variants of Y. pestis have been isolated in Mongolia (13). The whole genome sequencing 
studies showed very less difference between the current circulating strain of Y. pestis and the strain 
responsible for fourteenth century pandemic (14). Moreover, it is quite evident that Y. pestis can 
be converted into a multidrug-resistant strain by genetic manipulations in the laboratory (6, 15). 
Taking into account of these factors, i.e., rapid progression of the disease and 100% mortality rate of 
pneumonic plague, a potential biowarfare agent and the emergence of multidrug resistant variants of 
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plague microbe make imperative to develop an ideal and effective 
vaccine against this highly fatal disease.

CONCePT TO DeveLOP PLAGUe 
vACCiNeS

Yersinia pestis suppresses the immunity and survives in suscep-
tible hosts, but this capability of the pathogen cannot be applied 
on infection-survived animals because their immune system 
resists the re-infection (16). This specific skill of the host to 
defend against re-infection opened up the opportunities and new 
avenues to develop vaccine/s to confer protection against this 
lethal disease.

wHOLe-CeLL-BASeD vACCiNeS 
AGAiNST PLAGUe

The idea to develop vaccine against plague started by Alexandre 
Yersin in 1895 who investigated immunity against Y. pestis in 
small animal models in his laboratory. He evaluated heat-killed 
whole-cell vaccine, attenuated live strains of Y. pestis, by immu-
nization in animals with repeated boosters (17). These findings 
encouraged researchers to develop two types of vaccines, i.e., 
killed whole cell (KWC)- or live whole cell (LWC)-based vaccines 
modified from virulent strains of Y. pestis. To prepare the KWC 
vaccine, Y. pestis bacilli were inactivated either by heating or using 
chemicals. These vaccines were found safe and evoked immunity 
against bubonic plague but found inefficient against pneumonic 
plague in primed animal models (18). Later, Meyer and col-
leagues developed a more advanced formalin-killed whole-cell 
vaccines (19, 20). A vaccine (USP) developed by this method was 
approved in USA. Human immunization with formalin-killed, 
whole-cell vaccine during the Vietnam War indirectly proved 
that this vaccine protects against bubonic plague (19, 21). On 
the other hand, this vaccine was not only highly reactogenic and 
inefficient to provide long-term protection but also fail to protect 
against pneumonic plague (19, 20, 22, 23). Therefore, these killed 
whole-cell-based vaccines are not appreciable for use against 
biothreat scenario.

Live whole cell-based vaccines were prepared from fully 
virulent strains of Y. pestis after multiple passages. These types 
of vaccines were able to induce strong immune response against 
both types of plague: bubonic and pneumonic. But there is always 
a risk associated with these vaccines regarding the ability of live 
bacilli to colonize and temporarily replicate in host. Many fatal 
cases were seen in laboratory animal models and in non-human 
primates (NHPs), after vaccination with live vaccines (19, 20). 
However, there was no fatal human case reported after admin-
istration of LWC plague vaccine for many years. Even though, 
millions of people were vaccinated with the LWC in the middle of 
twentieth century (24), the countries of the former Soviet Union 
and China are still using LWC-based vaccine against plague for 
human vaccination. The potential of LWC-based vaccines have 
been confirmed in humans for many years; however, these vac-
cines are associated with several adverse effects, and leg behind 
to provide long-term immunity (12, 25).

STRATeGieS FOR THe DeveLOPMeNT 
OF SUBUNiT PLAGUe vACCiNe

With the advent of recombinant DNA technology, immunodomi-
nant and protective antigens can be easily identified and prepared 
in purified form for the development of subunit vaccines. Most 
importantly, these subunit vaccines reduced the risk factors and 
adverse effects associated with live and KWC vaccines. However, 
thorough clinical trials are compulsory to confirm that these 
vaccines are superior and safe in comparison to whole-cell-based 
vaccines.

Mainly two virulent factors, capsular F1 and the low calcium 
response LcrV antigens of Y. pestis, have been demonstrated 
by various researchers throughout the world and proven to 
be the best to provide protection in various animal models. 
Immunization with recombinant F1 imparts same degree of 
protection in mice against subcutaneous or pneumonic plague 
as does native F1, extracted from Y. pestis (26). In our studies 
(27), vaccination with recombinant F1 failed to protect mice 
against bubonic plague. Nevertheless, there exist some virulent 
strains of F1-negative Y. pestis; hence, vaccines based exclusively 
on F1 are not worthwhile against any type of plague (28). In 2011, 
Chopra’s group generated Δcaf mutant Y. pestis in the laboratory 
by homologous recombination and proven the virulence in a 
mouse model. The Δcaf mutant was observed as virulent as WT 
CO92 in the pneumonic plague (29). In case of LcrV, immuniza-
tion with both native purified and recombinant LcrV provides 
protection in mice against bubonic and pneumonic plague (30, 
31). Rabbit polyclonal IgG against an engineered fusion peptide, 
PAV, provided excellent passive immunity (100% protection) 
against intravenous (i.v.) challenge of Y. pestis and Yersinia 
pseudotuberculosis in Swiss Webster mice (32, 33). We also 
reported that recombinant LcrV alone provided only 75% pro-
tection in mice against bubonic plague (27). The combination 
of recombinant F1 and LcrV antigens elicited greater protec-
tion in comparison to either F1 alone or LcrV alone (34, 35). 
Vaccination with F1 and LcrV antigens adjuvanted with alum 
protects mice against pneumonic plague, proven by The United 
Kingdom’s defense department (36, 37). The United States Army 
Medical Research Institute of Infectious Diseases demonstrated 
that a recombinant bivalent F1–LcrV fusion protein provides 
protection in mice challenged via aerosolized route against 
virulent strains of Y. pestis (26, 38). In a recent study, F1mut-V 
in formulation with alhydrogel and T4-decorated F1mut-V 
without any adjuvant imparted 100% protection in mice and 
rats against pneumonic plague (39). In our recent studies, we 
also demonstrated that a mixture of recombinant F1  +  LcrV 
antigens in formulation with alum imparts full protection 
in mice against bubonic plague (27). In conclusion, F1/LcrV 
vaccine provides strong protective immunity in mice, rats, 
and rabbits against subcutaneous and pneumonic plague. The 
vaccine mainly induced humoral immune response as a high 
titer of anti-LcrV antibodies is very crucial. The protection is 
stimulated by anti-LcrV antibodies, which help by blocking 
the type 3 secretion system (40, 41). Inclusion of F1 with LcrV 
enhanced the protection as LcrV does not always provide 100% 
protection (27).
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Due to the ethical limitations, it is not possible to chal-
lenge human with Y. pestis; hence, the NHPs or monkeys are 
considered as standard model for trials of plague vaccines. The 
intramuscular vaccination of F1/V vaccines in formulation with 
alhydrogel protects cynomolgus macaques against pneumonic 
plague (42,  43); however, this F1–LcrV vaccine provided poor 
and inconsistent (0–75%) protection in African green monkeys 
(44–46). The F1/LcrV vaccine also provided protection against 
subcutaneous challenge of virulent Y. pestis in rhesus macaques 
(47) and baboons (48). The existence of F1-negeative virulent 
strains of plague bacilli (12, 49) and LcrV variants of Y. pestis 
(50, 51) may not be ignored to not to confer the cross protec-
tion. The subunit vaccine exclusively based on F1/LcrV may not 
be worthwhile for a biothreat scenario, hence, the inclusion of 
additional subunits to the F1/LcrV vaccine is utmost needed. 
Vaccination with recombinant YscF in formulation with Freund’s 
adjuvant protected mice from an i.v. challenge with Y. pestis (52). 
In another study, immunization with recombinant YscF in for-
mulation with Ribi adjuvant system R-730 monophosphoryl lipid 
A provided significant protection in mice against subcutaneous 
challenge with Y. pestis (53). In a recent study, anti-Ail/OmpX and 
anti-OmpA antibodies protected mice against bubonic plague, 
and anti-Pla antibodies were protective against pneumonic when 
challenged with the F1-negative CO92 strain (54). In the past, a 
number of antigens have been evaluated for protection with very 
little success (45).

ROLe OF MOLeCULAR ADJUvANTS

The ultimate goal of vaccination is to stimulate a strong and 
long-lasting immunity to the administered subunit candidate 
against infection. Generally, the problem associated with puri-
fied recombinant subunit vaccine candidates is the poor/less-
induced immunogenicity in comparison to LWC- or KWC-based 
vaccines. To deal with this problem, alum is the one and only 
approved human compatible adjuvant and has been used for 
human vaccination widely, but alum mainly stimulates the Th2 
response. The important facts to use adjuvants are (1) to augment 
the immune response of purified recombinant subunits, (2) to 
improve the protective potential, (3) to decrease the amount of 
dose and number of vaccination, and (4) to help in delivery of an 
antigen to the target cells (55–57).

The immunization of mice with F1 and LcrV antigens in 
formulation with molecular adjuvants, i.e., cholera toxin and 
heat-labile enterotoxin (LT), both formulations provided partial 
protection against 100 MLD against a virulent strain of Y. pestis 
(58). Flagellin, agonist of toll-like receptor-5, is mostly used 
molecular adjuvant with F1–LcrV to augment the Th1 type of 
immune response and provided 100% protection in mice against 
a respiratory challenge with Y. pestis (46, 59) and showed variable 
protective efficacy in NHPs against pneumonic challenge (46). 
CpG Oligodeoxynucleotides, agonist of TLR-9, elicit a balance 
Th1/Th2 response in formulation with F1–LcrV fusion protein 
and protected mice against bubonic and pneumonic plague 
(60, 61). Microencapsulation (62) and lipid A mimetics (63) of 
recombinant LcrV–F1 fusion protein induced a mixed Th1/Th2 
cell-mediated immune response and provided protection against 

pneumonic plague in mice and rats. Liposome, such as cationic 
liposome nucleic acid complexes (64), and proteosomes, such as 
protollin (65), have been evaluated with F1–LcrV and have been 
shown to protect against pneumonic plague.

In 2013, Tao et al. addressed a series of concerns and generated 
mutants of F1 and V, which are completely soluble and produced 
in high yields. The authors engineered the vaccine into a novel 
delivery platform using the bacteriophage T4 nanoparticle. The 
nanoparticle vaccines induced strong immune response and 
conferred 100% protection against pneumonic plague in mice 
and rats (39). Some novel agonist of the costimulatory molecules 
of tumor necrosis factor receptor super family has been shown 
to stimulate T cell activation, expansion, and acquisition of 
effector function. One such molecule, SA-4-1BBL (recombinant 
agonist of 4-1-BB costimulatory molecule), had shown a bet-
ter efficacy in generating CD4+ and CD8+ T cells producing 
TNF-α and IFN-γ with F1–LcrV fusion protein and provided 
100% protection against bubonic model of plague in C57BL/6 
mice (66). Addition of HSP70 (domain II) of Mycobacterium 
tuberculosis with F1/LcrV subunits of Y. pestis augments the 
cellular immune response. HSP70(II) significantly elevated the 
levels of IL-2, IFN-γ, TNF-α, and IFN-γ secreting CD4+/CD8+ T 
cells in F1 + LcrV + HSP70(II) vaccinated group in comparison 
to the F1 + LcrV group. F1 + LcrV + HSP70(II) combination 
provided full protection against virulent strain of Y. pestis (S1, 
Indian clinical isolate) in a mouse model (27). Later, we designed 
a recombinant trivalent fusion protein F1–LcrV–HSP70(II) and 
evaluated in a mouse model. This trivalent fusion protein provides 
improved cellular immune response and full protection against 
plague (67). Overall, the molecular adjuvants play the crucial role 
in vaccine development from antigen delivery to augmentation of 
the immune response in the host.

DNA vACCiNeS STRATeGieS

Attempts were made to develop recombinant DNA vaccines 
against plague. Initially, the success rate was low as generating weak 
humoral immune response to F1 and LcrV. The LcrV/F1-based 
DNA vaccines were developed as an alternative approach to 
protein-based vaccines that contain either full or part of the open 
reading frames encoding LcrV, F1, or both. A peptide (127-amino 
acid) vaccine of LcrV antigen elicited a strong humoral immune 
response and provided 60% protection against Y. pestis in mice 
(68). The addition of the constructs of molecular immunopo-
tentiator IL-12 with F1 or LcrV has significantly enhanced the 
immune response and showed 80% protection from a subsequent 
inhalational challenge with Y. pestis (69). The DNA constructs 
were prepared to express the Y. pestis antigens with human tissue 
plaminogen activator (tPA) signal sequence to get the secretory 
proteins in absolutely soluble forms. DNA vaccination of LcrV 
with tPA elicited a significant humoral immune response and 
protected against pneumonic plague (70). In a recent study, DNA 
vaccine of LcrV elicited a robust CD8+ T cell immune response 
against specific epitopes (71). Some other vaccine candidates, i.e., 
YscF, Pla, YopB, YopD, and YpkA, were also evaluated in small 
animals and showed inadequate protection (72). In conclusion, 
the result of DNA vaccination was highly reliant upon the DNA 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


4

Verma and Tuteja Plague Vaccine: An Update

Frontiers in Immunology | www.frontiersin.org December 2016 | Volume 7 | Article 602

vaccine construct, and this technology must be encouraged and 
optimized for future use of human vaccination against plague.

Live CARRieR PLATFORMS  
FOR vACCiNe DeLiveRY

Apart from the testing of plague subunit vaccines, the expression 
of vaccine candidates from Y. pestis in live carriers also started. 
These types of systems have their own limitations, because 
the expertise of attenuation is needed when virulent genes are 
expressed as protective antigens. Attenuation is an important step 
because a huge risk is associated particularly for immunocom-
promised populations. It is very important to know that how to 
prepare and store the vaccine stockpile in order to make sure the 
viability of the vector for delivery. Nevertheless, the advantage of 
the live vaccines is the low cost, easy to scale-up the production, 
and the potential to induce strong cell-mediated and mucosal 
immune response.

Live viRAL-BASeD DeLiveRY 
PLATFORMS

Replication-deficient adenoviral vectors (Ad) are well-estab-
lished delivery platforms as they transfer gene/s efficiently to the 
macrophages following their activation, and therefore evoking 
robust and fast humoral and cellular immunity. An adenovirus 
(Ad) gene-transfer vector encoding LcrV vaccine candidate 
was developed by Crystal’s group (73, 74). Single immuniza-
tion with this recombinant virus was found efficient to induce 
strong humoral and cellular immunity and provided protection 
against pneumonic plague in mice (73, 74). Later, they linked 
either LcrV or F1 vaccine candidate to the capsid protein pIX 
of adenovirus and demonstrated that both constructs induced 
significantly robust IgG response in the sera of intramuscular 
(i.m.)-vaccinated mice in comparison to the vaccination 
with purified LcrV/F1 in formulation with adjuvant (73, 74). 
Recently, a replication-defective human type 5 adenovirus (Ad5) 
vector was used to construct the recombinant monovalent and 
trivalent vaccines (rAd5-LcrV and rAd5-YFV). The monovalent 
codon-optimized lcrV gene expressed LcrV and the trivalent 
fusion gene-designated YFV expressed a trivalent fusion protein 
YscF–F1–LcrV. Vaccination of mice with the trivalent rAd5-
YFV construct provided superior protection in comparison to 
monovalent rAd5-LcrV construct against bubonic and pneu-
monic when challenged via either the i.m. or the intranasal (i.n.) 
route. Immunization of cynomolgus macaques with the trivalent 
rAd5-YFV provided 100% protection against pneumonic plague. 
This has first ever proved the efficacy of an adenovirus-vectored 
trivalent rAd5-YFV vaccine against pneumonic plague in mouse 
and NHP models (75).

One more vaccine based on recombinant vesicular stomatitis 
virus vectors harboring the gene encoding LcrV antigen was 
developed and evaluated in mice by Rose’s group (76, 77). The 
genes encoding LcrV and F1 were cloned in Vaccinia viral-based 
vectors and evaluated in Balb/C mice. The observed response 
was significantly immunogenic, and vaccine was found safe in 

immunocompromised SCID mice (78, 79). It was reported in a 
study that latent infection with either murine gammaherpesvi-
rus 68 or murine cytomegalovirus in mice provides protection 
against Listeria monocytogenes or Y. pestis challenge via both 
routes either intranasal or subcutaneous. The mechanism of 
protection was the long-lasting expression of interferon-γ and 
activation of antigen-presenting cells, which evoked the innate 
immunity against challenge of Y. pestis (80). The scientists of 
National Wildlife Health Center, USA, evaluated Racoon 
poxvirus (RCN)-based two vaccine constructs, RCN-F1 and 
RCN-V307. The consumption of baits containing both vac-
cine constructs, i.e., RCN-F1 and RCN-V307, by prairie dogs 
(Cynomys ludovicianus) showed significant protection against 
plague challenge (81). Later, the same group evaluated a dual 
RCN-F1/V307 construct that expresses both F1 and V307 
antigens. The RCN-F1/V307 vaccine imparted similar degree of 
protection against plague not only in mice but also in prairie 
dogs as compared to single antigen constructs. The RCN-F1/
V307 vaccine also provided protection in mice against an 
F1-negative strain of Y. pestis (82, 83).

Live BACTeRiALLY BASeD DeLiveRY 
PLATFORMS

An attenuated Salmonella was used first ever as a live delivery 
platform to express F1 and LcrV antigens. In orally vaccinated 
animals, these vaccines induced the expression of IgG2a subtypes 
and found inefficient to protect against plague. Immunization via 
nasal route and boosting with purified antigens via parenteral 
could be the better approach to augment the immunity. Still, the 
protection was significantly less in comparison to protection pro-
vided by immunization with recombinant antigens (49). Several 
studies have been performed by Titball’s group; they designed 
and prepared to express the bivalent F1–LcrV fusion protein 
(84), LcrV only (85), and F1 on cell surface (86). A Salmonella 
strain was constructed to express F1 as an extracellular capsule 
and soluble LcrV antigen (87). Largely, S. Typhimurium strains 
expressing F1/LcrV or truncated LcrV were performed to evoke 
the IgG- and cell-mediated immune response to the protein of 
interest. These vaccines provide partial protection against Y. pestis 
infection via nasal or subcutaneous route.

Morton et al. studied a S. Typhi strain expressing F1 provided 
protection in mice after intranasal vaccination against plague 
(88). One similar type of vaccine strain was also performed in 
7-day-old mice after immunization via intranasal route (89). The 
vaccinated animals developed mucosal immune response, and 
IFN-γ-expressing cells and were primed with F1 in formulation 
with alum. This Salmonella vaccine offered strong priming in 
comparison to F1 with alum prime, proving the better efficiency 
of Salmonella-based vaccine for plague in a prime boost setting. 
Newly invented vectors derived from Salmonella with better 
immunogenicity, controlled mechanism of attenuation, and long-
term stability in expression of antigens of interest has endorsed 
the improved protective potentials of vaccine mainly based on the 
tailored LcrV (90). The degree of immunity of this vaccine is not as 
good as induced by the purified F1 and LcrV vaccines. However, 
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Salmonella-vectored system is quite appropriate to express the 
outer membrane proteins, i.e., PsaA, adhesin, and HmuR, which 
have been evaluated as vaccine candidates (91, 92). There is one 
more report where LcrV antigen from Y. pseudotuberculosis was 
expressed in a heterologous delivery system; the commensal, non-
pathogenic species Lactococcus lactis. This L. lactis expressing 
LcrV did not protect against Y. pestis; however, it protected well 
against Y. pseudotuberculosis (93). In a recent study, intranasal 
immunization of mice with L. lactis secreting LcrV antigen from 
Y. pseudotuberculosis (Ll-LcrV) induced strong humoral and cel-
lular immunity against Y. pseudotuberculosis infection in a mouse 
model and provided a significant long-lasting protection (94).

A remarkable progress has been made by Carniel’s group on 
developing plague vaccine using avirulent Y. pseudotuberculosis. 
Vaccination against bubonic plague can be obtained using attenu-
ated Y. pseudotuberculosis (strain IP32680). One oral IP32680 
inoculation provided 75% protection and two inoculations 
provided 88% protection against subcutaneous challenge with  
Y. pestis CO92 in a mouse model (95). The similar group generated 
an encapsulated Y. pseudotuberculosis by cloning the F1 encoding 
caf operon of Y. pestis. A single oral vaccination with the live 
attenuated Y. pseudotuberculosis V674pF1 imparted significant 
protection against pneumonic plague in mice (96). Later, the caf 
operon was manipulated into the chromosome of a genetically 
attenuated Y. pseudotuberculosis, yielding the VTnF1 strain.  
A single dose by oral administration of VTnF1 vaccine provided 
100% protection against both bubonic and pneumonic plague in 
mice. The authors claimed that VTnF1 strain is easy-to-produce, 
genetically stable, and irreversibly attenuated and provides long-
lasting immunity against both wild-type and F1-negative Y. pestis 
(97, 98).

ATTeNUATeD PLAGUe vACCiNeS

An attenuated vaccine is created by reducing the virulence of 
a pathogen, but still keeping it live. Attenuation takes an infec-
tious agent and alters it so that it becomes avirulent. In 1936, a 
human live plague vaccine developed from an attenuated strain 
EV NIIEG of Y. pestis has been extensively used in Russia. This 
is a subculture of vaccine strain EV76, developed at the NIIEG 
(Scientific-Research Institute for Epidemiology and Hygiene, 
Kirov, Russian Federation) in the former USSR (17, 99). EV 
NIIEG is the only approved vaccine against plague for human 
use during plague outbreaks. The short-term immunity and the 
concern of safety are the limitations of this vaccine. Additionally, 
LPV provides poor protection to mice against non-encapsulated 
Y. pestis challenge (25). The vaccination showed several side 
effects due to its highly toxic nature. The vaccine EV NIIEG was 
modified by removing the lpxM gene for the late acyltransferase, 
resulting in formation of predominantly less-toxic penta-acylated 
lipid A. The modified mutant vaccine conferred better protection 
in mice and guinea pigs due to the optimal expression of protec-
tive antigens and its long-lasting existence in immunized animals 
(100, 101). Another approach used by Y. pestis expresses tetra-
acylated lipid A that can not activate TLR-4 so that the pathogen 
can breach the host immune system. This is happened because 
both the lpxP and lpxM genes expresses hexa-acylated lipid A at 

28°C. Both LpxP and LpxM are important for hexa-acylation. 
But at 37°C, in human host, lpxP is not stimulated to express, 
which results in tetra-acylated lipid A. TLR-4 does not recognize 
tetra-acylated lipid A (102). TLR-4 recognizes hexa-acylated 
lipid A (103–105). Researchers introduced the lpxL gene of E. 
coli expressing acyltransferase absent in Y. pestis. The engineered 
strain constitutively expressed hexa-acylated lipid A that evokes 
the innate immune system at the early hours of Y. pestis infection 
leading to its elimination (106).

Another successful strategy is to attenuate the wild-type strain 
of Y. pestis to develop the vaccine. Therefore, the attenuated strains 
carrying the mutations in the lpp and nlpD genes encoding outer 
membrane lipoproteins showed outstanding capability to induce 
protective immune response against Y. pestis (107, 108). A dele-
tion in the global regulator gene rovA of Y. pestis was introduced 
and tested as a vaccine candidate (109). Likewise, a number of 
mutations in wild-type strain of Y. pestis were introduced to 
diminish the virulence. Many mutant strains were evaluated for 
their protective efficacy, which were having the mutations in the 
genes, i.e., yopH encoding effector protein of type 3 secretion 
system; aroA gene for aromatic-dependent; guaB gene encod-
ing for guanine nucleotide bio-sysnthesis; crp gene encoding 
for cyclic adenosine monophosphate receptor protein; relA and 
spoT genes; smpB-ssrA genes encoding housekeeping functions 
for the translational machinery; and dam gene for DNA adenine 
methylase (92, 110).

FUTURe PeRSPeCTive

The F1/LcrV-based subunit vaccine mainly induces a humoral 
immune response. While this vaccine has shown promising 
results in animal models, its protective potential in humans 
is yet to be assessed. In the near future, the F1/LcrV-based 
vaccine may be accessible to populations residing in plague-
endemic areas. Since the protective effect of this vaccine is 
mainly dependent on humoral immunity, it may be essential to 
administer boosters from time to time. Next-generation plague 
vaccines should be designed to stimulate strong cell-mediated 
immunity as well. Both of the responses, humoral and cellular, 
effectively contribute to vaccine efficiency. The humoral immune 
response refers to the production of antibodies that neutralize 
extracellular microbes, while the cellular immune response 
relies on T cells which express cytokines and actively destroy 
intracellular microbes. The heat-shock protein 70 (domain II) 
of M. tuberculosis and SA-4-1BBL (recombinant agonist of 4-1-
BB costimulatory molecule) modulate cellular immunity and 
have been used to enhance the protective potential of F1/LcrV 
antigens in mice; however these studies need further evaluation 
in NHPs (27, 66).

In USA, existing KWC or live attenuated vaccines against 
plague are presently not preferred due to ethical concerns. As a 
result, a prime boost strategy to improve the protective capac-
ity of next-generation DNA or live carrier vaccines would be of 
immense interest (92, 110). Reasonably, live attenuated Y. pestis 
strains stimulated complete protection against plague in animal 
models. Current live Y. pestis vaccines must stimulate both 
humoral- and cell-mediated immunity to a range of important 
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antigens, imparting robust protection, especially in comparison 
to the subunit vaccines. Thus, there is an urgent need to extend 
research for the development of new innovations and improved 
version of live attenuated vaccines.
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