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Abstract
We examine simultaneously recorded spikes from multiple grid cells, to elucidate mechanisms
underlying their activity. We demonstrate that grid cell population activity, among cells with
similar spatial periods, is confined to lie close to a 2-dimensional manifold: grid cells differ only
along two dimensions of their responses and are otherwise nearly identical. The relationships
between cell pairs are conserved despite extensive deformations of single-neuron responses.
Results from novel environments suggest such structure is not inherited from hippocampal or
external sensory inputs. Across conditions, cell-cell relationships are better conserved than the
responses of single cells. Finally, the system is continually subject to perturbations that were the 2-
d manifold not attractive, would drive the system to inhabit a different region of state-space than
observed. Together, these findings have strong implications for theories of grid cell activity, and
provide compelling support for the general hypothesis that the brain computes using low-
dimensional continuous attractors.

Introduction
A set of N uncoupled spiking neurons, each with dynamic range Q, supply a vast
representational space (volume ~QN), (Fig. 1a, top). However, the representation has poor
resistance to noise: each state is independent and if changed to another, there is no restoring
dynamics to correct the state. Even in the absence of noise, the states persist only for the
time-constant of single neurons.

Coupling between neurons generally disallows many states, shrinking the representational
space (Fig. 1a, top and bottom). An advantage of coupling is that it can, in special cases,
produce stable fixed points (attractors) of the network dynamics that allow the network to
hold a state after inputs are removed, for far longer than the single-neuron time-constant.
Moreover, if noise is present in the system, it may perturb the system off the attractor, but
the perturbations are transient and automatically corrected as the system rapidly flows back
toward the attractor (Fig. 1a, top). Discrete or point attractors, as in Hopfield networks, may
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be used to represent discrete items1. In many cases, the brain must represent continuous
variables. In these cases, the value of the variable could be represented as a point on a
continuous manifold of stable fixed points, of the same dimensionality D as the variable2–5.
This manifold is called a low-dimensional continuous attractor, if its dimensionality is much
smaller than the number of neurons in the network (D « N). In these ways, attractors enable
robust representation and memory, albeit at the cost of diminished representational space.

Low-dimensional continuous attractor dynamics have been widely hypothesized to underlie
the stable tuning curves of population codes2,6, motor control3,7, neural integration3,4,8–15,
and parametric working memory16,17. The predicted signatures of low-dimensional
continuous attractors in the neural context are systematic differences in neural responses
along the attractor manifold (e.g. preferred angles that vary along a continuum for a 1-d ring
attractor, Fig. 1a, bottom) but conformity and stability otherwise (e.g. tuning curves
generated by pulling a rigid activity bump across the 1-d ring attractor). Critically, the
mapping of states on the attractor to specific values of the represented variable may vary
based on changing associations between the network and the external world (e.g. rotation of
the network states relative to the world), but relationships between cells (e.g., whether they
are in-phase or counter-phase or quadrature-phase in their relative activity patterns), must
remain absolutely stable3,4,12,15. In other words, the responses of cells – when plotted
against the external represented quantity – may change substantially, but pairwise
relationships between cells should not. Despite these predictions, and beautiful empirical
results10,11,18,19, definitive validation of the low-dimensional continuous attractor
hypothesis has been somewhat elusive: In most cases, partly because of the difficulty of
inducing sufficient change or perturbation in the neural responses and partly because
quantitative analyses on simultaneously recorded neural pairs have not been conducted, it
has been unclear whether the dynamics are truly low-dimensional, what the dimension is, or
where the dynamics originates10,18,19.

Mammalian grid cells20, each of which fires at the vertices of a regular spatial grid as the
animal moves through its environment, are hypothesized12–15,20–23 to compute ongoing
location estimates through integration of self-motion cues, based on the theoretical argument
that their responses constitute a relatively context-independent code for spatial
displacements. Across different familiar environments, the firing field locations in a grid cell
change only through global phase shifts and rotations20,24, in contrast with place cells,
which change in more elaborate ways, by gains or losses and shifts in subsets of their place
fields25–29. The notable regularity and stability of a grid cell’s response hints that the
population might be well-described by relatively few parameters, a signature of an
underlying low-dimensional dynamical system.

On the other hand, spatially periodic firing in grid cells is neither necessary nor sufficient for
inferring low-dimensional population dynamics: It is theoretically possible for the
population dynamics to be low-dimensional and periodic without spatially regular firing in
individual cells, because of poor velocity integration15. Conversely, if the N cells in a single
population have periodic spatial responses, but each displays independent shifts (relative to
the other cells) of its spatial phase across environments, the dimensionality of the population
response would be high, or ~N. Finally, experiments that involve resizing of a familiar
environment, or exploration in novel environments, reveal that grid cell spatial responses
stretch along one or both dimensions30–32, a malleable response that is possibly consistent
with higher-dimensional dynamics.

Here we examine spikes from simultaneously recorded grid cell pairs, in experiments where
the single-cell responses undergo significant change, and where external inputs do not
provide reliable spatial cues, to rigorously determine across conditions the dimensionality of
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the population response for each grid cell network or module (discrete networks or modules,
consisting of local groups of cells with a common grid period and orientation, were
predicted to exist through modeling12,15,22,33 and experimentally validated30,32), and thus
probe for evidence of low-dimensional continuous attractor dynamics in the brain. We relate
the empirical findings to dynamical models of grid cells, to generate constraints on the
mechanisms that underlie grid cell response.

Results
We examine several datasets of grid cell recordings in their entirety. The results reported
below include all simultaneously recorded cell pairs from these datasets, in which both cells
of the pair share a common spatial period and meet a modified gridness score that includes
cells with regular triangular grids, even if the triangles are not equilateral (see Online
Methods).

Identical spatial responses up to 2-d translation
We examine spikes from neurons recorded simultaneously from the same or nearby tetrodes.
The activity peaks of a sample pair (Fig. 1b) are arranged in the spatially periodic firing
patterns characteristic of grid cells. Our definition of the spatial responses of grid cells, here
and in the rest of this work, is the set of locations of the firing peaks. Six parameters are
sufficient to characterize any periodic tiling in 2-d, regardless of the shape of the tiles34.
Thus, the spatial response of an individual cell in a particular environment is well-described
by four parameters for the angles and lengths of two primary lattice vectors (Fig. 1c, inset),
with two additional parameters that specify the 2-d spatial phase of the lattice, relative to
some reference phase or location.

We find that cell pairs from the same or nearby tetrodes have extremely similar values for
the first four parameters (Fig. 1c, N = 223 cell pairs: 24 from ref. 20; 97 from ref. 35; 12
from ref. 30; 90 from ref. 31). This is the case even though the cells have very different
spatial phases (Fig. 1d), i.e., even when the cells are active in complementary parts of the
environment. The relative phase between cell pairs, defined as the difference in their spatial
phases, appears to be uniformly distributed (N = 223 cell pairs) over the unit cell of the
lattice (Fig. 1d; consistent with similar result from ref. 20).

Cell-cell relationships more stable than single cells
We next examine the stability over time of each cell’s response and of cell-cell response
relationships. Without any detailed analysis, the fact that a clear grid pattern is visible in the
responses of individual neurons over a 20-minute recording session means that the
individual spatial phases remain essentially constant over the session; if the phase shifted
over time, the cell would fire at these different phases, and the grid response would be
washed out. It follows directly that the relative phase between cells of the same spatial
period and orientation will also be constant over that interval.

In this analysis, we probe the grid cell responses over longer time intervals: cells are
recorded in an environment, then following an interval in which the animal is tested under
varying conditions and environments, the cells are recorded again in the original
environment (Fig. 1e). The elapsed time between recordings in the original environment is >
60 minutes. We find that cells that shared essentially identical values of the first four grid
parameters in the first measurement (Fig. 1b,c) continue to share essentially identical
parameter values in the subsequent measurement in the original environment (Fig. 1f, N =
84 cell pairs from refs. 30,31).
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Moreover, the relative phases between cell pairs remain essentially constant over this
interval (Fig. 2a, N = 84 cell pairs), consistent with continuous attractor dynamics that
stabilizes cell-cell relationships. However, this stability of relative phase between cells may
be attributable to the stability of the phases of individual cells across visits to the original
environment. To differentiate between the two possibilities, we therefore compared the
stability in the spatial phase of single cells with the stability of relative phase between cells.
We find that, notably, the relative phase between cells is more tightly preserved than the
phase of each cell (Fig. 2b), strongly suggesting a low-dimensional internal dynamics that
yokes together the responses of different cells in the network, rather than spatially
informative external cues.

Cell-cell relationships stable despite grid distortions
Next, we test pairwise relationships between grid cells that undergo a non-uniform rescaling
of their individual grid responses when a familiar enclosure is suddenly resized30 (Fig. 3a,b).
This rescaling constitutes a major change in the responses and grid parameters of individual
cells (Fig. 3c). But despite rescaling, the ratios of the first four grid parameters between cell
pairs remain fixed very close to 1, indicating that these parameters change in tandem across
the population (Fig. 3d). This result holds for all cell pairs (Fig. 3e, 7 cell pairs from ref. 30).

Crucially, the relative phases between cells remain nearly constant (Fig. 3f) despite the
changes in grid cell responses, and the constancy of relative phases is independent of
whether the cells have similar or very different phases relative to each other (Figs. 3f and 6).
Thus we see that relative phase is strongly conserved even when the responses of single cells
– influenced by changing external cues – have changed significantly, again strongly
suggesting a 2-d state space and simultaneously suggesting that internal dynamics rather
than external cues are responsible for the low-dimensional response.

Constancy of cell-cell relationships without place-cell stability
The preceding results are consistent with a population response that is confined to a 2-d
manifold: Given the spatial response of one cell, the responses of the others are always
predictable, differing from the single cell only by a fixed 2-d phase shift, which remains
invariant across conditions. However, it remains possible that, rather than arising from
attractor dynamics generated within the grid cell network, the low-dimensional response of
grid cells is externally imposed: by sensory cues from the familiar room, that somehow are
flexible enough to permit rescaling of individual responses yet rigidly force fixed relative
phases; or more plausibly, by inputs from the hippocampus.

In an attempt to address these possibilities, we analyze grid cell responses from animals’
first exposures to novel environments. Grid cells are recorded first in a familiar
environment, then in a novel environment, then again in several subsequent sessions in the
novel environment as it becomes gradually more familiar31. In the first exposure to a novel
environment, the spatial periods of grid cells expand suddenly, and the responses become
less regular (Fig. 4a-c, 24 cell pairs from ref. 31). As the novel environment becomes more
familiar, significant changes occur: the responses become more grid-like (Fig. 4b), and the
grid periods contract steadily (Fig. 4c). Indeed, the four parameters of the grid response all
change in the novel environment then relax back over days to values seen in familiar
environments (Fig. 4d), while the environmental sensory input remains unchanged. This
suggests that the response of grid cells and their relationships are not determined, and by
extension, not stabilized, by the environmental sensory input during this contraction period.
With this in mind, we next examine the relationships of grid parameters between cells. We
find that the ratios of each grid parameter between cell pairs remain close to unity in the
novel environment, as in familiar environments, starting with the very first exposure in the
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novel environment (Fig. 4e), and continuing throughout the period of contraction of the grid
period. Again, crucially, we find that the relative phase between cells remains essentially
unchanged between the familiar environment and the very first exposure to a novel
environment (Fig. 5, 24 cell pairs from ref. 31), despite the large changes in the grid
responses of neurons, and thus in their absolute phases. The relative phase between cells
continues to remain fixed as the grid response shrinks over repeated exposures to the novel
environment (Fig. 5).

Because the animal in a novel space has not yet learned to associate external sensory cues
with location36,37, and because external cues remain fixed while the grid responses shrink
over several days, it follows that the relationship between grid cells and the external world is
less stable than is the relationship between grids cells. It is therefore unlikely that external
sensory cues are stabilizing cell-cell relationships across novel and familiar environments.

In contrast to grid cell responses in the novel environment, simultaneously recorded place
cells underwent complete remapping31 – defined as the loss of some of their firing fields and
gain of others, with little preservation of spatial correlations between place cell firing fields.
Like grid cells, place cell firing fields also expanded, then shrank, but to a much lesser
extent than the grids, and for a shorter time. The remapped responses were not immediately
stable, taking hours to stabilize31 (see also refs. 25,38-40 for similar results on place cell
remapping). Thus, hippocampal representations, and by extension, place cell-grid cell
relationships, are in flux while cell-cell relationships between grid cells remain stable,
suggesting that hippocampal input is not stabilizing relative phases between grid cells in the
transition from familiar to novel environments, and within the novel environment. Taken
together, these findings suggest that the hippocampus cannot be generating and feeding
forward the 2-d stable responses observed in grid cells.

The above result is not inconsistent with the finding that hippocampal inputs seem required
for grid cell activity41. A reduction of excitatory drive from the hippocampus and
diminished activation of grid cells can, if the recurrent connections between grid cells are
dominantly inhibitory42,43, result in a failure of the recurrent connections to induce
population patterning and low-dimensional dynamics, as in the models of refs. 15,41.
Hippocampal inputs might also correct path integration errors by selecting the appropriate
population state for a given location from a set of stable population patterns23,44,45, thus
enabling accurately patterned spatial grid cell responses over a trajectory15. In either of these
cases, the 2-dimensionality of the grid cell population response is intrinsic to the entorhinal
cortex, but abolishing hippocampal drive may abolish spatial patterning.

We may conclude, first, that the grid cell population response is restricted to the same 2-d
manifold at the first exposure to novel environments as in familiar environments, and
second, that this restriction to the 2-d manifold cannot easily be ascribed to external sensory
cues or hippocampal inputs, because relative phases and parameter ratios are stable even
when these inputs are not.

Smoothness (continuity) of 2-d manifold
We next more closely examined the 2-d manifold of stable grid parameters and relative
phases, to determine whether it exhibits a granular or “lumpy” structure, in which cell-cell
stability is dependent on cell-cell similarity. A scenario in which cells with similar spatial
phases conserved their relationships with each other more strongly, would be consistent with
distinct subnetworks of cells with similar spatial response patterns stabilizing each other and
not others with more dissimilar responses. Thus, we reexamined the results from familiar,
rescaled, and novel environments, plotting parameter ratios as a function of relative phase
between cell pairs. Parameter ratios were consistently close to one, independent of the
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distance in phase between cells (Fig. 6a). Importantly, the stability in cell-cell relationships
across rescaled and novel enclosure trials, as measured by stability of parameter ratios (Fig.
6b) and stability of relative phases (Fig. 6c), did not vary with relative phase magnitude
between cell pairs. Therefore, up to experimental resolution, the 2-d manifold of states is
continuous.

Stability (attractiveness) of the 2-d manifold of states
We have established that the grid cell population response is localized to the neighborhood
of a 2-d manifold, over extended periods of time and across varying external conditions that
induce significant changes in the grid cell responses. Further, this localization is very likely
due to internal recurrent dynamics, not a low-dimensional external input. What can we say
about the dynamical stability of the 2-d manifold?

Real-world dynamical systems are localized to their stable or attractive states. They are
seldom (with vanishing probability) found at or near unstable fixed points, precisely because
such points are unstable and the smallest perturbation will drive the system away.
Conversely, the dimensionality of state space occupied by the system is indicative of the
dimensionality of the attractive states of the system. If a low-dimensional manifold is stable
but is part of a higher-dimensional manifold of stable fixed points (Fig. 7a), then high-
dimensional noise, however small, will cause the system to random-walk through the larger
manifold46. The system will consequently be found to inhabit any of the states across all
dimensions of the stable higher-dimensional manifold. Grid cells are likely subject to high-
dimensional internal noise: For example, stochastic vesicle release in synapses47 causes
independent perturbations in every postsynaptic neuron (noise dimension ~N, where N is the
number of neurons). An analysis of spiking variability as a source of noise in grid cells is
given in the SI (Supplementary Fig. 4). The fact that grid cells nevertheless primarily
occupy the neighborhood of a 2-d manifold of states, in which cell-cell relationships are
tightly conserved, suggests that the 2-d manifold is attractive (Fig. 7b) and that locally, the
attractive manifold has a dimension neither greater than nor smaller than 2.

Besides the deduction, above, that the grid cell system is subject to perturbations off the
attractor through internal stochastic dynamics, we find evidence that external perturbations,
in the form of velocity inputs, drive the grid cell system away from the 2-d manifold. To see
this, we select all the spikes emitted by a cell during parts of the trajectory when the animal
is headed ‘northward’ (north ± 45deg), to form a North spatial activity map. We then
compute the relative phase between a cell pair only for the North maps of each. The
difference between this relative phase and the relative phase computed over the full
trajectory is the perturbation off the attractor that northward motion induces in the state. All
grid cells in our analysis have negligible directional tuning (Supplementary Fig. 2-2), thus
changes in relative phase cannot be attributed to a direct velocity modulation. We do the
same for the South, East, and West conditions. The resulting directional shifts in relative
phase are statistically significant, compared to controls computed from similarly sized
trajectory fragments unsorted by heading direction (Fig. 7c,d: data from the same cells in
Fig. 1c,d). The shifts in relative phase between cells are consistent with the respective
heading directions (Fig. 7c), suggesting that these shifts are indeed due to directional
velocity input to the system. Thus, ongoing movements push the network away from the
attractor by causing small deformations of the population pattern, in the form of a slight
stretching of the population pattern along the direction of motion.

Finally, we examine the dynamics of perturbation by sliding the spike-selection windows in
time relative to the centers of e.g. the Northward trajectory fragments (see Online Methods).
We see that the shift in relative phase decays as the window is slid by a few seconds, and the
decay time-constant is very similar to the autocorrelation time for directional motion in the
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animal trajectories. Thus, the off-manifold (perturbed) components of the network state
relax back to the 2-d manifold on a time-scale similar to or faster than the few-second time-
scale on which the perturbing input changes. The quick return of the system back to the 2-d
manifold of states after perturbation from the external velocity input is direct evidence that
the 2-d manifold is attractive.

Discussion
Summary

We have shown that, over short times and in familiar enclosures, the spatial responses of
individual grid cells are well-characterized by a low-dimensional set of six parameters, with
essentially the only difference between cells in the same network given by a 2-dimensional
phase representing a rigid translation of the same basic response pattern. Over time and
across environmental manipulations, the responses of individual grid cells change, and thus
the parameters that describe their responses vary. Therefore, the responses of an individual
grid cell are not described by a single set of six parameters.

Crucially, however, the dimensionality of the population response remains invariant. The
responses of different grid cells are yoked tightly together: Over time or with experimental
manipulation, when the spatial response patterns of the individual neurons change
significantly – not only through rigid rotations but anisotropic and isotropic deformations of
the grid pattern through stretching – the grid parameter ratios and relative phases between
simultaneously recorded neurons in each network or module remain essentially constant
(Cells with distinct grid periods – i.e., cells from different networks – could never share a
stable spatial phase relationship even if all single-neuron grid parameters were perfectly
stable, because the relative spatial phase between two perfectly periodic patterns of different
frequency will necessarily precess relative to each other across cycles). In familiar
enclosures, where stability may be attributed to external cues, we show that the cell-cell
relationships are more stable than single-neuron responses, which argues against the external
cue hypothesis. Cell-cell relationships persist with the same fidelity immediately upon
entering novel environments, even though landmark cues suddenly change and remain
unassociated with specific locations, while place cell responses continue to change, arguing
strongly for stabilizing constraints within the grid cell system.

Thus, population activity is confined to the immediate vicinity of a 2-d manifold, across
time and across conditions in different environments. Confinement of the system to a 2-d
manifold despite stochastic internal dynamics and external velocity-driven perturbations off
the manifold suggest that the 2-d manifold of states is an attractor.

Relationship to past work and implications for models
A glimpse that the responses of different grid cells are yoked together was afforded by the
data of ref. 24 (not included in our present analysis): the spatial phases of ~ 5-9
simultaneously recorded grid cells shifted when the animal was moved from one
environment to another, and the shifts appeared to be of a similar magnitude and direction
across cells. However, both environments were familiar, so that hippocampal representations
were stable (albeit different), and external cues could be used to provide locational
information. Thus, without a comparative analysis of variability of phase within and
between cells in a single environment, or an experiment involving destabilized hippocampal
representations and external cues, the qualitatively different possibility of feedforward
stabilization by hippocampal inputs or external cues could not have been ruled out.

Intracellular recordings in head-fixed animals navigating through virtual environments48,49

show that grid cell membrane potentials exhibit a substantial DC depolarization at the firing
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field locations. This is consistent with excitatory (or disinhibitory) network drive that
depolarizes neurons for the duration of a field. However, given that the intracellular
recordings cannot distinguish between feedforward and feedback network inputs, and do not
examine the structure and dimensionality of population activity, they do not provide specific
evidence for continuous attractor models.

We have shown through population analysis that each grid cell network is localized to a 2-d
manifold and that the manifold is attractive, which constitutes specific and direct evidence in
support of continuous attractor network models of grid cell activity12–15,22.

To be consistent with our findings, models of populations of grid cells need to include
recurrent interactions that constrain the system to lie on a 2-d continuous attractor. The
translation-invariant recurrent connectivity patterns of refs [2,4,12,14,15,22] are examples of
such an interaction. Within the constraint of 2-d continuous attractor dynamics, however,
models of grid cell networks may be quite different: Some consist of a single recurrent
network with a 2-d attractor, in which the grid cells integrate velocity inputs12,14,15. In
others, the 2-d dynamics of grid cells arises from the feedforward summation of inputs, from
two 1-d ring attractors, each of which integrates one component of animal velocity50. In
future work, it will be interesting to distinguish experimentally between such alternatives.

To conclude, our analysis contributes strong new evidence (see also refs. 10,11, 19)
supporting the idea that the brain uses low-dimensional continuous attractor dynamics in its
integration and memory functions.

ONLINE METHODS
Binning and rate maps

Cell-sorted spikes of putative grid cells from foraging rats were assigned to (1cm × 1cm)
spatial bins derived from position samples taken at 50 Hz. The number of spikes assigned to
each bin was divided by the animal’s total dwell time in that bin, to remove the effects of
inhomogeneous spatial exploration on estimating the probability of spiking at each location.
This defines the rate map. Smoothed rate maps were generated by convolving the rate maps
with a two-dimensional Gaussian kernel (σ = 4 bins).

Autocorrelations and crosscorrelations
To characterize the spatial response patterns of grid cells, we computed spatial
autocorrelations from the smoothed rate maps of individual cells. To compare pairs of cells,
we computed spatial crosscorrelations from the smoothed rate maps of simultaneously
recorded cell pairs. If the smoothed rate maps are R1 and R2, both spatial correlations are
generated as follows:

where is y(u, v) the correlation coefficient at the bin (u, v), Γ is region of spatial overlap

between R1 and R2, and  is the mean of Ri(x,y) within the region Γ. For
autocorrelations, R1 replaces R2.
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Modified gridness score
The standard gridness score35,51 penalizes any regular grid pattern if it is not of an
equilateral triangular pattern (Supplementary Fig. 1a,b). A novel scoring procedure was
proposed52, with the aim of assigning high scores despite elliptical distortions in a
hexagonal grid. However, it was limited by the fact that either the major or minor axis of the
circumscribed ellipse was always assumed to pass through one of six nearest peaks. We used
a modified gridness score that more generally allows both isotropic (equilateral triangle) and
anisotropic (squeezed or stretched) grids to get a high score. For maximal sample size, and
to test in principle the dimensionality of the grid cell response, it is important to include cells
with anisotropic triangular grids: it is critical to determine whether deformed grid responses
still lie on a low-dimensional manifold.

The modified gridness score is defined on the autocorrelogram of a cell. We first apply a
transform on the correlogram that maps the central lattice cell (given by the six peaks
nearest the center) into a regular hexagon (Supplementary Fig. 1c Left). This transform is
determined by mapping the ellipse that circumscribes the central cell into a circle via a
combined rotation, rescaling, and rotation transformation. If the number of nearest peaks
(defined as the six or fewer peaks whose distance from the origin is less than 2 times the
shortest distance from the origin to a neighboring peak) is less than or equal to four, the
transformation is not applied.

Given the transformed autocorrelogram, we define an annular region with inner radius Ri
and outer radius Ro. We rotate the autocorrelation map in steps of 6° and compute the
Pearson correlation between the rotated map and the original map with each confined to the
annular region. The gridness for a given annular region is defined by the minimum
difference between crests and troughs in rotated correlations:

where ρi,o(Φ) is the correlation value when one map is rotated by angle Φ relative to another
over the annular region defined by Ri,Ro.

We do this for various values of Ri and Ro, letting Ri change from 0.5r to r and Ro change
from Ri+1 cm to 1.5r (or to the maximum allowed value based on the autocorrelogram),
each independently and in steps of 1cm. r is the mean distance to the nearest six peaks from
the center in the transformed autocorrelogram. The modified gridness of the cell is then
defined as the maximum gridness score over these various annular regions.

Our results are not qualitatively changed if we use the former gridness scoring technique52;
they also do not qualitatively change if we use our technique with a higher threshold (= 0.5).

Cell selection
In this paper, we analyzed data sets from four different sources20,30,31,35 (data20,35 available
at http://www.ntnu.no/cbm/gridcell). A modified gridness score was computed for each grid
cell, and cells with a gridness score less than zero were rejected (Supplementary Fig. 2-1).
(When we restricted our cell sample based on the gridness score more commonly used in the
past, the sample become smaller but the qualitative results remained unchanged. Indeed,
because the error in grid parameter estimation drops for more clean grid responses, the cell-
cell relationships and ratios become slightly tighter.)

For pairwise analyses, we used all possible cell pairs that were simultaneously recorded in
the same individual animal and shared a common grid period whose maximum difference
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between cells was smaller than 30% in the familiar enclosure (provided both members were
above threshold on the modified gridness score). Cells above threshold that had no
simultaneously recorded cells to pair with that also met the threshold for cell-cell
comparisons, were also rejected from further analysis. Data from 223 cell pairs are shown in
Fig. 1c,d, from numerous experiments (24 from ref. 20; 97 from ref. 35; 12 from ref. 30; 90
from ref. 31). Data from 84 cell pairs (75 cells) are shown in Figs. 1f and 2a,b, from both
resizing30 and novel enclosure experiments31, recorded in both trials 1 and 5. Data from the
same cells in Fig. 1c are shown in Fig. 7c-h. Note that all grid cells from all datasets that met
our gridness criterion happened to have extremely weak directional sensitivity (Watson U2
score < 10, by the scoring method of refs. 35,52; Supplementary Fig. 2-2). In Figs. 3–5, cell
pairs that have lower gridness than the fixed threshold in both familiar enclosures or in more
than two intermediate trials were discarded, which results in 7 cell pairs in Fig. 3 and 24 cell
pairs in Figs. 4 and 5.

Template matching algorithm to estimate grid parameters
We identified local maxima in the autocorrelogram and noted the coordinates and heights of
the peaks. The local maxima whose heights were lower than 1% of the height of the global
maximum were not considered as “local peaks”. We then generated a 2-dimensional
template lattice. Any 2-dimensional periodic lattice centered at the origin is fully specified
by the magnitudes (λ1,λ2) and orientations (ψ1,ψ2)=(ψ,θ–ψ) of two basis vectors (Fig. 1c).
The angles are measured from the x axis. The template lattice is generated by populating the
explored spatial environment by vertices whose locations are determined by the basis
vectors and their translations. The lattice parameters are determined by finding values that
minimize a cost function that quantifies the fit between the template and the data. The cost
function is given by the sum of the squared distances from every data peak to the nearest
vertex in the template lattice, weighted by the autocorrelation amplitude at that data peak:

where pi is the (x,y) location of the data peak, vi is the vector for the point in the lattice
nearest to the i th data peak, wi is the correlation coefficient at pi, and n is the total number
of peaks in the autocorrelogram.

The central peak of a crosscorrelogram is typically not at the origin, but shifted by some

displacement vector  from the origin. Thus, 2 additional parameters  were
estimated simultaneously with (λ1,λ2) and (ψ1,ψ2) by minimizing the same cost function in
order to find the best-fit template lattice of the crosscorrelogram.

Relative phase, relative phase difference, and phase magnitude

Let  represent the phase of cell α, where the component  is the phase along the i th
lattice basis vector. The relative phase between cells α and β is then

where “\”mod 1\” is understood to apply to each component. The relative phase between a

pair of cells is closely related to the shift  in the peak of their spatial crosscorrelogram. If

the two cells have precisely the same lattice parameters, then  will equal the relative shift
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of the two cells’ grid patterns. The oblique projection of  onto the two primary lattice

vectors  and  produces the components . When the components are
normalized by λ1 and λ2, respectively, and considered modulo 1, we get the relative phase:

If the relative phase between the same two cells is measured in two different conditions
(such as in distinct trials), we can define the relative phase difference as the difference in

 between the two conditions. We will denote this as , where C labels the
condition. Relative phase differences are equivalent modulo 1 and representing them on the
unit lattice cell with components in the interval [0,1) has the consequence that values close
to zero will appear in the four corners of the unit cell (Supplementary Fig. 3a-b). To avoid
this and map values close to zero together, we remap the unit lattice cell to the equivalent
unit cell with components in the interval [−0.5,0.5). Thus, the relative phase difference at
distinct times t1,t2 is given by:

where  and  are relative phases between cells α,β at

time t1 and t2. The function  maps (x1,x2) within the interval [0,1) into [−0.5,0.5) by
subtracting 0.5 from each component, if that component is greater than or equal to 0.5
(Supplementary Fig. 3c).

For relative phase, we take the relative phase magnitude to be of the form

 and similarly for relative phase difference magnitudes.

Error analysis

The error bar (∊) in Figs. 3c,d and 4d,e for the ratio of two uncertain quantities  is given
by the standard method of error propagation given a covariance matrix Σ for the
uncertainties in λ1 and λ2. Σ is estimated via bootstrap resampling: given an original spike
(discharge) map of M total spike locations, we create 100 new spike maps of M total spikes
each, by picking spike locations from the original map one at a time, at random, and with
replacement, from the original map. Next, we use these spike maps to generate rate maps
using the same procedure as for the original, with the original trajectory data (i.e. with a
normalization given by the same visitation frequency as the original spike map) and estimate
grid parameters from the spatial autocorrelogram with the template matching algorithm.
This procedure generates 100 samples of the grid parameters, from which we compute the

covariance matrix as an estimate for Σ. The error for the ratio  is given by:

Yoon et al. Page 11

Nat Neurosci. Author manuscript; available in PMC 2014 February 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



The radius (r) of the red circles in Figs. 2a,b, 3f, and 5, signifies the measurement error of
the differences across trials, in phase per cell (Fig. 2b) or in relative phase per cell pair (Figs.
2a, 3f, and 5). This measurement error is estimated by applying the same bootstrapping
technique to every cell (pair), computing now the (relative) phase difference as defined
above for each bootstrap sample, and then subtracting the mean of sampled (relative) phase
differences for each cell (pair). The error in (relative) phase difference across (pairs of) cells
is given by collapsing all the bootstrap samples of zero-mean (relative) phase differences
and fitting a 2d Gaussian with a multiple of the identity matrix as a covariance to those
samples (by expectation-maximization algorithm). The radius in the Figures is the square
root of the estimated covariance.

Analysis of velocity-driven perturbation
Define cardinal direction labels as North (45° – 135°), West (135° – 225°), South (225° –
315°), or East (315° – 45°). Each time point t in the animal’s trajectory is labeled by the
animal’s velocity at that time (given by the vector difference quotient between the position
at t+Δt and t). Spikes that occur at time t are labeled by the trajectory direction label at that
time. This produces four sets of trajectories and for each cell, four corresponding sets of
spike maps, labeled by North, South, East, and West. For each direction, we generate rate
maps and relative phases (as we did earlier for the full trajectory and full spike maps). For
each cell pair, we thus obtain four “direction-labeled relative phases”, given by

 where dir ∈ {North, South, East, West} and α,β refer to the cells.

We denote the relative phase for the full spike maps, obtained earlier, as . The
“direction-labeled relative phase differences” for each cell pair are defined as the differences
between the direction-labeled relative phase and the full relative phase

. The mean value of the direction-labeled relative phase
difference, with the average taken over all simultaneously recorded cell pairs, is shown in

Fig. 7c. It is written as .

To assess whether the shifts in relative phase as a function of motion direction are
meaningful, we create a null hypothesis distribution by segmenting the full trajectory into
continuous pieces of a length consistent with the lengths of the continuous pieces generated
in the direction-labeled trajectory segmentation described above (the fragment length was
set equal to the correlation time of the animal’s heading direction; a representative value of
the heading direction correlation time across experiments is approximately 0.65 sec, and we
chose 1.6 seconds to provide a window of at least two time constants). However, the
segmentation did not correlate with movement along a specific direction. The segments
resulting from this process were divided, randomly, into 4 sets of equal size. Consider one
such set of directionally mixed or random segments, and label it “R”, in contrast to the
(North, South, East, West) labels of the directional trajectory segments. The relative phase
difference for this one set of directionally mixed trajectory segments is denoted

. Averaging this relative phase difference for one set of trajectory
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segments, across all simultaneously recorded cell pairs, gives one sample of

, which can be seen as one gray vector in Fig. 7c. Repeating this procedure
400 times produces the 400 different gray vectors in Fig. 7c. The lengths of these vectors
represent the expected magnitude of deviation from the full phase simply due to
subsampling errors from subdividing the full trajectory into 4 sets, independent of
directional effects. Thus, these vectors provide the null hypothesis for no directional motion
effects on relative phase. We approximate the sampled distribution of vectors

 by a symmetric 2-d Gaussian with standard deviation σ2. Using this
distribution, the p-value of the mean direction-labeled relative phase differences,

, is given by:

In Fig. 7d, we test the opponency of shifts in relative phase, for opposite movement
directions, by computing the magnitude of the difference between opposing mean labeled

relative phase differences,  and

. The magnitude of opponency expected under
the null hypothesis is given by the expected magnitude of the differences between the gray

bars of Fig. 7c, i.e., by averaging , where i and j

index values of  from the 400 samples shown in Figure 7c. This gives the
height of the “random” bar in Fig. 7d. The fraction of samples with

 that is larger in size than

, gives the p-value that the direction-labeled
relative phase differences can be accounted for by the null hypothesis.

Analysis of relaxation from the perturbation
We tracked the mean shifts in relative phase for each cardinal direction as a function of time
to examine the dynamics of perturbation off the attractor. First, we used the Northward
direction-labeled trajectory fragments to define a corresponding set of time-windows to
select spikes for analyzing relative phase along that movement direction. Next, we slid the
same set of time windows forward, so that instead of being centered in time at the
Northward fragments, they were centered 1 second after the center (in time) of each
Northward fragment, and so on, in steps of 1 second. We did the same in the opposite
direction, sliding the windows back. For each position of the windows, we computed the
relative phase for spikes obtained from those windows, and subtracted from it relative phase
obtained from the full trajectory. For each time-shift, we averaged the result across all 223
cell pairs in our dataset.
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Analysis of stochastic dynamics
To investigate the variance of spiking in grid cells, we compute the interspike interval (ISI)
distribution using firing times {τi} that are rescaled from the original firing times {ti} via

, where λ(t) is the time varying firing rate of the cell. λ(t) was approximated by
sliding a rectangular window function along the spike train. The coefficient of variation
(CV) in Supplementary Fig. 4, Left was derived from the rescaled ISI with Δt=0.5 seconds.
The CV as a function of window size for 4 representative cells is shown in Supplementary
Fig. 4, Right.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Spatial grid parameters other than phase are identical across cells recorded on the same or
nearby tetrodes; cell-cell relationships are stable over time. (a) Top (state space): The state
of N independent neurons, each described by a firing rate ri in [0, rmax] may lie anywhere in
an N -dimensional cube of side length rmax□ (shown for N = 3 neurons). Appropriate
coupling between the neurons can shrink the allowed states to a low-dimensional attractor
(dark blue). All other states are transient, rapidly decaying back to the attractor, and are thus
rarely seen. States very close to the attractor (light blue), through transient, may be observed
if perturbations frequently drive the system into those states. Bottom: An example network
of N neurons (small circles) with 1-d continuous attractor dynamics. Local excitatory and
global inhibitory connections (not shown) between all neurons stabilize population states
that are local activity bumps (e.g. blue bump A or B; gray: transient/unstable activity
profiles). An activity bump is a single point on the continuous attractor (top) of all possible
translations of the bump. If points on the attractor are identified with values of some circular
variable, then all neural tuning curves for that variable will be identical, except for a phase
shift (translation). (b) Column one: Recorded spikes (red dots) of two simultaneously
recorded cells as a function of space (rat trajectory: gray lines). Column two:
Autocorrelograms of the smoothed spatial response (peaks identified by black asterisks).
Column three: A template lattice (red circles) is fit to all the peaks of the autocorrelogram.
Parameters of the template (see c, inset) include the two primary axis lengths (λ1,λ2) and
two angles (θ,ψ). Column four: Crosscorrelogram between the two cells (top), and the
corresponding template fit (bottom). (c) Box plot of the ratio of each lattice parameter across
223 cell pairs (e.g., θ” (cell ” i)/θ” (cell ” j)” where ” i > j ) (median ratio: center line in box;
interquartile ranges: box; lowest and highest values within 1.5 × of interquartile range: outer
horizontal lines; 95% confidence interval based on 223 randomly chosen pairs not recorded
simultaneously: dotted outer horizontal lines). (d) The distribution of relative phases (black
circles) between all cell pairs, plotted within a canonical unit cell of the grid lattice. (e)
Discharge maps (as in b) of the same cell pair, recorded again after an interval of > 60
minutes. (f) Box plot of parameter ratios (as in c) from this later trial, for the subset of cell
pairs from c that were also recorded in this trial (N = 84 cell pairs).

Yoon et al. Page 17

Nat Neurosci. Author manuscript; available in PMC 2014 February 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2.
Across time in familiar environments, the relative phases between cells are more stable than
the phases of single cells. (a) Top: The difference across time (trials separated by > 60 mins)
in the relative phase between cell pairs is clustered near zero (black x’s, see Online
Methods). Red circle: uncertainty in estimating relative phase differences (see Online
Methods for error analysis). Bottom: Normalized histogram of the magnitudes of these
relative phase differences (gray), with the null distribution (red), in which phase differences
are not significantly different from zero and drawn independently from a Gaussian with
standard deviation equal to the uncertainty in phase estimation. The null distribution of
magnitudes is Rayleigh. Black: best-fit Rayleigh distribution to the data. (b) Difference
across time (i.e., trials) of the phase of single cells (top), and the normalized histogram of
magnitudes (bottom). Black, red defined similarly as in a. The data in a are not significantly
different from the null hypothesis, while those in b are (a: P = 0.58 » 0.05, b: P « 10–4
under the F-test for whether the data and the null distribution come from a distribution of the
same variance). Finally, P < 0.001 under the F-test for whether the data in a, b (bottom)
come from a distribution of the same variance.
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Figure 3.
Grid parameter ratios and relative phases are stable even when grid parameters are rescaled
as the environment is resized. (a) Firing fields of two simultaneously recorded cells in a
familiar environment (trials 1, 5) and resized versions of the familiar environments (trials 2,
3, and 4). (b) Spatial crosscorrelograms for the cell pair (top) and the best-fit template
lattices (bottom). Asterisks denote local peaks in the crosscorrelogram. (c) Each grid
parameter for cell 1 (top) or cell 2 (bottom) normalized by the value from trial 1. The
parameters are substantially rescaled across trials 2–4.Error bars indicate ± 1 s.d. (Online
Methods). (d) The ratio, between cells 1 and 2, of each grid parameter, for each trial. The
ratios are statistically very close to one, despite the significant rescaling in each cell, seen in
c. Error bars indicate 1 ± s.d. (Online Methods). (e) Top: Histogram of all grid parameters
for the 11 cells in the resizing experiments from trials 2,3,4 normalized to the corresponding
value from trial 1. Bottom: Histogram of the ratios of all grid parameter values between cells
1 and 2 for all 7 cell pairs from trials 1–4. This distribution is strongly peaked at 1 and
different from the distribution at top. The Kolmogorov-Smirnov test for whether the two
data samples come from the same distribution produces P < 0.001. The F-test for whether
the two data samples come from a distribution of the same variance produces P < 0.001. (f)
The relative phases for the 7 cell pairs span the unit cell (each black symbol represents a
different cell pair; each marker for a given symbol represents a different trial). Gray x’s:
relative phase differences, computed across all cell pairs and trials. Red circle: uncertainty in
the relative phase difference magnitude (Online Methods). The relative phase differences are
not significantly different from zero (P ≈ 0.6 » 0.05 for the same null hypothesis as in Fig.
2).
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Figure 4.
Grids become less stable and expand in novel enclosures, but grid parameter ratios remain
stable. (a) Firing fields of pairs of simultaneously recorded cells in a familiar environment
(black squares) and novel ones (gray squares) across five consecutive trials on one day, and
the corresponding crosscorrelograms and best-fit template lattices. Note that on different
days, the recordings involve different cells from the same tetrodes in the same area in the
animal (Supplementary Fig. 5 for all cell pairs). (b) Development of average modified
gridness in novel environments (gray) across seven days. The grid score gradually
approaches that measured in familiar environments (black) (24 cell pairs, from ref. 31;
means ± s.e.m.). (c) Change, across trials and days in the novel environment (gray), of the
average grid period. Average grid period is the mean of the first two grid parameters across
all cells in a trial (means ± s.e.m. 24 cell pairs total: 1, 6, 10, 3, 1, and 3 on days 1, 3, 4, 5, 6,
and 7, respectively; no cells in day 2 passed the gridness criterion). The grid period
significantly rescales in a novel environment, compared to when measured in the familiar
environment (black), then gradually relaxes to its original value over seven days. (d) Grid
parameters of one typical cell pair from each day (all cell pairs shown in Supplementary Fig.
5), normalized by the corresponding parameter values from the first trial (familiar
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environment) of the day. Clusters of four narrow bars represent the four parameters, in the
same ordering and color scheme as in Figs. 1 and 3. Error bars indicate ± 1 s.d. (Online
Methods). (e) Grid parameter ratios for the two cells, across trials and days. Almost all these
ratios are statistically indistinguishable from 1 (for all cell pairs, see Supplementary Figs. 5
and 6). Error bars indicate ± 1 s.d. (Online Methods).
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Figure 5.
Relative phase remains stable in novel enclosures. (a) The relative phases of the cell pairs
(each distinct symbol represents a pair), across different trials and days (N = 24 cell pairs
from ref. 31, across all 7 days). Gray x’s: the relative phase difference for every trial and all
pairs. Red circle: uncertainty in the magnitude of relative phase differences (Online
Methods). (b) The relative phase differences are not significantly different from zero for the
same null hypothesis as in Fig. 2 (P = 0.38 » 0.05 under the F-test for whether the data and
the null distribution come from a distribution of the same variance).
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Figure 6.
Stability of cell-cell relationships is independent of distance in spatial phase. (a) Parameters
between cell pairs (223 cell pairs from Fig. 1c,d) in the same network are very similar (as
reported in Fig. 1), and moreover, the degree of similarity does not vary with the difference
in spatial phase (i.e. magnitude of relative phase) between cells (Parameter similarity is
defined as the square-root of the squared deviation of parameter ratios from 1, averaged over
all parameters per pair). Each dot represents one trial from one cell pair. Black: linear
regression; p : Spearman’s rank correlation; r : Pearson’s product-moment correlation. (b)
The stability of parameter ratios between cell pairs across rescaling trials (red dots, 7 pairs
from Fig. 3f) and novel enclosure trials (blue dots, 24 pairs from Figs. 4 and 5) is
independent of the pair’s relative phase. (c) The stability of relative phase (mean of
magnitude of relative phase differences) across rescaling and novel enclosure trials is
independent of relative phase between cells in a pair (same dataset and color-coding as in b).
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Figure 7.
Evidence of external perturbation and attractor dynamics in grid cell activity (a-b)
Schematic energy landscape (left) and occupation probability (right) plots of a dynamical
system. The independent variables on the plots depicting energy (left) and probability
density (right) as heights are the firing rates of the neurons in the network. If the energy
landscape has a flat plateau (a, left) of dimension D > 2, in which the 2-d manifold is
embedded (depicted as a line), the system will likely be found off the 2-d manifold because
there is no specific restoring drive back to it (a, right). When there is a 2-d valley in energy
(b, left), the system state will be localized to the 2-d manifold (b, right) even in the presence
of noise. (c) Inset: animal trajectory from one trial color-coded (green, blue, red, yellow) by
the instantaneous movement direction (North, South, East, West quadrants, respectively).
Main plot, green vector: the difference in relative phase between cell pairs, computed as the
relative phase obtained from spikes obtained only during Northward trajectory fragments
minus the relative phase obtained from all spikes in the trajectory, averaged across all cell
pairs (223 pairs). Gray vectors: Samples from the null hypothesis of randomly segmenting
the full trajectory into four sets of fragments of the same average lengths as the directional
fragments, without directional specificity. Black circle: one standard deviation of the null
hypothesis distribution (Online Methods). p -values for the directional shifts in relative
phase under null hypothesis: North (P = 0.0004), West (P = 0.0444), South (P = 0.0003),
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East (P = 0.0201). (d) Opposing shifts in relative phase from opposing trajectory directions:
North-South (****P < 10−4), West-East (**P < 0.0014 ) (Online Methods). (e-h) Green:
Directional shifts induced in relative phase decay as the spike selection windows spanning
Northward trajectory fragments are shifted in time, 1 second at a time, away from the
centers of those directional segments, to include spikes emitted just before or after
Northward movements. Black solid line: Radius of black circle from c. Gray dotted curve:
Best-fit Laplace distribution with zero mean. Inset: Autocorrelation of movement direction
in trajectories.
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