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Pulmonary surfactant constitutes an important barrier that pathogens must cross to gain
access to the rest of the organism via the respiratory surface. The presence of pulmonary
surfactant prevents the dissemination of pathogens, modulates immune responses, and
optimizes lung biophysical activity. Thus, the application of pulmonary surfactant for the
treatment of respiratory diseases provides an effective strategy. Currently, several clinical
trials are investigating the use of surfactant preparations to treat patients with coronavirus
disease 2019 (COVID-19). Some factors have been considered in the application of
pulmonary surfactant for the treatment COVID-19, such as mechanical ventilation
strategy, timing of treatment, dose delivered, method of delivery, and preparation
utilized. This review supplements this list with two additional factors: accurate
measurement of surfactants in patients and proper selection of pulmonary surfactant
components. This review provides a reference for ongoing exogenous surfactant trials
involving patients with COVID-19 and provides insight for the development of surfactant
preparations for the treatment of viral respiratory infections.

Keywords: pulmonary surfactant, COVID-19, ARDS, therapeutic applications, respiratory viral infections
INTRODUCTION

The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), has affected over 200 million people worldwide (1). SARS-
CoV-2 can induce lung injury that involves the airways, alveoli, and pulmonary vessels (2). Autopsies of
patients with COVID-19 reveal patchy peripheral hemorrhage of the lung parenchyma, loss of alveolar
elasticity (3), and fibrous cordswith sticky secretion exuding fromcut surfaces of the pulmonary alveoli,
Abbreviations: COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; ACE2,
angiotensin converting enzyme 2; RSV, respiratory syncytial virus; AT II cells, alveolar type II cells; SP, surfactant protein;
NRDS, neonatal respiratory distress syndrome; ARDS, acute respiratory distress syndrome; PI, phosphatidylinositol; PE,
phosphatidylethanolamine; PG, phosphatidylglycerol; PC, phosphatidylcholine; PS, phosphatidylserine; PL, phospholipid;
HIV, human immunodeficiency virus; HCoV-229E, human coronavirus 229E; rfh SP-D, Recombinant fragments of human
SP-D; WNV, West Nile virus; HCMV, human cytomegalovirus; TLR, toll-like receptor; POPG, 1-Palmitoyl-2-oleoyl-sn-
glycero-3-phosphatidylglycerol; DPPC, dipalmitoyl PC; lysoPI, lysophosphatidylinositol; DG, diacylglycerol; TG,
triacylglycerol; MDSCs, myeloid-derived suppressor cells; NK, natural killer; TLR, toll-like receptor; FC, Fold Change;
BLES, Bovine Lipid Extract Surfactant.
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bronchi, and tracheae (3). Moreover, pathological examinations
demonstrate diffuse alveolar damage, including inflammatory
exudate, interstitial inflammation, and infiltrating monocytes,
lymphocytes, and macrophages (4). Further, type II alveolar
epithelial cell proliferation and focal desquamation of alveolar
epithelial cells are observed (3). Severe COVID-19 is associated
withmultiple changes in immuneprofiles, affecting the ability of the
host to mount a timely and effective immune response against
SARS-CoV-2 (5). Eosinopenia and lymphopenia with a severe
reduction in the frequency of CD4+ and CD8+ T cells, B cells, and
natural killer (NK) cells are common features ofpatientswith severe
COVID-19 (5). Additionally, T cell lymphopenia driven by T cell
sequestration in tissues or T cell apoptosis as a result of pro-
inflammatory cytokines is common in patients with severe
COVID-19 (6). Defects in type I IFN response are present in
some patients with severe COVID-19 (7). Loss of function
variants in loci that control toll-like receptor (TLR)3- and IRF7-
dependent type I IFN immunity may lead to defects in type I IFN
response in patients with severe COVID-19 (7). In addition,
autoantibodies against IFN-a and IFN-w are present in patients
withCOVID-19 (8), aswell as substantial accumulationof activated
immune cells, such as myeloid-derived suppressor cells (MDSCs)
(5). Excess circulating immature monocytes, neutrophils, and
myeloid progenitors—named emergency myelopoiesis—are
almost pathognomonic features of severe disease (9). Circulating
myeloid cells produce excessive amounts of inflammatory
molecules, often causing a cytokine storm, which promotes
multiple organ damage (9). In contrast, lung tissue–resident
macrophages, such as alveolar macrophages, which are known to
play an important role in tissue homeostasis and repair, are often
depleted in patients with severe COVID-19 (10).

SARS-CoV-2 binds angiotensin-converting enzyme 2 (ACE2),
which is expressed by pulmonary epithelial cells, causing acute
interstitial pneumonia (11). Pulmonary epithelial cells can produce
pulmonary surfactant, which contains a complexmixture of highly
reactive compounds (12). Pulmonary surfactant covers the alveolar
epithelium, facilitating breathing by reducing the surface tension of
the air-water interface within alveoli, thereby preventing alveolar
collapse and easing the mechanical work required to breathe (13).
Emerging data indicate that pulmonary surfactant plays a pivotal
role in the pulmonary host defense against respiratory viral
infections, such as influenza and respiratory syncytial virus (RSV)
infection (14). Moreover, pulmonary surfactant exerts anti-
inflammatory and anti-viral effects against some respiratory viral
infections (14–16). Recent studies show that SARS-CoV-2 infection
may result in changes in pulmonary surfactant (14, 17). A study
analyzing the lung transcriptome of patients with COVID-19
reported that the expression of surfactant proteins was
downregulated during SARS-CoV-2 infection (18). Another study
reported that surfactant protein production was deregulated in
patients with COVID-19, resulting in increased expression of
surfactant protein (SP)-A (19). A recent study indicated that
levels of pulmonary surfactant lipids were markedly reduced in
the bronchoalveolar lavage fluid of patients with COVID-19
compared to that in healthy controls (20). Moreover, SARS-CoV-
2 infects alveolar type II cells (AT II cells) by binding to ACE2, thus
Frontiers in Immunology | www.frontiersin.org 2
impacting the production and turnover of pulmonary surfactant in
AT II cells (14). Furthermore, SARS-CoV-2 infectionmay influence
the recycling and catabolism of pulmonary surfactant in the alveoli
by AT II cells and alveolarmacrophages (14). These studies suggest
that pulmonary surfactant is altered in patients with COVID-19,
which not only influences surface tension-related properties but
also impacts the host’s antiviral immunity following viral infection
(13–15). Severe respiratory viral infection often causes a disorder of
pulmonary surfactant in the lung, which increase the surface
tension in the lung, and then induce alveolar collapse at end-
expiration (14, 21). Supplemental pulmonary surfactant can
reduce surface tension and prevent alveolar collapse, thereby
preserving lung function for oxygenation (14). Therefore,
pharmacological and therapeutic strategies aimed at readjusting
pulmonary surfactantdysfunctionduring respiratory viral infection
not only contribute to preserving lung function, but also inhibiting
the pro-inflammatory response and limiting viral infection.

A previous study reported that intratracheal administration of
surfactant resulted in improved lung compliance and less oxygen
required to maintain acceptable oxygen saturation in RSV
pneumonia (22). Moreover, administration of pulmonary
surfactant has been used to effectively treat preterm infants with
neonatal respiratory distress syndrome (NRDS), which is caused by
pulmonary surfactant deficiency (23). Clinical data indicate that
severe COVID-19 most commonly manifests as viral pneumonia-
induced acute respiratory distress syndrome (ARDS), which is
characterized by diffuse inflammatory damage that results in
increased vascular permeability and reduced lung compliance
(24). Interestingly, a recent study proposed that ARDS in
COVID-19 resembled NRDS (17). Thus, some researchers have
suggested that exogenous pulmonary surfactants may provide an
effective treatment for COVID-19 (17, 25, 26). Accordingly, several
studies have investigated the therapeutic value of administering
exogenous pulmonary surfactants to patients with COVID-19 (17,
27, 28). Several clinical trials exploring surfactant preparations as a
treatment for COVID-19 are ongoing using surfactants often used
to treat NRDS (27, 28). To date, seven clinical trials have been
conductedusingexogenous surfactantpreparations to treat patients
withCOVID-19 (27, 28) (Table 1). Although the outcomes of these
trials have not yet been published, some initial results and case
reports are available. One pilot study indicated that exogenous
surfactant administration via bronchoscopy reduced the duration
of mechanical ventilation and 28-day mortality rate of COVID-19,
although the differences were not statistically significant (29).
Further, a case report indicated that oxygenation was improved in
a patient with COVID-19 after exogenous surfactant treatment
(30). Despite these promising data, prior trials in which surfactant
was administered to adults with ARDS were generally
disappointing, with the majority showing no benefit (28). A
meta-analysis of randomized controlled trials examining the effect
of surfactant administration on adult patients with ARDS revealed
no improvement in mortality or oxygenation (31). Therefore, the
effectiveness of pulmonary surfactant for COVID-19 treatment
remains unclear.

The failure of surfactant preparations in treating adults with
ARDS largely curtailed clinical interest in this approach over the
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last 15 years. However, the emergence of COVID-19-associated
ARDS has generated renewed interest in this clinical approach. A
recent review indicated that the success of surfactant therapy
may be influenced by the dose administered, method of delivery,
preparation utilized, mechanical ventilation strategy, and timing
of surfactant treatment (28). Additional factors may need to be
considered in the effective treatment of patients with COVID-19
using pulmonary surfactant. These factors are reviewed and
discussed in this review.
ACCURATE MEASUREMENT OF
PULMONARY SURFACTANT IS
NECESSARY BEFORE ADMINISTRATION

As previously mentioned, SARS-CoV-2 infection may induce
changes in pulmonary surfactant. However, due to the
complexity of the mixture, the extent of changes in each
pulmonary surfactant component caused by SARS-CoV-2
infection remains unknown. Surfactant treatment in children
with NRDS enabled infants to start producing endogenous
surfactant, in part facilitated by re-utilization of surfactant
constituents through recycling mechanisms (28, 32). Current
evidence indicates that patients with COVID-19 have
dysfunctional, rather than deficient pulmonary surfactant, and
the dysfunction is not equivalent to a deficiency.

Pulmonary surfactant levels do not always decrease during viral
respiratory infection. A study analyzing pulmonary tissue samples
obtained from RSV-infected mice demonstrated changes in 86
surfactant lipids compared to control mice (Fold Change (FC) >
1.5 or FC < 0.67) (33). Among the altered lipids, some lipids displayed
decreased abundance, such as diacylglycerols (DGs), triacylglycerols
(TGs), and some palmitoylated phosphatidylglycerols (PGs),
including PG 16:0_22:5 (FC=0.56) and PG 16:0_22:6 (FC=0.61).
However, some lipids were more abundant, such as acylcarnitine
(FC=3.77), phosphatidylinositol (PI) 18:0_18:2 (FC=2.53),
lysophosphatidylinositol (lysoPI) 16:0 (FC=10.53), and some
stearoylated PGs, including PG 18:2_20:4 (FC=10.84), PG 18:2_18:2
(FC=8.23), and PG 18:1_20:4 (FC=6.93) (33). During influenza virus
infection, levels of phosphatidylcholine (PC), PG, and
phosphatidylethanolamine (PE) in AT II cells were significantly
lower in influenza-infected mice compared to those in control
animals, while levels of phosphatidylserine (PS), PI, sphingomyelin,
cholesterol, and DG were increased (34).

Moreover, levels of pulmonary surfactant proteins do not
show a simple decreasing trend during viral respiratory infection.
For example, one study reported that SP-A expression was
significantly elevated whereas SP-B expression was unchanged
in the lungs of patients with COVID-19 compared to those of
control patients (19). The authors of this study suggested that the
increased expression of SP-A, which was present in condensed
masses inside the alveolar spaces, could invalidate the
therapeutic efficacy of exogenous surfactant treatment (19).

Nevertheless, because it remains unclear whether pulmonary
surfactant is deficient in patients with COVID-19, using
pulmonary surfactant to treat COVID-19 may be
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unreasonable. Such attempts may put patients at risk, since the
lungs of patients with severe COVID-19 are considerably
damaged and highly susceptible to further injury (21).
Additionally, the use of pulmonary surfactant to treat COVID-
19 may further disturb the pulmonary microenvironment and
aggravate lung burden. For example, due to pulmonary
surfactant is associated with the sputum formation (35),
administration of exogenous pulmonary surfactant may lead to
the formation of sputum thrombi. In fact, previous trials with
exogenous surfactant in patients with non-SARS-CoV-2-induced
ARDS were unsuccessful (36), often because intervention took
place when the lungs had already suffered irreparable damage
(25). Thus, studies suggest that early use of exogenous
surfactants is necessary for COVID-19 treatment (28).

Clarifying changes in pulmonary surfactant components
during SARS-CoV-2 infection is needed before conducting
related trials. Some researchers have suggested that pulmonary
surfactants in patients should be assessed prior to initiating
treatment (17). A point-of-care, rapid test that measures
surfactant levels at birth has been developed for premature
babies (37). This method may also be suitable for measuring
surfactant levels in tracheal fluid obtained from patients with
COVID-19. Other detection technologies, such as mass
spectrometry, can also be used to measure surfactant
components. In summary, accurate measurement and
understanding of surfactant trends in COVID-19 may help
determine the therapeutic application of pulmonary surfactants.
PROPER SELECTION OF PULMONARY
SURFACTANT COMPONENTS

Pulmonary surfactant is a lipoprotein complex composed by weight
of 80% phospholipids (PLs), 10% neutral lipids (mainly cholesterol),
and 10% surfactant-associated proteins, named SP-A, SP-B, SP-C,
and SP-D (14). The major PL components include PC
Frontiers in Immunology | www.frontiersin.org 4
(approximately 80%), PG (approximately 7–15%), and small
quantities of PI, PE, and PS (approximately 5%) (14). The
hydrophobic surfactant proteins SP-B and SP-C along with
dipalmitoyl PC (DPPC) mainly confer surface tension–lowering
properties to pulmonary surfactant (14). Meanwhile, the
hydrophilic surfactant proteins SP-A and SP-D participate in
pulmonary host defense and modify immune responses during
respiratory viral infection (14). The host defensive functions of
pulmonary surfactant components, including proteins and lipids,
are summarized in Table 2.

SP-A and SP-D are known to protect against viral and other
pathogenic infections by blocking the entry of numerous viruses,
such as influenza, RSV, and human immunodeficiency virus
(HIV), into host cells (16). SP-A and SP-D play roles in
modulating coronavirus infection by binding to human
coronavirus 229E (HCoV-229E) virions and preventing
HCoV-229E from infecting host cells (40, 45). SP-A and SP-D
can also bind to and neutralize SARS-CoV by interacting with
the spike protein (45). Recombinant fragments of human SP-D
(rfhSP-D) can compete with ACE-2 for binding to the S1 spike
protein subunit of SARS-CoV-2, thereby reducing SARS-CoV-2
infection (66, 67). These results suggest that SP-A and SP-D may
have therapeutic potential for the treatment of COVID-19.

Therapeutic pulmonary surfactants can be natural or synthetic
(27). Natural pulmonary surfactants have been isolated from
bovine, porcine, and human amniotic fluids (27). A previous
study reported that natural (animal-derived) surfactants were
more effective than synthetic surfactants (68, 69) because natural
preparations contained all the surfactant phospholipids and
hydrophobic proteins (SP-B and SP-C) needed to facilitate rapid
formation of a functional surface film (28). However, the use of
natural surfactants is accompanied by inherent risks, such as the
transmission of infectious agents, immunogenicity, and impurities
(70). Removal of highly immunogenic proteins such as SP-A and
SP-D, terminal sterilization, and screening of animal sources have
been used to minimize the potential risks (70). Interestingly, a
previous study suggested that surfactant preparations containing
TABLE 2 | Roles of pulmonary surfactant components in viral infection.

Name Function

SP-A SP-A prevents influenza infection by occupying the HA binding site (38). SP-A limits RSV infection by binding the F and G protein (39). SP-A limits
coronavirus infection by binding HCoV-229E virions (40). SP-A can neutralize SARS-CoV-2 through interaction with the S protein (41). SP-A mediates the
phagocytosis of human papillomavirus 16 (HPV16) pseudovirions (42) and herpes simplex virus (HSV) in the host.

SP-D SP-D can neutralize influenza virus through occupying the HA binding site (43). SP-D limits RSV infection by interacting with virus through attachment to the
F and G proteins (44). SP-D limits coronavirus infection by binding HCoV-229E virions (40). SP-D limits SARS coronavirus by binding to the heavily
glycosylated S protein (45). SP-D can neutralize SARS-CoV-2 through interaction with the S protein (41). rfhSP-D can compete with ACE-2 for binding to
the S1 spike protein subunit of SARS-CoV-2 (16). SP-A can restrict HIV infection via binding to glycoprotein (gp)120 (46).

PC DPPC can promote adenoviral entry into epithelial cells by binding the virus (47).
PS PS can promote poxvirus infectivity (48), through apoptotic cell mimicry (49).
PG 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG) can suppress RSV infection by binding to RSV with high affinity (50, 51). POPG can block

influenza virus replication through inhibiting the attachment of influenza (52).
PI PI can prevent RSV infection by preventing virus attachment to epithelial cells (53, 54). PI can reduce influenza propagation by binding to the virus with high

affinity (54, 55).1-stearoyl-2-arachidonoyl-PI can defend against dengue virus infection (47).
PE PE was required for the replication of a (+)RNA virus, such as tomato bushy stunt virus, hepatitis C virus, dengue virus, and West Nile virus (WNV) (56).

RNA virus replication depends on PE enrichment at replication sites in subcellular membranes (57).
Cholesterol Cholesterol promotes entry of many viruses into host cells (58), such as SARS-CoV (59), murine coronavirus (60), porcine deltacoronavirus (61), infectious

bronchitis virus (62), Hepatitis C virus (63), Ebola virus (64), influenza (65), and so on.
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SP-A and SP-D might have better efficiency (28). In contrast,
completely synthetic surfactants possess a greater degree of
chemical purity, thus avoiding some potential risks (70).
Additionally, synthetic surfactants relieve the potential resource
limitations of animal-derived surfactants, avoid religious factors,
and have lowermanufacturing costs (28). Theoretically, a synthetic
surfactant could be formulated to contain SP-A and SP-D (28).
Moreover, SP-B and SP-C are difficult to synthesize and synthetic
surfactant preparations without these components display limited
functionality (28). Studies suggest that synthesized forms and
recombinant fragments of SP-A and SP-D may be feasible for
therapeutic use (28, 67). Recombinant SP-D fragments have the
advantageof smaller size, thus increasing theprobabilityof reaching
distal lung locations, and show higher resistance to proteases and
collagenases than full-length SP-D (67). Therefore, synthesized
forms and recombinant fragments of SP-A and SP-D may be
considered in addition to natural pulmonary surfactants.

Pulmonary surfactant lipids also play a pivotal role in
pulmonary host defense responses to respiratory viral infection
(14).Recent studies reported that intranasal administrationof some
pulmonary surfactant lipids, suchasPGandPI, prevented influenza
and RSV infections (50, 51, 53, 54). PG and PI can markedly
suppress RSV replication by binding to the virus with high affinity
(50, 51, 53, 54). PG can block the replication of H1N1-PR8 and
H3N2 influenza by binding to influenza viruswith high affinity (52,
55). PI can preventH1N1 spread from infected tonon-infected cells
in tissueculturebybinding toH1N1 influenzawithhighaffinity (52,
55). Further, plasmalogens can potentially be used as antiviral
therapeutic and prophylactic agents against human
cytomegalovirus (HCMV), influenza, WNV, and SARS-CoV-2
infections (71). Pulmonary surfactant lipids also exert anti-
inflammatory effects against viral infection (72). For example, PC
can inhibit multiple pro-inflammatorymediators to alleviate tissue
damage (72), and DPPC inhibits LPS-induced pro-inflammatory
cytokine secretion in airway epithelial cells and monocytes (72).
Furthermore, PI and PG can inhibit pro-inflammatory cytokine
responses in macrophages by blocking the TLR2 and TLR7
pathways. These studies suggest that pulmonary surfactant lipids
may possess potential antiviral and anti-inflammatory properties
against SARS-CoV-2 infection.

Not all pulmonary surfactant lipids protect against viral
infection; some lipids facilitate viral infection (14). One study
reported that PE was required for the replication of (+)RNA
viruses, such as hepatitis C virus, dengue virus, and WNV (56).
Further, the replication of someRNAviruses, such as tomato bushy
stunt virus, depends on PE enrichment at replication sites in
subcellular membranes (57). Cholesterol promotes the entry of
several coronaviruses into host cells (58), such as SARS-CoV (59),
murine coronavirus (60), porcine deltacoronavirus (61), and
infectious bronchitis virus (62). Thus, cholesterol may contribute
to coronavirus replication by acting as a key component in viral
entry (73). Moreover, cholesterol may participate in the entry of
other viruses into host cells. For example, Ebola virus glycoprotein
interacts with cholesterol to enhance membrane fusion and cell
entry (64), while hepatitis C virus replication depends on
endosomal cholesterol homeostasis (63). Therefore, some
Frontiers in Immunology | www.frontiersin.org 5
cholesterol-lowering drugs, such as statins, can reduce viral
infectivity (58). Statins may also serve as potential main protease
inhibitors of SARS-CoV-2, thereby contributing to the control of
viral infection (58). PS can promote poxvirus infectivity (48)
through apoptotic cell mimicry (49). Some pulmonary surfactant
preparations used for the clinical treatment of COVID-19 contain
cholesterol, PE, or PS. Although there is no evidence that
cholesterol, PE, or PS influence SARS-CoV-2 infection, this
possibility should be considered before administering surfactants
that contain these lipids.

The biological functions of some pulmonary surfactant
components have been clarified. Therefore, components selected
for surfactant preparation should refer to their biological functions.
Additionally, further studies are warranted to explore the potential
functions of other pulmonary surfactant components in order to
guide appropriate selection for surfactant preparations.
CONCLUSION

The lung epithelium is constantly exposed to the environment
and protected by pulmonary surfactant, which provides an
important barrier against pathogen infection. Pulmonary
surfactant prevents the dissemination of pathogens, modulates
immune responses, and optimizes lung biophysical activity.
Additionally, pulmonary surfactant may mitigate and reverse
ARDS by reducing alveolar surface tension and improving
pulmonary mechanical properties, while also exerting anti-
inflammatory and antiviral effects (Figure 1). Thus, the
application of pulmonary surfactant may provide an effective
strategy for the treatment of respiratory diseases. This review
highlights two new factors for consideration when selecting
pulmonary surfactant therapy for COVID-19, namely accurate
assessment of pulmonary surfactants in patients and appropriate
selection of pulmonary surfactant components. This review
provides a reference for ongoing trials investigating the use of
exogenous surfactant in patients with COVID-19.
FUTURE PROSPECTS

Pharmacological and therapeutic strategies to improve pulmonary
surfactant dysfunction can prevent alveolar collapse at end-
expiration, inhibit the pro-inflammatory response, and limit viral
infection. Several clinical trials are currently exploring the use of
surfactant preparations to treat COVID-19. In our opinion,
accurate measurement of surfactants in patients and proper
selection of pulmonary surfactant components should be
considered prior to the clinical use of pulmonary surfactants. The
rapid development of surfactant lipidomics has facilitated accurate
measurement of pulmonary surfactants (33). Identifying
pulmonary surfactant changes in patients with COVID-19 and
modifying surfactant preparations accordingly can mitigate
potential risks. Some components of pulmonary surfactant
possess anti-inflammatory or antiviral properties and help
prevent alveolar collapse, such as PG and SP-D (14, 16, 74).
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Several studies have reported that these components exert
therapeutic effects against viral respiratory infection (14, 74).
Clinical trial has been conducted to evaluate the safety and
tolerated of AT-100 (rhSP-D) in patients with COVID-19
(Table 1). These studies suggest that a single lung surfactant
component may effectively treat COVID-19. Moreover, using a
single surfactant component may help avoid some potential risks.
Taken together, this review provides important insight for the
development of pulmonary surfactant preparations for the
treatment of respiratory viral infections, including SARS-CoV-2.
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