
PH
YS

IC
S

Stripe order enhanced superconductivity in the
Hubbard model
Hong-Chen Jianga,1 and Steven A. Kivelsonb,1

aStanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025; and bDepartment
of Physics, Stanford University, Stanford, CA 94305

Edited by Subir Sachdev, Department of Physics, Harvard University, Cambridge, MA; received May 20, 2021; accepted November 5, 2021

Unidirectional (“stripe”) charge density wave order has now been
established as a ubiquitous feature in the phase diagram of
the cuprate high-temperature superconductors, where it gener-
ally competes with superconductivity. Nonetheless, on theoretical
grounds it has been conjectured that stripe order (or other forms
of “optimal” inhomogeneity) may play an essential positive role
in the mechanism of high-temperature superconductivity. Here,
we report density matrix renormalization group studies of the
Hubbard model on long four- and six-leg cylinders, where the
hopping matrix elements transverse to the long direction are
periodically modulated—mimicking the effect of putative period 2
stripe order. We find that even modest amplitude modulations can
enhance the long-distance superconducting correlations by many
orders of magnitude and drive the system into a phase with a
substantial spin gap and superconducting quasi–long-range order
with a Luttinger exponent, Ksc ∼ 1.
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A complex relation between multiple ordering tendencies ap-
pears to be a universal feature of highly correlated electronic

systems (1). For example, charge density wave (CDW), spin
density wave (SDW), and d-wave superconducting (SC) orders
all arise in significantly overlapping regimes of the phase diagram
of the cuprate high-temperature superconductors. Moreover, a
similarly delicate balance between these same ordering tenden-
cies appears unavoidable in studies (2, 3) of the Hubbard model
with a repulsive U of order the bandwidth, U ∼W .

There are clear senses in which these orders “compete.” This
can be seen phenomenologically in the cuprates where suppress-
ing SC order with a magnetic field enhances the strength of the
observed CDW and where the most robust SC often appears in
regions of the phase diagram where the CDW order is relatively
weaker (4). A similar feature is vividly apparent in density matrix
renormalization group (DMRG) studies of the Hubbard model
on long but relatively narrow cylinders and ladders (5–17). Here,
the closest possible approximation of an SC state is a Luther–
Emery liquid (18), in which the SC and CDW susceptibilities are
determined by quantum mechanically dual variables. Thus, any
change in the parameters (e.g., details of the band structure or
the strength of the interactions) that enhances the long-distance
correlations of one necessarily decreases the other. It has even
been suggested that this competition is so ferocious that the
Hubbard model with U ∼W may never be SC in the two-
dimensional limit (14).

However, the fact that high-temperature superconductivity
and CDW (not to mention SDW) orders all seem to appear
together suggests that they may be linked in a more multifacetted
manner than the word “competing” suggests (19). Indeed, two
distinct theoretical proposals carry the implication that CDW
order can enhance SC. 1) It was proposed in refs. 20 and 21
that CDW fluctuations—associated with proximity to a putative
CDW quantum critical point—could serve as an effective pair-
ing “glue” and thereby, enhance SC even under conditions in
which fully developed CDW order might depress SC by opening
gaps on portions of the Fermi surface. 2) It was proposed in

ref. 22 and further developed in a variety of subsequent papers
(23–28) that static or slowly fluctuating CDW order could pro-
duce a form of “optimally inhomogeneous” electronic structure
that could enhance SC.

In the present paper, we use DMRG studies of the square
lattice Hubbard model on four- and six-leg cylinders with length
Lx = 32 and 48 to explore the second of these propositions. We
consider the model with only nearest-neighbor (NN) interactions
t, with U = 12t , and for electron density per site n = 1− δ with
δ = 1/8 and 1/12. Moreover, we assume an ordered period 2
explicit CDW with ordering vector perpendicular to the long
axis of the cylinder, so that the hopping matrix elements in this
direction are alternately enhanced or depressed, t → t ± dt as
shown in Fig. 1.

For dt = 0, this is the uniform Hubbard model, which in this
range of parameters appears (9–11, 14, 15) to favor an insulating
phase with spontaneous translation symmetry breaking corre-
sponding to an array of “full stripes” (i.e., the CDW period along
the cylinder is λcdw = 1/δ) (29–31). As might be expected, this
state has exponentially falling SC correlations at long distances.
For dt = t , this system consists of decoupled two-leg ladders.
While the behavior of the two-leg ladder depends on the ratio
of ty/tx , as long as this ratio does not exceed a critical value (16),
the two-leg ladder is known (16, 23, 32–34) to support a Luther–
Emery liquid phase with power-law SC correlations that fall with
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Fig. 1. The Hubbard model on the square cylinder. Periodic and open
boundary conditions are imposed, respectively, along the directions spec-
ified by the lattice basis vectors ŷ = (0, 1) and x̂ = (1, 0). tx = t and ty =

t + dt (t′y = t − dt) are hopping integrals between NN sites in the x̂ and ŷ
directions. U is the on-site Coulomb repulsion, and Lx and Ly are the numbers
of sites.

distance r as |r |−Ksc with Ksc between one and two.* Here, we
explore the effect of relatively weak modulations, dt ≤ 0.4.

In all cases, we find that the modulation enhances the SC
correlations at long distances relative to the uniform cylinder
(dt = 0) by many orders of magnitude. Indeed, the modulated
cylinder seemingly forms a Luther–Emery liquid. The spin–spin
correlator and the single-particle Green function fall exponen-
tially with distance with a correlation length of order a lattice
constant, indicating the existence of a spin gap. Moreover, there
are clear CDW correlations with wavelength λcdw = 1/2δ for
the four-leg cylinder and λcdw = 2/3δ for the six-leg cylinder.
However, while it is plausible that they also have power-law
correlations characterized by Luttinger exponent Kcdw , the ex-
pected duality relation Kcdw = 1/Ksc is only barely consistent
with the DMRG results for the four-leg cylinder and clearly in-
consistent with them for the six-leg cylinder. Thus, unambiguous
identification of the conformal field theory that characterizes the
long-distance properties of the six-leg cylinder is still a work in
progress (SI Appendix, section E).

The Model
We employ DMRG (35) to study the ground-state properties of
the Hubbard model on the square lattice, which is defined by the
Hamiltonian

H =−
∑
〈ij〉σ

tij
(
ĉ†iσ ĉjσ + h.c.

)
+ U

∑
i

n̂i↑n̂i↓. [1]

Here, ĉ†iσ (ĉiσ) is the electron creation (annihilation) operator on
site i = (xi , yi) with spin polarization σ, and n̂iσ is the electron
number operator. We take the lattice geometry to be cylindrical
with periodic (open) boundary condition in the ŷ (x̂ ) direction,
as shown in Fig. 1. 〈ij 〉 denotes NN sites. tx = t , ty = t + dt , and
t ′y = t − dt are the electron hopping integrals between NN sites
in the x̂ and ŷ directions, respectively. Here, we focus on cylinders
with width Ly and length Lx , where Lx and Ly are the numbers
of sites along the x̂ and ŷ directions, respectively. The total
number of sites is N = Lx × Ly , the number of electrons is Ne ,
and the doping level of the system is defined as δ = Nh/N , where

*Note that in the model as defined, the decoupled two-leg ladder limit reached when
dt → t has ty/tx = 2, which exceeds the critical value at which the Luther–Emery phase
is observed; however, since this limit could be approached in multiple ways, the intuition
that the finite dt state can be thought of from the perspective of weakly coupled
Luther–Emery liquids is probably still valid.

Nh =N − Ne is the number of doped holes relative to the half-
filled insulator that arises when Ne = N .

In the present study, we chose units of energy such that t =
1 and consider dt ≤ 0.4. We consider U = 12 at δ = 1/12 and
δ = 1/8 doping levels and focus on Ly = 4- and 6-leg cylinders
of length up to Lx = 48. We perform around 60 sweeps and
keep up to m = 20,000 states for Ly = 4 cylinders with a typical
truncation error ε∼ 5× 10−7 and up to m = 35,000 states for
Ly = 6 cylinders with a typical truncation error ε∼ 3× 10−6.

The results of our calculations (as explained below) are sum-
marized for δ = 1/12 in the remaining figures and quantified in
Table 1. More details, including further analysis of truncation
error and results for δ = 1/8, are provided in SI Appendix.

SC Pair-Field Correlations
We have calculated the equal-time spin-singlet SC pair-field
correlation function

Φαβ(r ; y0, y) = 〈Δ†
α(x0, y0)Δβ(x0 + r , y0 + y)〉. [2]

Here, Δ†
α(x , y) =

1√
2
[ĉ†(x ,y),↑ĉ

†
(x ,y)+α,↓ + ĉ†(x ,y)+α,↑ĉ

†
(x ,y),↓] is

the spin-singlet pair creation operator on the NN bond from
site (x , y) oriented in the α= x̂ or ŷ direction. We are interested
in the decay of this quantity at large distances along the cylinder,
r, as a function of both the relative orientation of the two bonds,α
and β, and their relative displacement transverse to the cylinder,
y. We take (x0, y0) to be the “origin,” chosen to be a site near the
center of the system with x0 ∼ Lx/4 and y0 = 1. At long distances
(r � 1), Φαβ exhibits power-law decay (i.e., quasi–long-range
order [QLRO]) characterized by the Luttinger exponent Ksc :

Φαβ(r ; y0, y)∼ r−KscΔα(y0)Δβ(y0 + y). [3]

The nature of the pairing is encoded in the behavior of the
amplitudes,Δα(y). Specifically, were there true long-range order
(i.e., in the limit Ly →∞), we could classify SC states (e.g., d
wave vs. s wave) by the behavior under symmetry transformations
of these amplitudes. Thus, to develop some intuition concerning
the meaning of these amplitudes, we analyze what they would
mean in this limit. The spatial symmetries of the striped model
are such that there are two inequivalent y-directed bonds and
a unique x-directed bond. In a state with SC long-range order
and if we assume that the translation symmetry of the model is
not spontaneously broken, then the most general singlet order
parameter on NN bonds can be parameterized as

Δy(y) = Δs +Δd + e iπ(y−1)Δπ

Δx (y) = Δs −Δd . [4]

In the limit dt = 0, each of these parameters would be associated
with a state with different symmetries—nonzero values of Δs or
Δd would characterize an “extended s-wave” or “d-wave state,”
while Δπ nonzero would correspond to a period 2 pair density

Table 1. Summary of extracted parameters

Ly dt Ksc Δd Δs Δπ Kcdw ξs ξG

4 0.0 1.38 (3) 0.0 0.0 0.066 1.27 (1) 8.6 (4) 3.9 (2)
4 0.1 1.22 (3) 0.019 –0.011 0.074 1.35 (1) 7.1 (2) 3.6 (2)
4 0.2 1.08 (2) 0.032 –0.016 0.082 1.46 (1) 4.7 (2) 3.0 (1)
4 0.3 1.02 (2) 0.042 –0.021 0.091 1.48 (1) 2.9 (1) 2.5 (1)
6 0.0 ∞ 0.0 0.0 0.0 0.3 (3) 3.9 (4) 2.4 (3)
6 0.3 1.04 (9) 0.070 0.004 0.038 3.5 (2) 1.7 (1) 1.8 (1)
6 0.4 1.03 (8) 0.062 –0.011 0.065 3.3 (2) 1.3 (1) 2.2 (1)

The parameters are obtained by fitting the DMRG results to theoretically
expected asymptotic forms of various correlation functions for δ = 1/12
and the given values of Ly and dt. Exponentially falling correlations are
represented by a Luttinger exponent of ∞. Precise levels of uncertainty due
to finite size effects—especially with regard to the Luttinger exponents—are
difficult to estimate.
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wave (also known as a “π-pairing” state). Note that, by symmetry,
the pair field vanishes on all x-directed bonds in the π-pairing
state. However, for nonzero dt, the symmetry distinction between
these states is removed, so some mixture of all three is expected.
However, it is still reasonable (and conventional) to refer to the
case in which |Δd | is the largest component as “d wave–like”
pairing.

For noninfinite Ly , the amplitudes in Eq. 3 can be viewed as
reflecting the local symmetry of the pairing and as indicators
of the preferred form of pairing that should be expected in
the Ly →∞ limit. Importantly, for dt = 0, even for noninfinite
Ly , there is a sharp distinction between π pairing (with Δπ 	= 0
and Δd =Δs = 0) and d wave–like pairing (with Δπ = 0 and
Δd 	= 0). To date, there is no evidence of a tendency toward π
pairing on anything other than the four-leg cylinder. However,
since for Ly = 4, π pairing is equivalent to d-wave pairing on
plaquettes oriented perpendicular to the long axis of the cylinder,
such a state has been seen and has been referred to in this
context as “true d-wave” (9) or “plaquette d-wave” (13) pairing.
More generally, for dt 	= 0, we can loosely identify distinct states
by which component is largest (dominant). (These symmetry
arguments are made more precise in SI Appendix, section D.)

Fig. 2A shows Φyy(r ; 1, 0) (i.e., between ty bonds) for Ly = 4
cylinders at δ = 1/12. The exponent Ksc , obtained by fitting the
results using Eq. 3, is Ksc = 1.38(3) for the uniform case, dt =
0.0, while for dt = 0.2− 0.3, Ksc ∼ 1. We have also computed
other components of Φαβ . Φxx (r ; 1, 0) is shown in Fig. 2B, and
Φxy(r ; 1, 0) and Φyy(r ; 1, 1) are shown in SI Appendix, Fig. S2.
For the isotropic case with dt = 0.0, Φxx (r ; 1, 0) and Φxy(r ; 1, 0)

decay exponentially as Φxx (r ; 1, 0)∼ e−r/ξsc with ξsc ∼ 1.8 (8,
13) and Φyy(r ; 1, y)∼ (−1)y (i.e., the amplitudes are consistent

with π-pairing QLRO with Δπ = 0.066 and Δd =Δs = 0). This
is consistent with previous studies of the Ly = 4 Hubbard and
t–J models with dt = 0 (8, 10, 11, 13). The key observation is
that Φxx (r ; y0, 0) and Φxy(r ; y0, 0) are significantly enhanced for
dt > 0, so that they decay as a power law with a similar Ksc as
Φyy . In particular, not only isKsc decreased from its dt = 0 value,
|Δd | increases rapidly as well. For example, for dt = 0.3, Δd =
0.042, Δs =−0.021, and Δπ = 0.091. (More complete results
are presented in Table 1.)

The results are still more dramatic for Ly = 6. Consistent with
previous studies on the isotropic Hubbard model, on Ly = 6
cylinders with dt = 0, we find that the SC correlations are rel-
atively weak and appear to decay exponentially with distance as
shown, for δ = 1/12, in Fig. 2 C and D. However, as was the case
for Ly = 4 cylinders, we find that the SC pair-field correlations
are dramatically enhanced by a finite dt > 0, where we find
that Φαβ(r)∼ r−Ksc with Ksc ∼ 1. Moreover, the SC pairing
symmetry is d-wave like with Φxx (r)∼ Φyy(r)∼−Φxy(r). For
example, for dt = 0.3, Δd = 0.042, Δs = 0.004, and Δπ = 0.038.
As summarized in SI Appendix, the results we have obtained
for δ = 1/8 are qualitatively similar to those with δ = 1/12. For
instance, for dt = 0.3 at δ = 1/8, Ksc = 1.07(7), Δd = 0.074,
Δs = 0.007, and Δπ = 0.032.

CDW Correlations
To measure the charge order, we define the rung density
operator n̂(x ) = L−1

y

∑Ly

y=1 n̂(x , y) and its expectation value
n(x ) = 〈n̂(x )〉. Fig. 3 A and B shows the charge density
distribution n(x ) for Ly = 4 cylinders, which is consistent with
“half-filled charge stripes” with wavelength λcdw = 1/2δ. This

A B

C D

Fig. 2. SC pair-field correlations. (A) Φyy(r; 1, 0) and (B) Φxx(r; 1, 0) on N = 48 × 4 cylinders at δ = 1/12 with different dt and (C) Φyy(r; 1, 0) and (D)
Φxx(r; 1, 0) on N = 48 × 6 cylinders at δ = 1/12 with different dt on double-logarithmic scales. (C, Inset and D, Inset) Φyy(r; 1, 0) and Φxx(r; 1, 0) in double-
logarithmic scales with dt = 0.4 on both N = 32 × 6 and N = 48 × 6 cylinders. r is the distance between two Cooper pairs in the x̂ direction. Note that only
the central half region with 2 ≤ r ≤ Lx/2 + 1 is shown and used in the fitting, whereas the remaining data points from each end are removed to minimize
boundary effects. The dashed lines denote power-law fitting to Φ(r) ∼ r−Ksc .
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Fig. 3. Charge density profiles. Charge density distribution n(x) at δ = 1/12 doping level on N = 48 × 4 cylinders with (A) dt = 0.0 and (B) dt = 0.3 and on
N = 48 × 6 cylinders with (C) dt = 0.0 and (D) dt = 0.4. The exponent Kcdw is extracted using Eq. 5, where the red lines are fitting curves. A few data points
in light gray are neglected to minimize boundary effects.

corresponds to an ordering wave vector Q = 4πδ (i.e., viewing
the cylinder as a one-dimensional [1D] system, two holes per
1D unit cell). The charge density profile n(x ) for Ly = 6
cylinders is shown in Fig. 3 C and D, which has wavelength
λcdw = 2/3δ, consistent with “two third–filled” charge stripes.
This corresponds to an ordering wave vector Q = 3πδ (i.e., four
holes per 1D unit cell).

At long distance, the spatial decay of the CDW correlation
is dominated by a power law with the Luttinger exponent
Kcdw . The exponent Kcdw can be obtained by fitting the charge
density oscillations induced by the boundaries of the cylinder
(17, 33)

n(x ) = n0 + A(x ) ∗ cos(Qx + φ) [5]

A(x ) = AQ ∗ (x−Kcdw/2 + (Lx + 1− x )−Kcdw/2).

Here, AQ is an amplitude, φ is a phase shift, n0 = 1− δ is the
mean density, and Q = 4πδ for Ly = 4 cylinders and Q = 3πδ
for Ly = 6 cylinders. Note that to improve the fitting quality, a

few data points (corresponding to the light gray points in Fig. 3)
are excluded to minimize the boundary effect. Values of Kcdw

are summarized in Table 1. The fact that Kcdw >Ksc for all cases
in which dt > 0 suggests that CDW order is secondary compared
with SC. The one exception isLy = 6 and dt = 0, where the CDW
correlations are at best slowly decaying and are clearly stronger
than the SC. Our results are consistent with CDW QLRO with
a value of Kcdw ≤ 0.3, consistent with previous results for the t–J
model (14). Note that similar values of Kcdw can also be obtained
from the asymptotic falloff of the density–density correlation
function, as shown in SI Appendix.

Spin–Spin Correlations
To describe the magnetic properties of the ground state, we
calculate the spin–spin correlation functions defined as

F (r) = 〈�Sx0,y0 · �Sx0+r ,y0〉. [6]

Here, �Sx ,y is the spin operator on site i = (x , y), and i0 = (x0, y0)
is the reference site with x0 ∼ Lx/4. Fig. 4 shows F (r) for both

Fig. 4. Spin–spin correlations at δ = 1/12. (A) F(r) on N = 48 × 4 cylinders with different dt and (B) F(r) on N = 48 × 6 cylinders with different dt in
semilogarithmic scale. Dashed lines denote exponential fit F(r) ∼ e−r/ξs , where r is the distance between two sites in the x̂ direction.
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A B

Fig. 5. Single-particle Green function at δ = 1/12. (A) G(r) on N = 48 × 4 cylinders with different dt and (B) G(r) on N = 48 × 6 cylinders with different
dt on the semilogarithmic scale. Dashed lines denote exponential fitting G(r) ∼ e−r/ξG , where r is the distance between two sites in the x̂ direction.

Ly = 4 and Ly = 6 cylinders at δ = 1/12 with different dt. It is
clear that F (r) decays exponentially as F (r)∼ e−r/ξs at long
distances, with a finite correlation length ξs (i.e., there must
be a finite gap in the spin sector). Moreover, ξs decreases with
increasing dt on both Ly = 4 and Ly = 6 cylinders. In addition,
we also observe for both Ly = 4 and Ly = 6 cylinders that the
spin–spin correlation has spatial modulation with a wavelength
λs that is twice that of the charge (i.e., λs = 2λcdw ). Values of ξs
for δ = 1/12 and various values of dt are given in Table 1.

Single-Particle Green Function
We have also calculated the single-particle Green function, de-
fined as

G(r) = 〈c†(x0,y),σc(x0+r ,y),σ〉. [7]

Fig. 5 shows G(r) for both Ly = 4 and Ly = 6 cylinders at δ =
1/12 with different dt. The long-distance behavior of G(r) is
consistent with exponential decay G(r)∼ e−r/ξG . The extracted
correlation lengths ξG < 4 for both Ly = 4 and Ly = 6 cylinders
are comparable with ξs , as also shown in Table 1.

Summary of Results
What we have generically found, both for Ly = 4 and Ly = 6,
over the entire investigated range of stripe modulation strength,
dt, and doped hole concentration, δ, is a form of SC QLRO with
exponentially falling spin and single-particle correlations and
with typically weaker but presumably also power law–correlated
CDW QLRO. These results are summarized in Table 1 where the
values of the Luttinger exponents Ksc and Kcdw , the various su-
perconducting amplitudes, Δd , Δs , and ΔΠ, and the correlation
lengths ξs and ξG are given as a function of dt for both the 4 and
6 leg cylinders.

Conclusions
It is both conceptually and practically important to understand
what aspects of electronic structure are optimal for superconduc-
tivity. Circumstantial evidence has been adduced in several ways
that certain organized forms of spatially inhomogeneous struc-
ture can enhance superconductivity, but we feel that the present
results constitute the clearest and most unambiguous evidence to
date that this is a real and robust effect. They also are interesting
in the context of the still more basic question of whether the

two-dimensional repulsive Hubbard model can support high-
temperature superconductivity; the present results offer encour-
aging evidence of an affirmative answer, as they constitute some
of the strongest long-range SC correlations documented to date
on systems wider than four legs. It is worth acknowledging that
the present results on period 2 CDW order cannot be directly
compared with the situation in the cuprates, where the CDW or-
der typically has period closer to three (Y1Ba2Cu3O6+δ) or four
(Bi2Sr2Can−1CunO2n+4+x and La2−xSrxCuO4). Nonetheless, it
suggests that a more nuanced approach to the intertwining of
CDW and SC orders may be appropriate in the cuprate context.

Finally, there is the question of obtaining a conceptual under-
standing of the numerical results we have reported. This is an
ongoing endeavor. However, it is worth mentioning a possible
connection between the present results and recent DMRG re-
sults that exhibit enhanced superconductivity in a lightly doped
quantum spin liquid (36). Indeed, in the discussion of the “spin-
gap proximity effect” in ref. 22, an analogy was made between
the effects of stripe order and a mechanism based on a doped
spin liquid.

It is reasonable to conclude that the low-energy magnetic fluc-
tuations associated with antiferromagnetic order or near order
(i.e., with energies small compared with the SC gap) are detri-
mental to SC; they would generally be expected to be pair break-
ing (a clear discussion is in ref. 37). However, higher-energy,
short-range correlated antiferromagnetic fluctuations can pro-
duce precisely the sort of momentum-dependent interactions
that are most conducive to d-wave SC. In this sense, a fully
gapped spin liquid would seem to have just the right spectrum
of magnetic fluctuations to be an optimal parent to a high-
temperature superconductor. Indeed, it is possible to view the
gap in such a state as the pairing gap of a superconductor that is
waiting to be liberated. In a similar sense, the undoped (δ = 0)
two-leg Hubbard ladder has a spin gap and can be viewed as a
Mott insulator of preexisting Cooper pairs (rung singlets). In this
sense, doping into a modulated array of effective two-leg ladders
may be analogous to doping a fully gapped quantum spin liquid.

Data Availability. There are no data underlying this work.
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