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Abstract

Background: If biology is modular then clusters, or communities, of proteins derived using only protein interaction
network structure should define protein modules with similar biological roles. We investigate the link between
biological modules and network communities in yeast and its relationship to the scale at which we probe the
network.

Results: Our results demonstrate that the functional homogeneity of communities depends on the scale selected,
and that almost all proteins lie in a functionally homogeneous community at some scale. We judge functional
homogeneity using a novel test and three independent characterizations of protein function, and find a high
degree of overlap between these measures. We show that a high mean clustering coefficient of a community can
be used to identify those that are functionally homogeneous. By tracing the community membership of a protein
through multiple scales we demonstrate how our approach could be useful to biologists focusing on a particular
protein.

Conclusions: We show that there is no one scale of interest in the community structure of the yeast protein
interaction network, but we can identify the range of resolution parameters that yield the most functionally
coherent communities, and predict which communities are most likely to be functionally homogeneous.

Background
Large protein-protein interaction data sets [1-3] and
functional information about many proteins are increas-
ingly available. This allows one to investigate the pat-
terns in protein-protein interactions that enable proteins
to act concertedly to carry out their functions. In parti-
cular, considerable recent attention has been given to
the modularity of the cell’s functional organisation [4-6].
A module is often thought of as a group of components
that carry out a functional task fairly independently
from the rest of the system. It is thought that such
modules yield robust and adaptable systems [7]. There
is also much suggestive evidence that modules within
the cell are themselves the building blocks of a higher
level of structural organisation (e.g. [8-10]).
Within the networks literature a great many algo-

rithms have been proposed that locate dense regions in
a network, often called communities (reviewed in
[11,12]). A community is loosely defined as a group of
nodes that are more closely associated with themselves

than with the rest of the network. Such communities
are potentially good candidates for functional modules,
and many studies report running one of the myriad
algorithms for detecting community structure on pro-
tein interaction networks [13-19]. Having located com-
munities, such studies then attempt to assess their
functional homogeneity by searching for terms in a
structured vocabulary –usually the Gene Ontology (GO,
[20]) or Munich Information Centre for Protein
Sequences categories (MIPS, [21])–that are significantly
over-represented within communities. If such terms
exist, the identified communities are said to be
‘enriched’ for biological function. In many studies such
enriched communities are found, and hence are plausi-
ble candidates for biological modules.
Recently there has been an acknowledgement that

many community detection algorithms - in particular all
those that rely on optimising the quality function
known as modularity - impose an artificial resolution
limit on the communities detected [22]. Such algorithms
return communities found at one particular resolution -
i.e. at one particular scale within the network - whereas* Correspondence: deane@stats.ox.ac.uk
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there are many scales of potential functional relevance
within the protein interaction network. For example,
one might expect to find smaller communities
embedded inside progressively larger ones [11]. There
are now algorithms available that include a ‘resolution
parameter’, which allow one to uncover structure at
many different resolutions [23-29]. However, no study
to our knowledge has systematically applied such an
algorithm and analysed the results across different reso-
lutions in protein interaction networks (one study
reports testing more than one value of a parameter akin
to the resolution on a protein interaction network, in
order to select an optimal value for their purposes [30]).
In this study, we probe the functional relevance of

communities at multiple resolutions (scales) in the yeast
protein interaction network, for two main biological rea-
sons. First, considering the whole proteome, it is possi-
ble to view how the network breaks into communities
(hierarchically or otherwise), and to investigate whether
some scales of organisation are of more relevance than
others biologically. Second, the relationship of multi-
scale community structure to a particular protein is of
interest: it is possible to see which other proteins co-
occur with it at different resolutions - perhaps it co-
occurs robustly with a small group of proteins at high
resolution but also with a larger set of proteins at a
lower resolution. Both groups are of potential interest in
understanding what role the protein plays. This is parti-
cularly pertinent for poorly annotated proteins, as their
patterns of potential function can be revealed through
clustering into communities [31].
Although it is already thought that communities have

some relationship to functional modules, here we
expand on previous work to assess the functional rele-
vance of communities in four main ways.
First, assessing functional relevance by counting over-

represented terms amongst a group of proteins is not a
sufficiently stringent test of functional relevance when
the group of proteins in question is a community. This
is because two proteins that interact are functionally
more similar than a randomly chosen pair of proteins,
so one must control for the number of interactions
when assessing the biological relevance of a community
(which will necessarily include more interacting pairs
than a randomly selected group of proteins). We there-
fore control for the number of interacting proteins
found in a community.
Second, instead of assessing functional homogeneity

on a term by term basis we use all the annotations avail-
able within a given ontology.
Third, GO and MIPS are subjective by their nature,

both in the definition of the sets of terms themselves
and in the process of annotation of terms to proteins.
Due to their role in a particular process, a protein might

well be both annotated more fully and have a higher
probability of having had protein interaction experi-
ments performed on it. Therefore, in addition to using
GO and MIPS as protein functional characterizations,
we use a single high-throughput experiment on the
growth rates of gene knock-out strains under various
conditions (using data from [32]).
Fourth, protein interactions are of two fundamentally

different types. The Molecular Interactions ontology
[33] recognises two distinct types of interactions: physi-
cal associations (henceforth denoted P) and associations
(henceforth denoted A). The main experimental type for
the former are yeast-two-hybrid screens (e.g. [34]). The
main type of experiment to fall under the latter are
based on tandem affinity purification (TAP, e.g. [35]).
These interaction types are known to have very different
properties [1,36]. Additionally, the networks constructed
using these two types of interactions have quite different
global properties (see Table 1). We thus investigate the
two networks, based on type A and type P interactions,
independently.
We identify communities at multiple resolutions in

these two fundamentally different interaction networks.
We then use novel tests to determine the communities’
functional homogeneity using three different characteri-
sations of function. As the functional knowledge of pro-
teins is far from complete (even for well characterised
organisms such as yeast), we also search for topological
properties of communities that are correlated with func-
tional homogeneity.
In our study we find many functionally homogeneous

communities at multiple network resolutions. Almost all
proteins are in functionally homogeneous communities
at some resolution (4652 of 4980 proteins in the A net-
work, and 5647 of 5669 proteins in the P network). The
resolution that places most proteins in functionally
homogeneous communities is beyond the ‘resolution
limit’, or standard resolution, discussed above. At this
maximum, 3071 out of 4980 proteins are in functionally
homogeneous communities according to our GO simi-
larity measure in the A network. Communities at this
resolution have mean size 73, compared to mean size
293 at the standard resolution. We find similar numbers
for the P network. Additionally, we find a high degree of
overlap between communities judged functionally
homogeneous using three separate quantifications of

Table 1 Network statistics of the A and P networks

Network A P

Number of nodes 4980 5669

Number of edges (of which self edges) 48,330 (868) 33,321 (941)

Mean degree 19.1 11.5

Mean clustering coefficient 0.22 0.10
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functional similarity. Through a further characterization
of the communities using 26 topological properties, we
identify the mean clustering coefficient of a community
as a good predictor of functional homogeneity, with a
true positive rate of 70% achievable with a false positive
rate of 30%. In addition to these proteome-scale results,
we demonstrate via examples how this approach can be
used to predict groups of proteins likely involved in
similar processes to a particular protein of interest.

Methods
Protein-Protein Interaction Datasets
Here we use the BioGrid (http://www.thebiogrid.org,
downloaded January 2010, [37]), IntAct (http://www.ebi.
ac.uk/intact, downloaded January 2010, [38]) and Mint
databases (http://mint.bio.uniroma2.it/mint, downloaded
January 2010, [39]) to assemble our protein interaction
networks. We use only interactions between proteins
that have an SGD identification (Saccharomyces Gen-
ome Database, http://www.yeastgenome.org, [40]).
We divide interactions on the basis of their type

(A or P) and hence assemble the two networks. The
IntAct database [38] gives interaction types from the
Molecular Interaction ontology [33] directly. It con-
tains 23632 interactions of type A and 26611 of type P.
The Mint database [39] uses the Molecular Interaction
interaction detection type ontology, the broad cate-
gories of which are biophysical, biochemical, and pro-
tein complementation assay. The biochemical
techniques give evidence of association (type A interac-
tions), and the biophysical and protein complementa-
tion assays give evidence of physical interactions (type
P). Using this division, there are 13347 A type interac-
tions and 10407 P type interactions. The BioGrid data-
base [37] uses its own evidence types. Those giving
evidence of P type interactions are reconstituted com-
plex, PCA, Co-crystal structure and yeast-two-hybrid.
Those giving evidence of type A interactions are affi-
nity capture, biochemical activity, co-fractionation, co-
purification and Far Western. (Details of these experi-
mental types can be found on the BioGrid website,
http://www.thebiogrid.org). There are 35716 A type
interactions and 13142 P type interactions overall. Of
the potential 6607 proteins in the yeast proteome
http://www.yeastgenome.org, there are 5002 proteins
connected by A type interactions, and 5692 connected
by P type interactions. Here we only study the largest
connected component of these networks, leaving 4980
proteins in the A network and 5669 in the P network.
Some summary statistics for the two amalgamated net-
works are shown in Table 1. The A network is denser,
and has higher clustering. There are 5947 interactions
in common between the A and the P networks.

Potts community detection
We apply the Potts method [23]. It partitions the pro-
teins into communities at many different values of a
resolution parameter, thus finding communities at dif-
ferent scales within the network. The method seeks a
partition of nodes into communities that minimises a
quality function (’energy’):

H J s sij

ij

i j= −∑ ( ) ( , ),  (1)

where si is the community of node i, δ is the Kro-
necker delta, l is the resolution parameter, and the
interaction matrix Jij (l) gives an indication of how
much more connected two nodes are than one would
expect at random (i.e., in comparison to some null
hypothesis). The energy H is thus given by a sum of ele-
ments of J for which the two nodes are in the same
community. Optimising H is known to be an NP-hard
problem [41,42], so one must use a computational heur-
istic. Here we use the greedy algorithm discussed in [43]
and freely available http://www.lambiotte.be/codes.html,
which performs well against various benchmark tests
[44]. As pointed out by Good et al [45], one must be
cautious in interpreting results obtained from detecting
communities by optimizing modularity or similar quality
functions, as there is a degeneracy of partitions with
almost optimal H. As a consequence different optimisa-
tion techniques can find very different optima.
The interaction matrix J has elements

J B Rij ij ij( ) , = − (2)

where the matrix B with elements Bij is the adjacency
matrix. In this case Bij = 1 if proteins i and j interact,
and Bij = 0 otherwise. The matrix R with elements Rij

defines a null model, against which we are comparing
the network of interest. Here we choose the standard
Newman-Girvan null model [46], which has the prop-
erty that it preserves the expected node degree
sequence. That is,

R
kik j

Wij =
2

, (3)

where ki = ∑ j Bij is the degree of node i, and W =∑ ij

Bij/2 is the number of edges in the network. When l =
1, H is the standard Newman-Girvan modularity quality
function, upon which many community detection algo-
rithms are based [11,46]. We hence refer to this value of
the resolution parameter as the standard resolution.
Values of l > 1 probe the network at resolutions above
the resolution limit.
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We investigate partitions of the network in the range
0.1 is ≤ l ≤ 1000, and sample at intervals of 0.01 on a
logarithmic scale (we hence report results for -1 ≤ log
(l) ≤ 3). At l = 0, all nodes in our set will be assigned
to the same community. As we increase l, communities
split and become smaller. If we allow l to increase until
all of the entries in Jij are negative, then each node will
be assigned to its own community.

Convention for identifying communities at different
partitions
To relate the partition at one value of the resolution
parameter l to that at another (which we use here for
visualisation), we require a convention for labelling
communities. Here we use a method based on the over-
lap of shared nodes [47]. A convention based on links
rather than nodes gives nearly identical results. Let the
communities in the first partition (which here is that at
the highest resolution) be labeled K1, ..,Ks, and those in
the next partition be labelled L1, ...,Lt. Then for each
pair of communities, {Ki, Lj}, we have

W
Ki L j
Ki L j

ij =
∩
∪

| |

| |
, (4)

where |B| denotes the cardinality (number of ele-
ments) of the set B. Starting with the largest value of
Wij , we relabel community i as community j. Relabel-
ling proceeds with the next largest Wij , as long as com-
munity i is not yet relabelled, until all communities have
been relabelled. If s >t, we introduce a new label.

Pairwise measures of functional similarity
It is impossible to uniquely quantify similarity in biologi-
cal function. Here we rely primarily on the GO http://
www.geneontology.org, which provides the most compre-
hensive available database of functional annotations. We
use the Biological Process sub-ontology annotations to
yeast, which are maintained by the SGD consortium [40].
Terms are related to each other through a directed acyc-
lic graph (DAG). Proteins are annotated with the most
specific terms that are known about them. It is then pos-
sible to add to this set their parent terms by following the
structure of the DAG, up to the root node. Well-charac-
terised proteins are those annotated with terms far from
the root node. Of the 6346 yeast proteins in the GO
annotation set, 5347 have biological process annotations
(excluding the root node). We carried out the same tests
using the Molecular Function and Cellular Component
sub-ontologies, which gave similar results.
We also use MIPS terms (http://www.helmholtz-

muenchen.de/en/ibis, [21]), which are a useful double
check on our results from GO, and have the added

advantage that the terms are all found at the same level
within the hierarchy of terms. Here we only use the top
level of the MIPS hierarchy.
Following [48], we quantify the functional similarity

between two proteins i and j by finding the set of GO
terms annotated to both proteins and counting the total
number of proteins, nij , that share that set of terms.
We then define a similarity measure between proteins
i and j as

G n Nij ij= −1 log( ) / log( ), (5)

where N is the total number of proteins. If both pro-
teins are annotated with a set of terms that few proteins
share, then they will be judged as functionally similar
under this measure. Unlike many other measures, Gij

does not penalise proteins for lack of annotation when
judging their similarity. This is desirable, as we know
that the GO annotations (even for the well-characterised
S. cerevisiae) are far from complete. The quantity Mij is
similarly defined through Equation 5 for the MIPS
annotations.
The benefit of using a pairwise similarity measure that

takes into account the full set of functional information
available, rather than examining enrichment of function
on a term by term basis, is that the measure has the
potential to capture more general functional similarities
between a pair of proteins.
We also define a similarity between two proteins from

a single high-throughput experiment via the growth
rates of knock-out strains under a range of different
conditions. Using the data in [32], we define Cij , the
correlation in growth rates of the strain with gene i
knocked out to the strain with gene j knocked out
under 418 different conditions:

C L Lij i j= ( )corr , , (6)

where the elements of the vector Li are

Li
t

i
c

i
t= log( / ),  (7)

the parameter  i
c is the mean growth rate of strain i

under different control conditions, and  i
t is the

growth rate under one of the 418 treatment conditions.
We use the results from the homozygous strains.
Because many gene deletions are lethal, there is only
data available for 3625 proteins, of which 3184 are in
the A network and 3422 are in the P network.

Assessment of a community’s functional homogeneity
As mentioned previously, a fair test of the functional
homogeneity of a community must take into account
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the fact that a pair of proteins that interact will be more
similar than a randomly chosen pair. Standard enrich-
ment tests do not take this into account, as they com-
pare enrichment in a group of proteins, in this case a
community, to what one would expect to attain from a
randomly chosen set of proteins [49]. A community
necessarily contains many more interacting pairs than a
randomly chosen set. We thus compare the pairwise
functional similarities of all interacting pairs of proteins
in a community to the same measure for all interacting
pairs in the network, thereby controlling for the number
of interacting pairs.
To capture the pairwise similarity between two pro-

teins that interact {ij}, we use z-scores:

z
S

ij
ij

{ }
{ }=

− 


(8)

Where S stands for one of our three similarity mea-
sures (based on GO, G, MIPS, M, or correlated growth
rates, C), μ is the mean and a the standard deviation of
all of the elements of S for which proteins i and j inter-
act in the network of interest (A or P).
A desirable quality for our test of functional homoge-

neity is the ability to compare communities found at dif-
ferent resolutions in an even handed manner. It is
inherent in the nature of a statistical test that the signifi-
cance of the test statistic under consideration (for exam-
ple, the difference between the sample mean and the
population mean) depends on the sample size: if one
has a larger sample size, one can judge smaller differ-
ences to be ‘significant’. To determine the aggregate
z-score, zagg, for the mean of a set of individual z-scores,

zind, one calculates z N zagg ind= ( ) , where N is the

number of zinds and μ(zind) is their mean [50]. So, given a
μ(zind), a larger and hence more significant zagg is
achieved for a larger sample size (i.e. larger N). In order
to separate out the effects of the number of interactors in
the community from functional homogeneity, we thus
choose to base assessment of functional homogeneity on
the μ(zind), in our case μ(z{ij}) (z{ij} is defined in Equation
8). We judge as ‘significant’ all those communities that
have μ(z{ij}) above 0.3, and call such communities “func-
tionally homogeneous”. We stress that this is not strictly
an assessment of statistical significance, as we are choos-
ing to ignore sample size. The value of 0.3 would be
judged to be significant at the 0.05 significance level for
any community with 30 or more interacting pairs.

Classification of protein types
We focus on a small but broad set of protein types,
which are the GO biological process terms within the
yeast GO slim [51] that are annotated to at least

200 yeast proteins. They are (numbers of proteins in
brackets): 1. DNA metabolic process (357); 2. protein
modification process (465); 3. transport (859); 4.
response to stress (458); 5. membrane organization
(208); 6. RNA metabolic process (715); 7. vesicle-
mediated transport (280); 8. response to chemical stimu-
lus (298); 9. cellular lipid metabolic process (204);
10. cellular carbohydrate metabolic process (220) and
11. chromosome organization (338).

Topological properties that correlate well with functional
homogeneity
We investigate 26 topological properties of the identified
communities and assess whether any of these can be
used to identify functionally homogeneous communities.
Examples include mean clustering coefficient, between-
ness measures, and network diameter. Any topological
properties that correlate well with functional homogene-
ity can then be used to predict functionally homoge-
neous communities. We use each topological property
as a classifier by predicting communities as functionally
homogeneous when the value of that property is above
a threshold, which we vary to construct a Receiver
Operating Characteristic (ROC) curve. An ROC curve
plots the number of communities correctly predicted as
functionally homogeneous versus the number falsely
predicted [52]. We calculate the area under the ROC
curve (AUC) for each metric at each value of l, and
report the mean of this quantity over resolutions
between 0 ≤ log(l) ≤ 3 (we exclude -1 ≤ log(l) < 0, as
the results are very noisy due to the small number of
communities present). An AUC of 0.5 would be
expected from a random classifier. AUCs of greater than
0.5 imply that higher values of the metric are predictive
of functional homogeneity. AUCs of less than 0.5 imply
predictive power if below a threshold of that particular
property was used (i.e. that the property and functional
homogeneity are negatively correlated).

Results and Discussion
Pairwise properties of proteins
Community structure, if of any biological relevance,
should uncover patterns that are more than the sum of
effects from pairs of interacting proteins. In Table 2 we

Table 2 Pairwise similarities of proteins in the A and P
networks under the three different similarity measures,
G, C, and M

A P

All pairs Interacting pairs All pairs Interacting pairs

G 0.04 0.14 0.04 0.12

C 0.19 0.35 0.18 0.33

M 0.22 0.28 0.22 0.27
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show the pairwise similarity of proteins in each network
under our three different measures of functional similar-
ity (based on GO, MIPS, and correlated growth rates;
see Methods). The similarity of pairs known to interact
with either A or P type interactions is much higher than
a randomly chosen pair of proteins under all three mea-
sures. This both helps motivate the investigation of the
connection between functional similarity of proteins and
the topology of the network, and demonstrates the
necessity of taking into account pairwise properties
when assessing any additional information that one can
gain by studying communities.

Communities
Figure 1 shows the communities that we find in the A
and P yeast networks as the resolution parameter l is
varied. As l increases, more and smaller communities
are found (see Table 3). At l = 1 (i.e. log(l) = 0), which

corresponds to standard Newman-Girvan modularity
[46], most communities contain a few hundred proteins.
By log(l) = 3 however, almost all proteins are in com-
munities of size three or smaller. As shown in Figure 1,
some sets of nodes are classified in the same community

Figure 1 Communities identified in the A and P Networks. Communities identified in the yeast protein interaction network for interactions of
a) type A and b) type P. When the resolution parameter l is very small, all nodes are assigned to the same community (which is analogous to
viewing the network at a great distance). As l is increased (viewing the network at progressively closer distances), more structure is revealed. The
figures on the right hand side show visualisations of the networks’ partition into communities at three different values of l. Each circle represents a
community, with size proportional to the number of proteins in that community, positioned at the mean position of its constituent nodes. (These
positions were determined via a standard force directed network layout algorithm [57].) The shade of the connecting lines is proportional to the
number of links between two communities. The main figure shows the communities that we find as we vary the resolution. We identify
communities as the same through changing resolution parameter, and hence colour them the same, according to a convention described in the
Methods (only communities of size 50 or more are shown). Note that the ordering of proteins is not the same in the two figures.

Table 3 Mean size of communities in the A and P
networks

log(l) mean size of communities

A P

-0.5 681 2834

0 293 405

0.5 73 79

1 22 26

1.5 11 10

2 6 6

2.5 5 5

3 4 4
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through large changes in the resolution parameter and
hence represent particularly inter-connected parts of the
network. Figure 1 can be contrasted with Figures S1 in
Additional File 1, which are similar calculations on a
random network and a network designed to possess
strong communities. In the former, not much structure
is present, in the latter, there are very distinct blocks.
The black lines in Figure 2 illustrate for a) the A net-

work and b) the P network, i) the number of commu-
nities of size four or more as the resolution changes,
and ii) how many proteins are in those communities.
The two networks, A and P, contain very different

types of interactions, and they can therefore be used to
identify different aspects of the cell’s functional organi-
sation. The A network is also much denser than the P
network. A interactions would therefore dominate the
clustering into communities, thereby making it very
hard to pick out any structures given by P type interac-
tions (as occurs in [53]). When considering a particular
protein or set of proteins, comparisons between com-
munities found in the A and P networks can be made,
see the Examples section. Global comparisons between
the partitions of the A and P networks at a particular
resolution are not necessarily meaningful as, for exam-
ple, the size of communities depends both on the size
and other properties of the network.
Data files containing the A and P networks and the

community membership of proteins at multiple

resolutions are available at http://www.stats.ox.ac.uk/
research/proteins/resources.

Functional homogeneity of communities
We now assess how many communities are judged func-
tionally homogeneous, looking in particular at how our
results vary with resolution parameter.
Figures 2i) illustrate the number of communities

judged to be functionally homogeneous, and Figures 2ii)
show the number of proteins in communities judged to
be functionally homogeneous, for a) the A network and
b) the P network. We find that the large communities
present at small values of the resolution parameter l are
not judged to be functionally homogeneous. As l is
increased, larger numbers of proteins occur in function-
ally homogeneous communities, peaking in the range
1.5 < log(l) < 2. At log(l) = 1.5, the mean community
size is 73 proteins, and the majority of proteins, 3071 of
4980, are in functionally homogeneous communities as
judged by our GO similarity measure. The shapes of the
curves of both Figure 2a) and 2b) for all three similarity
measures are very similar. Indeed, we find that the over-
lap between the communities judged to be functionally
homogeneous between any two of the three measures is
high; for example, it is 70% between the GO and corre-
lated growth rates measure over almost the entire range
of the resolution parameter in both A and P networks
(see Figure S2 in Additional File 1 for the complete

Figure 2 For a) the A network b) the P network, i) the number of communities of size four or more and ii) the number of proteins in
such communities and the fraction of these that are judged functionally homogeneous. i) The number of communities with changing
resolution parameter (solid black curve) ii) The number of proteins p in communities of size four or more (solid black curve). Also shown are the
numbers of communities/proteins in such communities judged to be functionally homogeneous according to the GO similarity measure (green
curves), the MIPS measure (dot-dashed blue curves) and the correlated growth similarity measure (dashed red curves). At values of log(l) ≤ 0.5,
relatively few proteins are in communities judged to be functionally homogeneous. The curves are similar for both networks, and they show a
similar proportion of proteins in functionally homogeneous communities. One difference is that there are more proteins in functionally
homogeneous communities at a lower value of log(l) for the P network.
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data). Given that the correlated growth similarity mea-
sure represents a very different data type to the GO and
MIPS annotations, this agreement gives us confidence in
the similarity measure we use for GO and MIPS. As we
use only the top level of the MIPS functional annota-
tions, we capture less information than the GO measure,
so it is unsurprising that fewer communities are found
to be functionally homogeneous under this measure.
The P network shows a similar pattern to the A net-

work. One difference is that communities start to be
judged as functionally similar at a slightly lower resolu-
tion. This is most likely due to the different topological
properties of the P network. That there are comparably
many functionally homogeneous communities in the P
network as the A network is of interest, as commu-
nities found in P networks are found to be poor
choices for predicting function on the basis of enrich-
ment of terms [31].
For almost all proteins, there is some value of the

resolution parameter that assigns them to a functionally
homogeneous community. In fact 4652 out of 4980 A
proteins and 5647 and of 5669 P proteins are in such
communities at some value of the resolution parameter.
For a given protein, it may not be that it interacts most
closely with proteins involved in the same process.
Indeed it is often necessary to look at a larger scale, pla-
cing the community in a bigger community in order to
identify the biological processes it participates in.
Whether or not this is the case, and which network
scale (resolution) is most indicative of the processes a
protein is involved in, will depend on the particular pro-
tein one is interested in. This demonstrates the biologi-
cal motivation for investigating community structure at
multiple resolutions, and suggests the desirability of a
method to easily identify those communities most likely
to be functionally homogeneous.
We might expect proteins involved in particular pro-

cesses to show different propensities to lie in function-
ally homogeneous communities. We focus on a set of
general protein types (as defined and listed in the
Methods), and investigate what fraction of each type of
protein lie in communities judged functionally homo-
geneous under the GO measure through changing
resolution parameter. Figure 3 illustrates for the A net-
work these percentages for four particular processes.
(Figure S3 in Additional File 1 shows the same figure
for all 11 terms for the A network and separately for
the P network). Proteins of some types are far more
likely to be found in functionally homogeneous com-
munities than others. For example, for both the A and
P networks, proteins involved in chromosome organi-
sation are far more likely to be found in functionally
homogeneous communities than proteins involved in
lipid metabolism. In addition, there are some

indications that the resolutions of most interest can
depend on the type of protein under investigation. As
can be seen in Figure 3, proteins involved in RNA
metabolic processes are more likely to be found in
functionally homogeneous communities at log(l) = 0.8,
where the mean size of communities is 30. In contrast,
proteins involved in vesicle-mediated transport are
found in greater numbers in functionally homogeneous
communities at log(l) = 1.7, where the mean size of
communities is 10.

Examples of communities found at multiple resolutions
Consider the community at log(l) = 0 that is marked as
the blue block in Figure 1 for the A network (over node
labels approximately 0 to 500). This contains 528 pro-
teins and consists largely of proteins with some relation-
ship to the ribosome (based on short protein

Figure 3 Fraction of proteins of particular types in functionally
homogeneous communities. The fraction of proteins, f, of
particular types that are in functionally homogeneous communities
in the A network, with changing resolution parameter. With
changing resolution parameter proteins of particular types have
consistent differences as to how often they are found in
functionally homogeneous communities. For example, proteins
involved in chromosome organisation are far more likely to be in
functionally homogeneous communities than proteins involved in
metabolism. There are also some features that suggest ‘good’
resolutions for particular processes. For example, a good resolution
for proteins involved in vesicular mediated transport would be log
(l) = 2.7 (for which the mean size of communities is 10), whereas
for proteins involved in RNA metabolic processes, log(l) = 0.8
would be better (the mean size of communities is 30).
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descriptions found on the SGD website). Figure 4a)
shows this community, where we have coloured nodes
according to the community partition at the later parti-
tion log(l) = 0.5. The colours - red, yellow, and blue -
are the same as in Figure 1, where most of the commu-
nity present at log(l) = 0 has split into three commu-
nities at log(l) = 0.5. The blue community consists of
107 proteins, which are largely precursors to and pro-
cessors of the large ribosomal unit. The red community
consists of 95 proteins, which have a similar function
but for the small ribosomal subunit. The yellow com-
munity has 190 proteins, 93 of which are constituents of
the ribosome and the remainder of which are either of
unknown function or associate to the ribosome. We
give short descriptions of the proteins in these commu-
nities in Additional File 2.
An illustration of the biological relevance of commu-

nity structure at three partitions is given in Figures 4b)
and 4c). We show a community of 90 proteins at log(l)
= 0.5, and display its partition into communities at b)
log(l) = 0.75 and c) log(l) = 1.6. Almost all of the pro-
teins in the community at log(l) = 0.5 play some role in
transcription initiation. At log(l) = 0.75 this community
has split into two main smaller communities: the pink
community contains constituent proteins of the RNA
polymerase II mediator complex and the green commu-
nity contains components of the closely related SAGA
and TFIID complexes. At log(l) = 1.6, this second com-
munity has split into the SAGA and TFIID complexes.
Multi-resolution community detection and characteri-

sation is relevant both from the global viewpoint, where
one can investigate the aggregate functional organisation
of the proteome, and from the local perspective, where
the community membership of particular proteins can
be traced through changing resolution parameter. We
thus now consider a protein-centred view of multi-reso-
lution community detection. We consider, for an exam-
ple protein, the properties of the communities to which
it is assigned through changing resolution parameter,
see Figure 5. The size of the communities, their mean
similarity under the G and C measures, and the mean
clustering coefficient are shown. The protein is a mem-
ber of the ESCRT-I complex. (Figure S4 in Additional
File 1 gives a further four examples.) Note the very
robust properties of the communities in the A network
over resolution parameter values of approximately 1 ≤
log(l) ≤ 2.5, despite the tendency for them to be parti-
tioned as l increases. At these resolutions, the protein is
in the same community as other members of the com-
plex, as well as a few other very closely associated pro-
teins. Beyond log(l) = 2.5, the complex is broken up, as
reflected in the drop in mean similarity values. The
community present over 0.7 ≤ log(l) ≤ 1.4 in the P net-
work contains many proteins associated to the complex

Figure 4 Examples of communities found. a) A representation of
a community in the A network at resolution parameter value log(l)
= 0, with nodes (proteins) coloured according to the partition of
this community at log(l) = 0.5. The colours are the same as for
Figure 1 a), where this group of proteins has labels roughly in the
range 0 - 500. Almost all of the nodes have some relationship to
the ribosome. The proteins in the yellow community are mostly
ribosomal subunits, those in the red community are mostly pre-
cursors to and processors of the small ribosomal subunit, and those
in the blue community have similar roles to those in the red
community but for the large subunit. The shading of the links has
no significance; its purpose is to ease visualisation. Black nodes are
not located in one of the three largest communities discussed in
the text. b) A representation of a community at log(l) = 0.5, with
nodes (proteins) coloured according to the partition of this
community at log(l) = 0.75. The proteins identified at the lower
resolution almost all play some role in transcription initiation. At the
higher resolution, more structure is revealed: the pink community
consists mostly of proteins from the RNA polymerase II mediator
complex and the green community mostly consists of proteins from
the TFIID and SAGA complexes. c) The partition at a higher
resolution (log(l) = 1.6). The green community from b) has split
into the SAGA complex (green) and the TFIID complex (orange).
The names and descriptions of the proteins in these example
communities are given in Additional File 2. The node positions for
visualisation were computed in the same way as for Figure 1.
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(in addition to the complex itself). Above the step obser-
vable at log(l) = 1.4, only members of the complex are
present. In Additional File 2, we give the names and
brief functional descriptions of proteins that occur in
some of the same communities for this example, and
the four other examples given in Additional File 1.
These five examples all show the following behaviour.

• In general, as would be expected, the size of the
community to which a protein is assigned decreases
with increasing resolution. There is often a large
range of resolutions over which the community has
constant size (which we have observed in practice to
entail the same community across multiple resolu-
tions). Such communities are particularly resilient to
being split up at increasing resolutions, despite the
tendency for them to be partitioned.
• The community similarity under the G, C and M
measures often shows a close correlation.
• At higher resolutions, there tends to be a higher
community similarity, as might be expected of a hier-
archically organised system. This is, however, not
always the case: community similarity can decrease at
higher resolutions. In these instances, a group of pro-
teins has been partitioned beyond the point at which
function is shared, possibly through the exclusion of
proteins involved in the same processes that do not
necessarily directly interact with each other.
• There is often a large overlap between the commu-
nity membership in the A and P networks, but it can

also be quite different. For example, in Additional
File 1 Figure S4 c), the protein occurs with other
proteins in the same complex in the A network,
whereas in the P network it occurs with non-com-
plex members which are nonetheless involved in the
same process. The functional homogeneity of com-
munities can also be different: sometimes the protein
occurs in many functionally homogeneous commu-
nities in the A network and not the P, and some-
times vice versa. This is unsurprising given the very
different nature of A and P interactions. By treating
them separately, we are able to pick out both types
of pattern.

Use of topological properties to select functionally
homogeneous communities
Almost all proteins are in functionally homogeneous
communities at some value of the resolution parameter,
and we therefore devise a method to swiftly identify
these resolutions, especially if there is a dearth of func-
tional information. We investigate whether any easily-
calculated topological properties of the communities can
act as indicators of functional homogeneity. Given a
protein of interest we can then use such measures to
quickly identify ‘good’ resolutions, without the need to
assess functional homogeneity.
We tested 26 topological properties for their ability to

predict functional homogeneity using the AUC metric
(see Methods), and show our results in Table 4. In gen-
eral, the AUCs for the P network are lower than those
for the A network, perhaps because there is more poten-
tially usable information in the A network as it is signifi-
cantly denser (see Table 1).
We find that the clustering coefficient is the most use-

ful of the topological properties tested in the prediction
of functional homogeneity for all three similarity mea-
sures and in both the A and P networks. The clustering
coefficient of a network is a measure of the mean local
clustering around nodes: A node has a high clustering
coefficient, c, if its neighbours are also neighbours of
each other [54,55]. It is defined for each node as

c
N

N
=

3 triangle

triple
, (9)

where Ntriangle is the number of triangles of which the
node is a member, and Ntriple is the number of con-
nected triples of which the node is a member. (A con-
nected triple is a single node with edges running to an
unordered pair of other nodes.) Figure 6 shows for a)
the A network and b) the P network the ROC curves
for using the mean clustering coefficient of nodes in a

Figure 5 Tracing the community membership of a particular
protein through changing resolution. For the example protein
YCL008C, we show the size (solid blue curve), mean clustering
coefficient (dot-dashed black curve), mean z-score under the GO
measure (solid green curve), and correlated growth measure
(dashed red curve) with changing resolution for the A network (top)
and P network (bottom). Long plateaus in these properties
represent robust communities. We give further examples in
Additional File 1 Figure S4.
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community as a predictor of functional homogeneity for
each of the three similarity measures in the A network.
(See Methods for a description of the construction.)
There is some element of discretion for annotating A

type interactions, i.e. deciding which pairs to list interac-
tions between following experiments, with the principle
competing models referred to as ‘matrix’ and ‘spoke’
[56]. This choice could cause artefactual topological fea-
tures, so the extent to which we find particular topologi-
cal features correlating with functional homogeneity
could be sensitive to annotation choice. We are there-
fore encouraged that the same trends in predictive abil-
ity are evident in the P network, for which there is no
such element of discretion.
As can be seen from Figure 5 and the figures in Addi-

tional File 1 Figure S4, clustering appears to be a good
proxy for functional homogeneity when looking at indi-
vidual proteins, and in the absence of much functional
information could guide which resolution(s) should be
targeted for investigation.

Conclusions
If protein interaction networks are to aid understanding
of how biological function emerges from the concerted
action of many proteins, then it is crucial to explore
connections between network structure and biological
function. In this paper we investigate how the function
of sets of proteins varies with network community
structure of yeast at multiple resolutions.
We find that community structure does indeed help

identify sets of proteins that act together, and that this
connection between network structure and biological
function depends on what network scales are probed.
We do not expect there to be any single scale of interest
in this middle-scale structure of the protein interaction
network; although previous studies have applied com-
munity detection algorithms to protein interaction net-
works, no study to our knowledge has investigated this
structure at multiple resolutions. We find that 4652 of
4980 proteins in the A network, and 5647 of 5669 pro-
teins in the P network, are in functionally homogeneous

Table 4 Topological metrics tested and AUCs

A P

Network topology measure G C M G C M

Mean degree 0.6476 0.6476 0.6142 0.5130 0.5373 0.5387

Degree assortativity coefficient [58] 0.6913 0.6913 0.6277 0.4799 0.5517 0.5181

Clustering coefficient [59] 0.7186 0.7186 0.6613 0.5521 0.5829 0.5725

Global mean Soffer clustering coefficient [60] 0.4857 0.4857 0.4819 0.3915 0.4735 0.4461

Local mean Soffer clustering coefficient [60] 0.4784 0.4784 0.4662 0.3892 0.4654 0.4540

Mean geodesic node betweenness centrality [61] 0.4600 0.4600 0.4973 0.5045 0.5094 0.4959

Mean closeness centrality [61] 0.5275 0.5275 0.5524 0.4877 0.4919 0.4815

Mean eigenvector centrality [61] 0.5601 0.5601 0.5722 0.5312 0.5551 0.5246

Mean information centrality [61] 0.5191 0.5191 0.5429 0.5253 0.5456 0.5170

Mean geodesic distance [59] 0.3839 0.3839 0.3717 0.4274 0.4945 0.5066

Diameter [61] 0.4457 0.4457 0.4042 0.4366 0.5004 0.5079

Mean harmonic geodesic distance [59] 0.4088 0.4088 0.4042 0.5024 0.4834 0.4995

Energy [59] 0.5237 0.5237 0.4982 0.4568 0.4976 0.5114

Entropy [59] 0.5655 0.5655 0.5327 0.5077 0.5127 0.5280

Off-diagonal complexity [62] 0.5941 0.5941 0.5457 0.5081 0.5054 0.5237

Cyclomatic number [62] 0.6331 0.6331 0.5733 0.5173 0.5300 0.5425

Connectivity [62] 0.6437 0.6437 0.5766 0.5245 0.5334 0.5468

Number of spanning trees [62] 0.4525 0.4525 0.4531 0.4451 0.4516 0.4491

Medium articulation [62] 0.5659 0.5659 0.4463 0.5295 0.5070 0.5592

Efficiency complexity [62] 0.5316 0.5316 0.5343 0.4911 0.4945 0.4982

Graph index complexity [62] 0.6564 0.6564 0.6492 0.5211 0.5469 0.5250

Density 0.6541 0.6541 0.6553 0.5277 0.5676 0.5235

Efficiency [63] 0.5790 0.5790 0.5896 0.4964 0.5071 0.4865

Fraction of articulation vertices [64] 0.5065 0.5065 0.5028 0.5216 0.5062 0.5091

Largest eigenvalue 0.6054 0.6054 0.5663 0.4941 0.5041 0.5185

Rich club coefficient [65] 0.5428 0.5428 0.5896 0.4988 0.5209 0.4868

The network topology measures tested and their associated AUCs. We report the results for using each of these as a predictor for functional homogeneity as
judged under the three measures of functional similarity (GO, G, correlated growth rates, C, and MIPS, M) for both the A and P networks. The AUCs are given as
the average performance over the range 0 ≤ log(l) ≤ 3. The clustering coefficient (definition given in the text, equation 9) is the best predictor in all cases. (The
topological properties were computed from code developed by Gabriel Villar.)
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communities at some value of the resolution parameter
as judged under the GO similarity measure. The num-
ber of proteins in functionally homogeneous commu-
nities peaks at about l = 3 for the A network (which is
beyond the standard ‘modularity’ resolution of l = 1).
For the P network the peak is less pronounced, with the
actual maximum occurring at l = 7 (i.e. log(l) = 0.86).

These findings emphasise that there are different scales
of interest in the community structure of protein inter-
action networks, and that the one of primary interest
will depend on which proteins and processes one is
investigating. For some protein types, there are natural
resolutions, at which more proteins of that type are
assigned to functionally homogeneous communities. We
also find that proteins involved in some processes are
much more likely to be in functionally homogeneous
communities than others. For example we find for both
networks and across a range of resolutions that approxi-
mately 70 - 80% of proteins involved in chromosome
organisation compared to 40% involved in lipid metabo-
lism are in functionally homogeneous communities.
Having a good measure of functional homogeneity is

central for our analysis. We approach this issue by using
three different characterisations of functional similarity:
two based on the GO and MIPS structured vocabularies
respectively and one based on the growth rates of gene
knock-out strains under different chemical conditions
[32] (an independent and objective characterization of
biological function). The prevalent method in the litera-
ture for assessing functional homogeneity of a group of
proteins is inappropriate for communities, as the num-
ber of interacting pairs in a group must be taken into
consideration. By defining similarity at the pairwise
level, we have developed a fair test of functional homo-
geneity through a comparison of interacting pairs. We
also capture the aggregate functional similarity of two
proteins, overcoming the need to assess functional
homogeneity on a term by term basis (although this is,
of course, also possible once communities of particular
interest have been identified). Our tests of functional
homogeneity (which are not statistical tests in the con-
ventional sense because of our desire to exclude the
effects of sample size) using the three measures of simi-
larity show a high level of agreement with each other,
giving us confidence in our chosen measures of func-
tional similarity.
Throughout this study, we have investigated two sepa-

rate yeast protein interaction networks: that based on
associations (the A network; mostly TAP-like data), and
that based on physical associations (the P network;
mostly yeast-two-hybrid data). We find that the two net-
works have similar properties with respect to their com-
munity structure, despite their very different global
topological properties. Rather than regarding the yeast-
two-hybrid data as of an inferior quality [31], we start
from the basis that it is of a fundamentally different
type and should thus be treated separately. We find
similar percentages of functionally homogeneous com-
munities in both networks.
As we have found a connection between network

communities and biological function, we can use

Figure 6 ROC curves for using mean clustering coefficient to
pick out functionally homogeneous communities in a) the A
network and b) the P network. The Receiver Operating
Characteristic (ROC) curve for using mean clustering coefficient as a
predictor of functional homogeneity under the GO measure (solid
green curve), MIPS measure (dot-dashed blue curve) and correlated
growth measure (dashed red curve). We plot the false positive rate
(FPR) versus the true positive rate (TPR). A random classifier would
give the solid black line. For the A network under the GO measure,
a true positive rate of 70% is achievable with a false positive rate of
30%. For both networks, the best predictive ability is achieved for
the GO measure, and the worst for the MIPS measure (see Table 4
for areas under the curves (AUCs).). The AUCs for the P network are
in general lower than those for the A network (see Table 4).
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observed community structure to predict aspects of bio-
logical function. We find in particular that communities
with a high mean clustering coefficient are far more
likely to be functionally homogeneous than those with a
lower one. The mean clustering coefficient of nodes
within a community can therefore be used to predict
that a group of proteins is functionally homogeneous,
even in cases where our current knowledge does not
allow us to infer this on the basis of functional annota-
tions alone. These results give insights into the relation-
ships between the structural and functional organisation
of the cell considering the whole proteome.
We have also illustrated the utility of our framework

for biologists who are interested in a particular protein.
In a chosen interaction network, one can determine the
community membership of the protein of interest at
multiple resolutions. Even in the dearth of functional
information, the easily-calculated clustering coefficient
can be computed to suggest resolutions of particular
interest.
In conclusion, we have linked the community struc-

ture of a protein interaction network with biological
function by probing different scales of network struc-
ture. The identified communities are candidates for bio-
logical modules within the cell. We have also illustrated
how this connection can be used to select groups of
proteins that likely participate in similar biological
functions.

Additional material

Additional file 1: Supplementary figures 1-4.

Additional file 2: Tables of proteins in communities given in the
Examples Section.
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