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Background. Endotoxin (LPS), the component of Gram-negative bacteria, is responsible for sepsis and neonatal mortality, but low
concentrations of LPS produced tissue protection in experimental studies. The effects of LPS applied to the suckling rats on the
pancreas of adult animals have not been previously explored. We present the impact of neonatal endotoxemia on the pancreatic
exocrine function and on the acute pancreatitis which has been investigated in the adult animals. Endotoxemia was induced in
suckling rats by intraperitoneal application of LPS from Escherichia coli or Salmonella typhi. In the adult rats, pretreated in the
early period of life with LPS, histological manifestations of acute pancreatitis have been reduced. Pancreatic weight and plasma
lipase activity were decreased, and SOD concentration was reversed and accompanied by a significant reduction of lipid
peroxidation products (MDA+4 HNE) in the pancreatic tissue. In the pancreatic acini, the significant increases in protein
signals for toll-like receptor 4 and for heat shock protein 60 were found. Signal for the CCK1 receptor was reduced and
pancreatic secretory responses to caerulein were diminished, whereas basal enzyme secretion was unaffected. These pioneer
studies have shown that exposition of suckling rats to endotoxin has an impact on the pancreas in the adult organism.

1. Introduction

Lipopolysaccharide (LPS, endotoxin), a major component of
the outer membrane of Gram-negative bacteria, is responsible
for these bacterial pathogenicities [1, 2]. LPS is a lipid-
polysaccharide molecule composed of three parts: (1) lipid
A, which represents a toxic element; (2) the oligosaccharide

core; and (3) polysaccharide—an antigen O, highly immuno-
genic. This antigen constitutes 20–40units; each unit repre-
sents 3 sugars [3, 4].

Inactive endotoxins are incorporated into the bacterial
outer membrane and covered with a polysaccharide capsule
[2]. Lipid A, the toxic moiety of LPS, could be released into
the extracellular fluid as the result of bacterial cell damage.
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Free lipid A is exposed to the immune cells such as mac-
rophages, monocytes, and polymorphonuclear leukocytes
[4, 5]. Macrophages, which are activated by LPS, release
cytokines and acid hydrolases and produce radical oxygen
species (ROS) and nitric oxide (NO). The above substances
turn on multiple mechanisms involved in the cellular defense
and killing of bacteria [5–8]. Massive infection of an organ-
ism with Gram-negative bacteria is related to the release of
high amount of LPS in the body fluids and might lead to
the septic shock and multiple organ failure [9–12].

Endotoxin molecules are transported in the blood by
specific carrier protein—LPS-binding protein (LBP). This
acute-phase protein is produced in the liver and in the other
tissues (kidney, heart, and lungs) in response to proinflam-
matory interleukins [13]. Bacterial infection stimulates the
production of LPB and increases its blood level [14]. LBP
conveys LPS molecule to the cell membrane, where the com-
plex LPS-LBP binds to the CD14 receptor. This membrane
receptor is devoid of intracellular activity, because of the lack
of the transmembrane domain [15]. Activation of the CD14
receptor is the first step in the process of the LPS-induced sig-
nal transduction pathway. The next step involves toll-like
receptor 4 (TLR4), leading finally to the mobilization of
NF-κB [16–18]. TLR4 receptors have been detected in the
pancreas, in the acinar cells, in the pancreatic islets, and also
in the vascular system [19]. Previous studies have shown that
TLR4 protein was responsible for the apoptosis of pancreatic
cells during acute pancreatitis [20].

The effect of LPS on the pancreas depends on their dose
and on the duration of exposition. Early studies of Vaccaro
et al. [21] have revealed that chronic exposition of the rats
to Salmonella typhi endotoxin produced impairment of the
pancreatic exocrine function. Also, our previous experiments
have shown that prolonged administration of LPS from E.
coli (10mg/kg× 5 days) produced mild pancreatic necrosis
[22]. To the contrary, our subsequent studies presented the
beneficial effect of LPS, given at a low dose, on pancreatic
inflammation. Pretreatment of the rats with a single low dose
of LPS (1mg/kg) prior to the induction of acute pancreatitis
resulted in the increase in a pancreatic defense mechanism
and the significant reduction of pancreatic inflammatory
damage [23–25].

Chronic exposition to endotoxin could be very dangerous
for the organisms, particularly in the early period of life. The
development of the immune system is incomplete in the
young organisms, and the responsiveness of neonates to the
bacterial antigens is imperfect. Bacterial infections in the
neonatal period of life could often produce sepsis with fatal
outcome [12]. Massive neonatal endotoxemia could often
lead to the decreased protein synthesis, tissue damage,
impairment of brain functions, and sepsis with high mortal-
ity rate [26–29]. However, it was not clear how endotoxemia,
which takes place in the early period of life, affects the func-
tion of the immune system and what is the impact of such
intoxication on the gastrointestinal inflammation in the adult
organism. We were not able to find the effect of endotoxemia
induced in the suckling period of life on the pancreas of adult
individuals. Because of the lack of such data, we decided to
investigate the consequence of neonatal endotoxemia on

the pancreatic secretion of enzymes and on acute pancreatitis
in the same adult animals.

2. Material, Method, and Experimental
Schedule of Studies on the Suckling Rats
Subjected to LPS

In the next series of our studies, suckling rats (2 weeks old,
weighing 30–40 g) have been employed and injected with
LPS for five consecutive days. LPS, purchased from Sigma
Co., which originated from Escherichia coli (E. coli) and from
Salmonella typhi (S. typhi) were given to the separate groups
of animals. Control rats received injections of physiological
saline. LPS has been administered at various doses: 5, 10, or
15mg/kg/day. Each group of rats received separate doses of
LPS. Total doses of LPS received by each group of rats were
25, 50, or 75mg/kg. The doses of LPS used in our study were
not particularly toxic, and all young rats have survived. Three
months later, the same rats, as adults, have been used for the
studies on pancreatic exocrine secretory functions, in the
experiments on acute pancreatitis [30, 31].

3. Studies on the Effect of Neonatal
Endotoxemia on the Pancreatic Secretory
Function in Adults

To our best knowledge, the influence of endotoxemia
induced in the early period of life on the pancreatic function
of the mature organism has not been previously explored.
The previous study on the effect of endotoxin on the pancre-
atic exocrine function has been performed by Vaccaro et al.
[21] on the adult rats, which have been treated with LPS at
a dose of 4mg/kg for 7 days. Such chronic application of
LPS to the adult rats caused the significant reduction of their
pancreatic secretory function. It has been reported in the
same study that incubation of the acinar cell line AR42J with
LPS resulted in the apoptosis of these cells and in the
increased mRNA signals for pancreatitis-associated protein
(PAP) and for proinflammatory cytokines [21].

Our study failed to show any signs of inflammation in the
pancreatic tissue taken from adult rats, which have been sub-
jected to endotoxin treatment in the early period of life. In
these animals, amylase blood level was not significantly dif-
ferent from this enzyme blood concentration measured in
the control rats, untreated with LPS. Also, basal (unstimu-
lated) secretion of amylase was not affected by neonatal
endotoxemia (Figure 1).

In contrast to the unaffected basal pancreatic secretory
function, we have observed that amylase secretion induced
by caerulein or by diversion of pancreatic juice to the exterior
(DPJ) was markedly reduced in the adult rats pretreated in
the suckling period of life with LPS, as compared to the
untreated control. A dose of 1μg/kg of caerulein, given to
the control rats, produced amylase output reaching about
7800 IU/30min, whereas in the adult animals pretreated with
75mg/kg of LPS in the infancy, amylase response to1μg/kg
of caerulein achieved about 4000 IU/30min (Figure 1). The
above-described reduction of pancreatic enzyme secretion
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was dependent on the dose of endotoxin, which has been
given to the rat pups. Treatment of the rat pups with the
higher dose of LPS (75mg/kg) resulted in the strong reduc-
tion of pancreatic enzyme secretion measured in the same
animals 3 months later and achieved about 50% of the con-
trol value. In the group of rats pretreated in infancy with a
lower dose of LPS, which was 50mg/kg, the amylase response
to 1μg/kg of caerulein was less reduced and achieved about
70% of the control value (Figure 1) [30].

It is worth to remember that pretreatment of the rats with
LPS from E. coli resulted in the similar reduction of the
pancreatic secretory function as was observed in the rats sub-
jected to the administration of LPS from S. typhi and no sig-
nificant differences have been found between the both
groups of rats; these rats pretreated with LPS from E. coli
presented the same impairment of pancreatic exocrine
secretion as those, which have been subjected to LPS from
S. typhi (Figure 1).

To explain the mechanism of the above reduced respon-
siveness of the pancreatic gland to caerulein, in vitro experi-
ments on isolated pancreatic acini have been employed. In
pancreatic acini, obtained from rats pretreated in the suck-
ling period of life with LPS, pancreatic amylase release was
significantly reduced as compared to the secretion of this
enzyme from the control acini originating from young rats
untreated with endotoxin (Figure 2). It is possible that the
above-presented decreased secretory response of pancreatic
acini to caerulein could be related to the changes in the
CCK receptor, because the signal for the CCK1 receptor
was significantly and dose-dependently reduced in the pan-
creatic acini obtained from adult rats injected with endotoxin
in the suckling period of life (Figure 3) [31].

As the result of these pioneer experimental studies, we
can conclude finally that pretreatment of the rat pups with
endotoxin does not affect basal amylase secretion of adult
animals in vivo but significantly reduced that stimulated by
caerulein or diversion of pancreatic juice to the exterior. This
impairment of the pancreatic exocrine secretory function
could be related, at least in part, to the changes in the
CCK1 receptor on pancreatic acini.

4. Neonatal Endotoxemia and Acute
Experimental Pancreatitis in Adults

Acute pancreatitis (AP) is a serious disease, in which patho-
genesis is still not clarified [32] and studies to elucidate this
issue last for many years [33]. The severe form of this disease,
which is complicated by sepsis, infected pancreatic necrosis,
and multiple organ failure, often results in the fatal outcome
[34–37]. In acute pancreatitis, systemic endotoxemia resulted
from the translocation of Gram-negative bacteria and their
toxins to the circulation. This translocation is facilitated by
increased intestinal permeability and apoptosis of the endo-
thelial cells [38–40]. Endotoxemia exacerbates the course of
acute pancreatitis and leads to the increased rate of mortality
in the severe form of this ailment [41].

In our former study, we have demonstrated that applica-
tion of a low single dose of LPS prior to the induction of
caerulein-induced pancreatitis made this pancreatitis less
severe and markedly alleviated pancreatic inflammatory
damage [23–25, 42]. Taking into consideration the harmful
effect of endotoxemia on the pancreas and the protective
effect of low-dose endotoxin pretreatment on acute pancrea-
titis, the question arises if it is possible that endotoxemia,
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Figure 1: Results of an in vivo study—amylase responses to caerulein (1 μg/kg i.p.) in adult rats, which have been subjected in the suckling
period of life to endotoxin from E. coli or S. typhi given at total doses of 25, 50, or 75mg/kg. C—normal control. Results are means± SEM from
4 separate experiments, each performed on 6 rats. The asterisk indicates a significant (p < 0 05) decrease below the value obtained from rats
untreated with LPS and stimulated with caerulein.
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Figure 3: Western blot analysis of CCK1 receptor protein level in the isolated pancreatic acini obtained from the adult rats which have been
subjected in the suckling period of life to endotoxin from E. coli given at total doses of 25, 50, or 75mg/kg. Control—intact rats. Results are
means± SEM from 6 separate experiments. The cross indicates a significant (p < 0 05) decrease below the control value. The asterisk indicates
a significant (p < 0 05) decrease below the control. The blots were stripped and probed with GAPDH to document equal protein loading. The
results were obtained in 4 consecutive experiments and are representative for the observed phenomenon.

4 Gastroenterology Research and Practice



which takes place at the early period of life, could affect the
severity of acute pancreatitis induced at the adult age? Our
subsequent studies on the rats have been related to this sub-
ject because such experiments have not been done before.

In the adult rats, which have been pretreated with LPS
in the suckling period of life at a dose of 15mg/kg/day for
5 days, the pancreatic inflammatory changes were signifi-
cantly attenuated as was shown by histological assessment
(Figure 4). In these rats pretreated in the infancy with
endotoxin from E. coli or S. typhi, the indicators of the
severity of AP, such as amylase or lipase blood levels, were
less pronounced [43].

Activation of the immune system in the course of acute
pancreatitis increases the production of proinflammatory
cytokines, as well as of radical oxygen and nitrogen species
(ROS and RNS), and causes the intense generation of nitric
oxide (NO). These substances are among the critical factors,
which are responsible for the severity of inflammation, pan-
creatic necrosis, and systemic complications in this disease
[44–48]. High level of proinflammatory cytokines such as
tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β),
interleukin 6 (IL-6), interleukin 8 (IL-8), or interleukin 33
(IL-33) is often related to the aggravation of acute pancreati-
tis [49–52]. Anti-inflammatory interleukin 10 (IL-10) allevi-
ated the severity of this disease [53, 54]. In our study, the rise
of proinflammatory IL-1β was significantly less abundant in
the rats pretreated in the suckling period of life with LPS and
subjected to acute pancreatitis at adult age, when compared

to the control rats with acute pancreatitis untreated with
LPS. This was accompanied by a marked increase in anti-
inflammatory IL-10 in the AP rats subjected to endotoxemia
in the suckling period of life. Such protection of the pancre-
atic gland was found in the rats subjected to LPS at higher
doses (Figures 5 and 6) [43].

ROS and RNS are toxic compounds responsible for
pancreatic cell damage in acute pancreatitis [47]. These sub-
stances are implicated in the development of pancreatic
necrosis, septic shock, and pancreatitis-associated multiple
organ dysfunction syndrome (MODS) [47, 48]. In acute
pancreatitis, high amounts of ROS are produced in the
immune cells infiltrating the pancreatic tissue and also in
the pancreatic acinar cells [46]. ROS are responsible for
the destruction of cell compartment, peroxidation of lipid
membranes, and production of malondialdehyde and 4-
hydroxynonenal (MDA+4 HNE), which are commonly
used as indicators of ROS production in acute pancreatitis
[55–58]. Pancreatic inflammation is associated with the
significant reduction of antioxidant enzymes such as super-
oxide dismutase (SOD), catalase (CAT), and glutathione per-
oxidase (GPx) [56–58]. Under normal conditions mentioned
above, enzymatic antioxidants together with nonenzymatic
scavengers (e.g., melatonin and vitamins E or C) protect
the tissue against the noxious effects of ROS [47, 59].
Dysfunction of the scavenging system and increased
production of ROS aggravated tissue inflammation and
promoted leukocyte infiltration and proinflammatory

(a) (b)

(c) (d)

Figure 4: Histological picture of pancreatic tissue taken from control rats (a), from rats subjected to acute caerulein-induced pancreatitis (b),
and from the animals with or without acute pancreatitis subjected in the suckling period of life to endotoxin from E. coli (c) or S. typhi (d)
given at a total dose of 75mg/kg. Hematoxylin and eosin stain.

5Gastroenterology Research and Practice



cytokine generation and caused impairment of pancreatic
microcirculation [47, 48].

As we observed in our experiments, concentration of
SOD, an antioxidant enzyme, in inflamed pancreatic tissue
was significantly higher in the animals subjected to neonatal
endotoxemia than in the rats with acute pancreatitis without
such pretreatment (Figure 7). This was consistent with the
observation that the rise of lipid peroxidation products was
significantly lower in the pancreatic tissue taken from the rats
subjected in the suckling period to endotoxemia than from
the rats with acute pancreatitis without LPS pretreatment

[43]. This indicates that in the animals pretreated with endo-
toxins in the early period of life, the antioxidant defense of
pancreatic tissue was strengthened and the formation of
ROS was reduced.

The defense mechanisms activated by neonatal endotox-
emia include also the increased production of heat shock
protein (HSP) in the pancreatic acini (Figure 8). HSPs are a
family of polypeptides present in all cells of organisms. They
are responsible for correct folding of proteins, for their trans-
port into subcellular compartment, and for modulation of
immune activity. HSPs are best known as chaperon
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Figure 5: Interleukin 1β plasma concentration in adult rats with acute caerulein-induced pancreatitis alone and in animals, which have been
subjected in the suckling period of life to endotoxin from E. coli or S. typhi given at total doses of 25, 50, or 75mg/kg. Control—intact animals.
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Results are means± SEM from 6 separate experiments, each performed on 6 rats. The asterisk indicates a significant (p < 0 05) increase above
the value obtained from rats with acute pancreatitis untreated with LPS.
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substances effectively protecting the cell compartment against
the stress-induced damage [60–62]. Exposition of cells to high
temperature, to oxidative stress, or to other stressful condi-
tions leads to the upregulation of HSP signals and to the
increase in these proteins’ synthesis [62, 63]. HSPs create an
effective mechanism of cell defense against inflammatory
damage, and induction of HSP60 or HSP70 protected against
acinar cell injury in acute pancreatitis [61, 62]. The beneficial
effect of HSP on acute pancreatitis has been supported by
the studies on transgenic mice, showing that in animals with
increased expression of HSP70, the severity of acute pancrea-
titis was reduced, whereas in mice devoid of HSP, this severity
was markedly enhanced [64, 65]. It was also shown that HSP
accelerated the recovery from acute pancreatitis [66].

Our studies on the pancreatic cell lines, AR42J and
PANC-1, presented the evidence that cell protection afforded
by melatonin, kynuramines, or leptin is related to the
increased signal of HSP in pancreatic acinar cells [67–69].
Controversial effects of HSP have been reported in pancreatic
tumor. Increased expression of HSP27 in tumor cells has
been associated with increased resistance to chemotherapy
and poorer prognosis in patients with pancreatic cancer
[70]. In contrast to the above report, recent publication has
demonstrated that higher expression of HSP27 was corre-
lated with better patient survival [71].

HSP60 is recognized as chaperon protein preventing
acinar cells from damage [62]. We have observed that in
the pancreatic acini taken from adult rats subjected to endo-
toxemia in the suckling period of life, the signal for HSP60
protein was significantly stronger than that in the acini
obtained from the rats, which have not been subjected to
LPS treatment [72]. This observation strongly suggests that
this increased ability to synthetize HSP60 could be the part
of acinar cell resistance against the inflammatory damage in
rats pretreated in infancy with LPS.

Another interesting phenomenon that was observed in
the pancreatic acinar cells isolated from rats subjected to
LPS in the suckling period of life presented the increased
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signal for toll-like receptor 4 (TLR4) (Figure 9). TLR4, which
is present on the inflammatory cells, plays an important role
in the innate immunity, triggering the inflammatory
response through the activation of the NF-κB pathway [73].
In the pancreas, TLR4 has been detected in the pancreatic
ductal, acinar, and endothelial cells and involved in the
induction of cell apoptosis [74]. TLR4 signal has been
upregulated in acute pancreatic inflammation and perhaps
is involved in the control of pancreatic cell apoptosis dur-
ing the early stages of acute pancreatitis [75]. Recent
in vitro studies have shown that neutralization of TLR4
reduced apoptosis of taurocholate-treated mouse acinar
cells through inhibition of cytochrome c release and pro-
moted these cells’ viability. It was suggested that such
blockade of TLR4 activity could exert protective effects
on an in vitro model of acute pancreatitis [76]. Compatible
results have been shown by Xue and Habtezion [77] who
demonstrated that blockade of TLR4 on macrophages
can ameliorate acute pancreatitis. Yet opposing observa-
tions concerning the consequence of apoptosis in acute
pancreatitis have been presented in other recent publica-
tions. In the experimental studies on rat acute pancreatitis,
it was shown that pancreatic protection was related to the
activation of proapoptotic Bax and the reduction of antia-
poptotic Bcl proteins leading to the activation of the final
executor of apoptosis, the active enzyme caspase-3 [78].
Also in the studies on pancreatic acini subjected to bile
acids, apoptosis was shown as a protective process leading
to the improvement of pancreatic defense and to the

restriction of the inflammatory process in the pancreas.
Apoptotic programmed cell death prevents the cell mem-
brane from interruption and from the release of lysosomal
enzymes from the acinar cells, and in this way, inflamma-
tion is limited and tissues are protected from the injury
[79–82].

We have found that the signal for TLR4 in the pancreatic
acini taken from the rats subjected in the suckling period of
life to LPS treatment was markedly increased [81]. Such
abundance of TLR4 protein expression might suggest that
during acute pancreatitis, the apoptotic process could be
facilitated in these rats and that treatment with LPS in the
early period of life enables the pancreatic cell to activate
the apoptosis signaling pathway. It is likely that in LPS-
pretreated rats, predominance of apoptosis over necrosis
could reduce pancreatic tissue damage and might be
responsible, at least in part, for amelioration of toxic
inflammatory mediators and attenuation of acute pancrea-
titis severity [81, 82].

We can conclude that increased pancreatic defense in the
rats, subjected to endotoxemia in the early period of life,
resulted from several protective mechanisms such as (1)
modulation of the immune system, reduction of proinflam-
matory cytokine production, and rise of anti-inflammatory
cytokine production; (2) augmentation of the antioxidant
enzyme SOD in the pancreatic tissue and decreased forma-
tion of ROS; (3) stimulation of the chaperon protein HSP60
in the pancreas; (4) stimulation of protein signal for TLR4
and subsequent activation of apoptosis in the pancreatic tis-
sue; and perhaps (5) the reduced ability of the pancreatic
gland to secrete the digestive enzymes and thus to decrease
the crucial mechanism of pancreatic autodigestion.

5. Conclusion

Under physiological conditions, the immune cells are con-
tinuously exposed to the low amounts of LPS, which are
derived from the gastrointestinal bacteria. This stimulation
may be essential to maintain the certain level of attentive-
ness of the immune system without causing a disease. Neo-
natal endotoxemia affects the ability of the immune cells to
produce the cytokines and increases the resistance of the
organism to pancreatic inflammation. However, this endo-
toxemia could also turn on the impairment of the pancreatic
exocrine function.
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